首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cross-system analysis of bulk sediment composition, total organic carbon (TOC), atomic C/N ratio, and carbon isotope composition (δ13C) in 82 surface sediment samples from natural and planted mangrove forests, bank and bottom of tidal creeks, tidal flat, and the subtidal habitat was conducted to examine the roles of mangroves in sedimentation and organic carbon (OC) accumulation processes, and to characterize sources of sedimentary OC of the mangrove ecosystem of Xuan Thuy National Park, Vietnam. Sediment grain sizes varied widely from 5.4 to 170.2 μm (mean 71.5 μm), with the fine sediment grain size fraction (< 63 μm) ranging from 11 to 99.3% (mean 72.5%). Bulk sediment composition suggested that mangroves play an important role in trapping fine sediments from river outflows and tidal water by the mechanisms of tidal current attenuation by vegetation and the ability of fine roots to bind sediments. The TOC content ranged from 0.08 to 2.18% (mean 0.78%), and was higher within mangrove forests compared to those of banks and bottoms of tidal creeks, tidal flat, and subtidal sediments. The sedimentary δ13C ranged from − 27.7 to − 20.4‰ (mean − 24.1‰), and mirrored the trend observed in TOC variation. The TOC and δ13C relationship showed that the factors of microbial remineralization and OC sources controlled the TOC pool of mangrove sediments. The comparison of δ13C and C/N ratio of sedimentary OC with those of mangrove and marine phytoplankton sources indicated that the sedimentary OC within mangrove forests and the subtidal habitat was mainly composed of mangrove and marine phytoplankton sources, respectively. The application of a simple mixing model showed that the mangrove contribution to sedimentary OC decreased as follows: natural mangrove forest > planted mangrove forest > tidal flat > creek bank > creek bottom > subtidal habitat.  相似文献   

2.
Management of coastal environments requires understanding of ecological relationships among different habitats and their biotas. Changes in abundance and distribution of mangroves, like those of other coastal habitats, have generally been interpreted in terms of changes in biodiversity or fisheries resources within individual stands. In several parts of their range, anthropogenically increased inputs of sediment to estuaries have led to the spread of mangroves. There is, however, little information on the relative ecological properties, or conservational values, of stands of different ages. The faunal, floral and sedimentological properties of mangrove (Avicennia marina var. australasica) stands of two different ages in New Zealand has been compared. Older (>60 years) and younger (3–12 years) stands showed clear separation on the basis of environmental characteristics and benthic macrofauna. Numbers of faunal taxa were generally larger at younger sites, and numbers of individuals of several taxa were also larger at these sites. The total number of individuals was not different between the two age-classes, largely due to the presence of large numbers of the surface-living gastropod Potamopyrgus antipodarum at the older sites. It is hypothesized that as mangrove stands mature, the focus of faunal diversity may shift from the benthos to animals living on the mangrove plants themselves, such as insects and spiders, though these were not included in the present study. Differences in the faunas were coincident with differences in the nature of the sediment. Sediments in older stands were more compacted and contained more organic matter and leaf litter. Measurement of leaf chemistry suggested that mangrove plants in the younger stands were able to take up more N and P than those in the older stands.  相似文献   

3.
Changes in biotic and abiotic processes following mangrove clearing   总被引:1,自引:0,他引:1  
Mangrove forests, important tropical coastal habitats, are in decline worldwide primarily due to removal by humans. Changes to mangrove systems can alter ecosystem properties through direct effects on abiotic factors such as temperature, light and nutrient supply or through changes in biotic factors such as primary productivity or species composition. Despite the importance of mangroves as transitional habitats between land and sea, little research has examined changes that occur when they are cleared. We examined changes in a number of biotic and abiotic factors following the anthropogenic removal of red mangroves (Rhizophora mangle) in the Panamanian Caribbean, including algal biomass, algal diversity, algal grazing rates, light penetration, temperature, sedimentation rates and sediment organic content. In this first study examining multiple ecosystem-level effects of mangrove disturbance, we found that areas cleared of mangroves had higher algal biomass and richness than intact mangrove areas. This increase in algal biomass and richness was likely due to changes in abiotic factors (e.g. light intensity, temperature), but not biotic factors (fish herbivory). Additionally the algal and cyanobacterial genera dominating mangrove-cleared areas were rare in intact mangroves and included a number of genera that compete with coral for space on reefs. Interestingly, sedimentation rates did not differ between intact and cleared areas, but the sediments that accumulated in intact mangroves had higher organic content. These findings are the first to demonstrate that anthropogenic clearing of mangroves changes multiple biotic and abiotic processes in mangrove forests and that some of these changes may influence adjacent habitats such as coral reefs and seagrass beds. Additional research is needed to further explore the community and ecosystem-level effects of mangrove clearing and their influence on adjacent habitats, but it is clear that mangrove conservation is an important aspect of managing tropical coastal systems.  相似文献   

4.
Land use/cover and mangrove spatial changes were assessed for ten sites and their sub-catchments in Southeast Queensland, Australia. Two time periods were involved: 1972–1990, a period of relatively high rainfall, and 1990–2004, which was significantly drier. Aerial photographs and Landsat satellite imagery were used to map the inter-tidal wetlands and classify the land use/cover in the sub-catchments. A Maximum Likelihood Classification was used to map three types of land cover: agriculture, built-up and plantation forest. Mangroves (mainly Avicennia marina) were the focus as they have been recorded over recent decades encroaching into salt marsh. The Mangrove-Salt marsh Interface (MSI) Index was developed to quantify the relative opportunity for mangroves to expand into salt marshes, based on the shared boundary between them. The index showed a consistent relationship with mangrove expansion and change. To address problems of high dimensionality and multi-collinearity of predictor variables, a Partial Least Squares Regression (PLSR) model was used. A key finding of this research was that the contribution of environmental variables to spatial changes in the mangroves was altered following a reduction in rainfall. For example, agriculture had more influence on mangrove expansion and change during the wet period than during the dry period.  相似文献   

5.
利用1991年的1景TM遥感数据,2000年的ETM+遥感数据和2011年HJ-1A遥感数据进行廉江红树林信息的提取。结果表明:1991,2000和2011年廉江的红树林分布面积分别为131.6,628.7和1 056.2 ha。自1991年至2011年红树林呈增加的趋势,共增加924.6 ha,20年间研究区域的红树林约增加了7倍。湛江红树林国家自然保护区的建立对于红树林湿地生态系统的保护和恢复起到极大的促进作用,研究区域红树林造林恢复成果显著,种植了大量的人工红树林。  相似文献   

6.
Coastal wetlands provide important ecological services to the coastal zone, one of which is sediment retention. In this study we investigated sediment retention across a range of geomorphological settings and across vegetation zones comprising coastal wetlands. We selected six coastal wetlands dominated by mangroves over a gradient from riverine to tidal settings in Southeast Queensland, Australia. Each site was comprised of three distinct vegetation communities distributed as parallel zones to the coast line: seaward fringe mangroves, landward scrub mangroves and saltmarsh/ cyanobacteria mat of the high intertidal zone. We measured suspended sediment retention and sedimentation rates. Additionally, in order to assess the origin of sediment transported and deposited in the mangroves, glomalin, a novel terrestrial soil carbon tracer, was used. Our results show a mean average sedimentation of 0.64 ± 0.01 mg cm−2 spring tide−1, which was variable within sites, regardless of geomorphological setting. However, geomorphological setting influenced spatial patterns of sediment deposition. Riverine mangroves had a more homogeneous distribution of sediments across the intertidal zone than tidal mangroves, where most sedimentation occurred in the fringe zone. Overall, the fringe zone retained the majority of sediment entering the coastal wetland during a tidal cycle with 0.90 ± 0.22 mg cm−2 spring tide−1, accounting for 52.5 ± 12.5% of the total sedimentation. The presence of glomalin in suspended sediments, and thus the relative importance of terrigenous sediment, was strongly influenced by geomorphological setting, with riverine mangroves receiving more glomalin in suspended solids than tidal mangroves. Glomalin was also differentially deposited within the vegetation zones at different geomorphological settings: primarily at the fringe zone of tidal mangroves and within the scrub zone of riverine mangroves. The differences we observed in the spatial distribution of sedimentation and the difference in the origin of the sediment deposited in riverine and tidal mangroves are likely to have an impact on ecological processes.  相似文献   

7.
Using an integrated approach including satellite imagery analysis, field measurements, and numerical modeling, we investigated the damage to mangroves caused by the 2004 Indian Ocean tsunami at Pakarang Cape in Pang Nga Province, Thailand. Comparing pre- and post-tsunami satellite imagery of the study area, we found that approximately 70% of the mangrove forest was destroyed by the tsunami. Based on field observations, we found that the survival rate of mangroves increased with increasing stem diameter. Specifically, we found that 72% of Rhizophora trees with a 25–30 cm stem diameter survived the tsunami impact, whereas only 19% with a 15–20 cm stem diameter survived. We simulated the 2004 Indian Ocean tsunami using the nonlinear shallow-water wave theory to reproduce the tsunami inundation flow and investigated the bending moment acting on the mangrove trees. Results of the numerical model showed that the tsunami inundated areas along the mangrove creeks, and its current velocity reached 5.0 m s−1. Based on the field measurements and numerical results, we proposed a fragility function for mangroves, which is the relationship between the probability of damage and the bending stress caused by the maximum bending moment. We refined the numerical model to include the damage probability of mangrove forests using the obtained fragility function to investigate the tsunami reduction effect of mangrove forest. Under simple numerical conditions related to the mangrove forest, ground level, and incident wave, the model showed that a mangrove forest of Rhizophora sp. with a density of 0.2 trees m−2 and a stem diameter of 15 cm in a 400 m wide area can reduce the tsunami inundation depth by 30% when the incident wave is assumed to have a 3.0 m inundation depth and a wave period of 30 min at the shoreline. However, 50% of the mangrove forest is destroyed by a 4.5 m tsunami inundation depth, and most of the mangrove forest is destroyed by a tsunami inundation depth greater than 6 m. The reduction effect of tsunami inundation depth decreased when the tsunami inundation depth exceeded 3 m, and was mostly lost when the tsunami inundation depth exceeded 6 m.  相似文献   

8.
厦门凤林红树林湿地自由生活海洋线虫群落的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
郭玉清 《海洋学报》2008,30(4):147-153
2004年冬季在集美凤林类似底质类型、盐度和潮位的海湾地段4个断面,就不同红树植物林中的小型底栖动物数量和自由生活海洋线虫群落进行了研究。结果表明:海洋线虫是凤林红树林中小型底栖动物中的绝对优势类群,占到小型底栖动物的76.1%~96.3%;从丰度来看,旧区白骨壤(Avicennia marina)林中小型底栖动物的数量较少,有污水流过的光滩数量较大;4个断面共鉴定出海洋线虫37种(分类实体单元),其中新区秋茄(Kandelia candel)林中的生物多样性指数较低,旧区白骨壤林中群落具有较高的物种多样性;从出现的物种来看,新区秋茄林、旧区白骨壤林和光滩上出现的优势种和摄食功能群的类型各不相同。从4个断面13个站位进行的聚类分析和MDS标序分析结果推断自由生活海洋线虫的群落结构与不同的红树植物形成的沉积物有关。  相似文献   

9.
广西沿海不同演替阶段红树群落沉积物粒度分布特征   总被引:3,自引:1,他引:2  
沉积物粒度分布是影响红树群落演替的重要因素之一。本文对代表广西红树群落演替趋势的白骨壤(Avicennia marina)、秋茄(Kandelia candel)、木榄(Bruguiera gymnorrhiza)3种红树群落沉积物进行了粒度分析。结果表明:3种红树群落沉积物类型均以砂和粉砂为主,随着红树林群落保存状况的逐渐变差,砂的含量逐渐上升,粉砂和黏土含量逐渐下降;沉积物粒径分布趋势均为砂粉砂黏土砾。木榄和秋茄2个群落底床沉积物不同深度沉积物粒径分布规律一致,但与白骨壤群落存在差异;3种红树群落的沉积物粒度频率曲线均呈现为双峰或多峰形态。  相似文献   

10.
Mangrove macrobenthos species are used as ecological indicators as they are sensitive to changes in sediment properties. In this study, the population density of the common mangrove whelk Cerithidea decollata was assessed during different environmental conditions in the St Lucia Estuary, South Africa. Previously, this species was found to persist through both hypersaline and freshwater-dominated conditions. The natural variability in C. decollata populations could provide information on the potential for this widespread species to be used as an ecological indicator in mangroves. We found that snail population density as well as sediment conductivity, moisture content and organic content differed between three mangrove sites that were monitored between 2010 and 2015. The relationship between snail population density and physicochemical characteristics of the sediment was therefore investigated using a mixed-effects model, and sediment conductivity was found to be the best predictor of C. decollata abundance. The resistance of this species to environmental variability could inform on resilience to ecological shifts, which is important when measuring responses associated with climate change.  相似文献   

11.
Changes in mangal area were quantified in the eastern Exmouth Gulf over six years (1999–2004) after Cyclone Vance using Landsat TM satellite imagery and aerial photography. Vance was the strongest tropical cyclone ever to impact the Australian mainland before 2006 and produced wind gusts of more than 280 km h−1. Image data were processed using ENVI™ and IDRISI™ software. Three sets of Landsat TM images from 1999 (a few days before the cyclone), 2002 and 2004 were used, along with 2004 digital aerial photography. A ‘common’ subset of 904 km2 was selected from all images and classification was developed using ISODATA™ unsupervised classification to identify spectrally distinct areas followed by principal component analysis (PCA), vegetation indices and supervised classification. Some 12,800 ha of mangrove habitat was present before the cyclone and approximately 5700 ha (44%) was removed by it. Most mangroves lost (74%) between 1999 and 2004 were converted either to bare sediment or to live saltmarshes and this occurred mostly between 1999 and 2002. Five basic categories of damage were conspicuous from imagery and field observations, and evidence suggests that much of the loss was due to the longer term consequences of sediment deposition or smothering, rather than the immediate effects of wind or waves. Mangroves exhibited accelerated recovery between 2002 and 2004, and around 1580 ha regenerated during this time, amounting to a return of 68% of their former coverage. At this recovery rate we estimate that they should have returned to their pre-cyclone area by 2009. Over half of the saltmarsh habitats (54%) were removed by the cyclone (4060 ha) but their recovery has been far more rapid than mangroves. After 5 years, saltmarshes had returned to 87% of their previous area. The 5700 ha of mangrove habitat damaged by Cyclone Vance exceeds any anthropogenic impact that has ever taken place in Western Australia by several orders of magnitude.  相似文献   

12.
Mangroves can not only provide multiple ecosystem service functions, but are also efficient carbon producers,capturers, and sinks. The estimation of the organic carbon accumulation rate(OCAR) in mangrove sediments is fundamental for elucidating the role of mangroves in the global carbon budget. In particular, understanding the past changes in the OCAR in mangrove sediments is vital for predicting the future role of mangroves in the rapidly changing environment. In this study, three dated sediment cores from interior and fringe of mangroves in the Yingluo Bay, China, were used to reconstruct the spatiotemporal variations of the calculated OCAR since 1900 in this area. The increasing OCAR in the mangrove interior was attributed to mangrove flourishment induced by climate change characterized by the rising temperature. However, in the mangrove fringe, the strengthening hydrodynamic conditions under the sea level rise were responsible for the decreasing OCAR, particularly after the1940 s. Furthermore, the duration of inundation by seawater was the primary factors controlling the spatial variability of the OCAR from the mangrove fringe to interior, while the strengthened hydrodynamic conditions after the 1940 s broke this original pattern.  相似文献   

13.
Marine Mangrove Fungi   总被引:5,自引:0,他引:5  
Abstract. Driftwood, prop roots and other mangrove samples were collected from the intertidal regions of Brillant and Anse Boileau mangrove stands, in the Seychelles. This material was examined for the presence of higher marine fungi. Forty seven species of marine fungi were collected (37 Ascomycotina , 1 Basidiomycotina, 9 Deuteromycotina) , with Halocypluna villosu the most common fungus, while Aniptodera mungrovii, Antennospora quudricorruita, Halosarpheia marina , Ascomyccte sp. (4), and Lulworthiu grandispora were collected frequently. The mycota of the two mangrove stands arc compared. A list of fungi recorded from mangroves is compiled.  相似文献   

14.
The gastropod Terebralia palustris often dominates the surface of muddy to sandy substrates of intertidal mudflats and mangrove forests, where they clearly destabilize the sediment. In the present study, it was investigated whether and to what extent the behaviour of juvenile and adult snails differs among habitats (mudflat vs. mangrove stand) in a Sonneratia alba mangal at Gazi Bay, Kenya. For this purpose we: (1) examined their distribution along three land–sea transects; and (2) applied stable isotope analysis to determine the feeding patterns of different-sized snails from the mangrove and mudflat habitats. Additionally, we investigated if these gastropods exert an impact on microphytobenthic (diatom) biomass, and whether this is size-dependent. The latter objective was met by either enclosing or excluding different-sized snails from experimental cages on the intertidal mudflat and the subsequent assessment of a change in pigment concentration of the sediment surface. In agreement with several previous studies conducted in other mangroves and geographical locations, a spatial segregation was demonstrated between juveniles (more common on the mudflat) and adults (more common in the mangrove forest). On the intertidal mudflat juveniles avoided sediment patches characterized by highly saline water in intertidal pools and a high mud content, while adults tended to dwell on substrates covered by a high amount of leaf litter. Stable carbon isotope analysis of the foot tissue of snails sampled from the S. alba stand and the mudflat indicated a transition in food source when a shell length of 51 mm is reached. Considering the δ13C value of juveniles, it seems they might be selecting for microphytobenthos, which might explain their preference for the mudflat. The diet of size classes found in both habitats did not differ significantly, although juveniles inhabiting the mangrove forest were slightly more depleted in 13C compared to those residing on the mudflat. Assuming juveniles feed on benthic microalgae and considering the lower microalgal biomass inside the mangrove forest, this may be a consequence of a higher contribution of other, more 13C depleted organic carbon sources, like phytoplankton, to their diet. Experimental results indicate a negative, but insignificant, impact on benthic diatom biomass by juveniles (due to grazing) and adults (due to physical disturbance). This finding seems to be in agreement with the results of the stable carbon isotope analysis, strongly suggesting the selective feeding of juvenile T. palustris on benthic diatoms.  相似文献   

15.
Mangroves along the Sudanese Red Sea coast are under constant anthropogenic pressure. To better understand the influence of mangrove clearance on the intertidal benthic community, we investigated the composition, biodiversity and standing stock of the macrofauna communities at high‐, mid‐ and low‐water levels in three contrasting habitats: a bare sand flat, a cleared mangrove and an intact mangrove. In addition, a community‐wide metric approach based on taxon‐specific carbon and nitrogen isotope values was used to compare the trophic structure between the three habitats. The habitats differed significantly in terms of macrofaunal standing stock, community composition and trophic structure. The high‐ and mid‐water levels of the intact mangroves showed a distinct macrofaunal community characterized by elevated densities and biomass, largely governed by higher decapod and gastropod abundances. Diversity was similar for cleared and intact mangroves, but much lower for the bare sand flat. Community‐wide metrics indicated highest trophic diversity and community niche breadth in the intact mangroves. Differences between the cleared and intact mangroves can be partly attributed to differences in sediment characteristics resulting from mangrove clearance. These results suggest a significant impact of mangrove clearance on the macrofaunal community and trophic structure. This study calls for further investigations and management actions to protect and restore these habitats, and ensure the survival of this ecologically valuable coastal ecosystem.  相似文献   

16.
红树林是一种以耐盐的红树植物为主体的潮滩湿地林生物群落,其生长状态对于海岸带具有重要意义,利用遥感技术对红树林进行监测已成为目前主要手段之一。本文以广西北海山口红树林为例,利用HY-1C卫星的海岸带成像仪数据,结合其纹理参数,提取红树林信息,并对红树林植被指数进行分析。结果表明:2018年10月至11月间,红树林的RVI值均大于1,其中部分区域大于5;红树林的NDVI值的变化处于0~0.01之间,NDVI均值都大于0.5;红树林的EVI指数值主要集中在0.2~0.7之间。不同的植被指数计算结果均表明山口红树林长势良好。  相似文献   

17.
Nutrient (C, N and P) fluxes were monitored in a microtidal semi-arid mangrove system, which links a semi-enclosed shallow coastal lagoon with the Gulf of California. We assessed the role of the mangrove ecosystem as a nutrient sink/source and determined how mangrove litterfall rates, tidal regime and climate factors influence these fluxes. Despite high seasonal differences in DOC, POC, N-NO3 and TP levels, nutrient concentrations were only marginally influenced by either hydrological variables or the concentration of these fractions in the adjacent lagoon. The carbon budget appeared to be balanced throughout the study. Retention rates in the mangrove system were related to litterfall rates. Export of DIN was observed mainly in the wet season due to the low nitrogen assimilation efficiency of the system. Import of organic nitrogen was related to the high retention efficiency of particulate organic nitrogen. Phosphorus fractions were imported and retained in the mangrove supporting previous findings that mangroves are phosphorus sinks. Finally, through a simple meta-analysis we tested the quantitative importance of main variables (tidal flow, tidal elevation, tidal range, rainfall, mangrove catchment area, litterfall) controlling mangrove nutrient dynamics. Although results suggest that generalizations can be made about factors regulating nutrient export from mangroves, the lack of statistical significance highlights the relative importance of the local environment for the magnitude of nutrient exchange in mangroves. Future research should focus on finding mechanistic models to explain these general patterns, taking into account the main biogeochemical processes and their roles in coastal ecosystem ecology.  相似文献   

18.
红树林的种间结构组成对红树林生态系统的健康和发展至关重要,而红树林种间分类问题一直以来都是基于遥感手段的红树林监测中的难点。针对该问题,以人工种植为特点的广西茅尾海红树林遥感种间分类为例,基于面向对象的分类思想,提出了一种现场样本与分割对象相结合的红树林种间分类方法。利用GF-2 PMS1高分辨率卫星遥感影像数据,开展了广西茅尾海红树林湿地典型植被精细分类和空间分布研究,并将分类结果与基于像素和传统面向对象SVM分类方法进行了对比。结果显示:总体上,面向对象分类方法更适合用于茅尾海红树林湿地典型植被分类;对于局部混生明显的区域使用基于像素SVM分类方法效果会更好;传统面向对象分类方法中将整个影像分割对象单元作为训练样本可能会在某种程度上造成负面影响。因此,使用文中提出的样本选择新方法进行面向对象分类精度最高,总体精度达到了93.13%,Kappa为0.89。  相似文献   

19.
Tropical shallow-water habitats such as mangroves and seagrass beds are widely acknowledged as important juvenile habitats for various coral reef fish species, most of which are commercially important to fisheries. Spatio-temporal variability in ontogenetic habitat use by fish among these tropical coastal ecosystems has rarely been investigated, yet there are sufficient reasons to believe that this plays an important role. In the present study, we test the spatio-temporal variability in patterns of ontogenetic habitat use by some mangrove/seagrass-associated coral reef fishes (Lethrinus harak, Lethrinus lentjan, Lutjanus fulviflamma and Siganus sutor). Abundances of these four species were investigated during two years in Tanzanian coastal waters, using underwater visual census in mangrove, seagrass, shallow and deep mudflat, and shallow and deep coral reef habitats. The study covered four distinct seasons of the year and was done at two spatially separated (>40 km) locations. Averaged across locations, seasons and years, juveniles (≤10 cm length) of the four study species had significantly higher relative densities in shallow-water (mangroves and seagrass beds) than in deep-water habitats (deep mudflats or coral reefs), whereas the opposite pattern was found for the adults (>15 cm). These findings suggest a strong and general pattern of ontogenetic habitat shifts from shallow- to deep-water habitats. However, specific habitat-use patterns of juveniles as well as adults differed significantly in time and space. Various species showed subtle to considerable flexibility in juvenile as well as adult habitat use across seasons, years, or at different locations. Furthermore, for some species the data suggest presence of ontogenetic habitat shifts at one location but lack thereof at the other location. In summary, ontogenetic habitat use needs to be considered at various spatial and temporal scales for the interpretation of habitat utilization by fish during different life stages. This is important for conservation and management of these habitats, as essential habitats or seasons may be ignored or over-emphasized with respect to their importance for fish during different parts of their life cycle.  相似文献   

20.
Disturbance is an important factor in structuring ecological communities, exerting its influence through changes to the physical environment and to the trajectories of successional processes. Marine environments are subject to a wide range of disturbances and while much is known about the effects of disturbance on macrobenthos in unconsolidated sediments, little is known about the responses of meiobenthos to disturbance in consolidated sediments, such as mangroves. Trampling was used to study the response of meiobenthos to disturbance in mangrove sediments. Even light trampling appeared to break up the mangrove root mat and increased the proportion of fine sediment. Densities of meiobenthos increased 2-3-fold in disturbed sediments, but there was no evidence of disproportionate abundance. Temporal variability was similar in all treatments, but spatial variability increased 4-5-fold in disturbed sediments. Effects persisted for at least 24 months, with little evidence of convergence of treatments. Meiobenthos may have exploited the increase in habitat resulting from loss of the root mat and possibly benefited from increased food from the decomposition of root material. These effects are likely to persist for several years because of the minimal recovery of the root mat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号