首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
A three-dimensional (3-D) coupled physical and biological model was used to investigate the physical processes and their influence on the ecosystem dynamics of the Bohai Sea of China. The physical processes include M2 tide, time-varying wind forcing and river discharge. Wind records from 1 to 31 May in 1993 were selected to force the model. The biological model is based on a simple, nitrate and phosphate limited, lower trophic food web system. The simulated results showed that variation of residual currents forced by M2 tide, river discharge and time-varying wind had great impact on the distribution of phytoplankton biomass in the Laizhou Bay. High phytoplankton biomass appeared in the upwelling region. Numerical experiments based on the barotropic model and baroclinic model with no wind and water discharge were also conducted. Differences in the results by the baroclinic model and the barotropic model were significant: more patches appeared in the baroclinic model comparing with the barotropic model. And in the baroclinic model, the subsurface maximum phytoplankton biomass patches formed in the stratified water.  相似文献   

2.
A numerical model is developed for the generation of internal waves induced by a barotropic tidal wave travelling over large bottom features. Motion equations consider the non-linear terms, as well as the terms responsible for horizontal turbulent exchange. The fluid is assumed to be continuously stratified. In the framework of the developed model, a packet of short non-linear internal waves is shown to occur together with a long baroclinic tide. In the absence of non-linear terms in the equations of motion, the model data are qualitatively and quantitatively consistent with the data provided by known linear models.Translated by V. Puchkin.  相似文献   

3.
底地形变化对内潮产生影响的数值研究   总被引:2,自引:0,他引:2  
本文结合南沙群岛海域出现内潮的水文背景,建立了一个两层数值模式,并通过数值试验来探讨由正压潮波作用下的内潮产生机制。结果表明:底形效庆是促使内潮产生的重要因子;内潮心要在大陆坡产生,然后分别沿着大陆架和深海平原两个方向传播;内潮斜压流速的量级可与正压流速的相比拟。  相似文献   

4.
南海东沙岛西南大陆坡内潮特征   总被引:2,自引:0,他引:2  
2008年4月-10月,在南海东沙岛西南大陆坡底部布放了1套全剖面锚系,同时沿大陆坡底部布放了3套近底锚系,应用谱分析和调和分析方法分析温度和海流连续观测资料,进而研究该海域的内潮特征.结果表明,东沙岛西南大陆坡存在强内潮现象,大陆坡底部温度变化受到内潮波的影响,上层海洋存在强日潮周期的内潮波振动;正压潮和斜压潮均以O...  相似文献   

5.
Tidal observations on the West Coast,South Island,New Zealand   总被引:1,自引:1,他引:0  
Harmonic tidal constants, calculated from sea surface elevation observations at Jackson Bay on the West Coast of the South Island, are consistent with available semi‐diurnal and diurnal tidal phase distributions. Current observations taken over a 111 day period at mid‐depth in 1505 m of water on the southern flank of the Challenger Plateau and over a 240 day period in 1430 m of water on the South Island western coast continental slope, are subject to tidal analysis. At both sites there is a component of energy flux directed across the isobaths and only at the northern site for the M2 tide is the phase consistent with a dominant progressive barotropic tide. The successive 30 day harmonic constants at the southern continental slope site exhibit a trend in the M2 tidal ellipse speed and ellipticity suggesting the presence of a regular internal tide. Superposition of ‘internal tidal’ and barotropic tidal flows, as prescribed from progressive‐ and standing‐wave elevations, to fit the observations indicates that the ‘internal tide’ is probably associated with the first baroclinic mode. At the current‐meter depths the speeds of the ‘internal tide’ for the M2 tide are about the same as the barotropic speeds, whereas, the S2 ‘internal tide’ speeds are larger than those of the barotropic tide. The consistency of the trend in ellipse parameters lends support to the theoretical progressive trapped barotropic tidal flows being a good approximation to the actual barotropic tide. Some support for the hypothesis that the S2 tide on the West Coast of New Zealand has a substantial standing wave contribution is given by the northern observations, where the ratio of the S2: M2 internal tidal ellipse current amplitudes are substantially larger than the ratio of the elevations, the internal tide being generated by across‐isobath flows.  相似文献   

6.
ECOMSED模式在杭州湾海域流场模拟中的应用   总被引:13,自引:0,他引:13       下载免费PDF全文
针对杭州湾独特的喇叭型强潮河口湾的特点,基于Blumberg等(1996)的ECOMSED模式,引入动边界技术,建立杭州湾三维动边界的潮流模型.模型以正交曲线坐标下三维非线性水动力方程为基本方程,应用Mellor和Yamada的2.5阶湍流闭合模型计算紊动黏滞系数,嵌入Grant和Madsen的底边界层模型考虑波浪对底部应力的作用,采用干湿网格法模拟潮流漫滩过程;综合考虑径流,风应力,密度流和M2,S2,K1,O1四个主要分潮和M4,S4,MS4三个浅水分潮的作用,从而提高杭州湾潮流模拟的精度.通过验潮站调和常数和多次海流连续观测资料的验证,表明该文建立的模型可以更好的用于杭州湾流场的预报模拟.  相似文献   

7.
The three-dimensional numerical model SUNTANS is applied to investigate river plume mixing in Otsuchi Bay, an estuary located along the Sanriku Coast of Iwate, Japan. Results from numerical simulations with different idealized forcing scenarios (barotropic tide, baroclinic tide, and diurnal wind) are compared with field observations to diagnose dominant mixing mechanisms. Under the influence of combined barotropic, baroclinic and wind forcing, the model reproduces observed salinity profiles well and achieves a skill score of 0.94. In addition, the model forced by baroclinic internal tides reproduces observed cold-water intrusions in the bay, and barotropic tidal forcing reproduces observed salt wedge dynamics near the river mouths. Near these river mouths, vertically sheared flows are generated due to the interaction of river discharge and tidal elevations. River plume mixing is quantified using vertical salt flux and reveals that mixing near the vicinity of the river mouth, is primarily generated by the barotropic tidal forcing. A 10 ms?1 strong diurnal breeze compared to a 5 ms?1 weak breeze generates higher mixing in the bay. In contrast to the barotropic forcing, internal tidal (baroclinic) effects are the dominant mixing mechanisms away from the river mouths, particularly in the middle of the bay, where a narrow channel strengthens the flow speed. The mixing structure is horizontally asymmetric, with the middle and northern parts exhibiting stronger mixing than the southern part of the bay. This study identifies several mixing hot-spots within the bay and is of great importance for the coastal aquaculture system.  相似文献   

8.
The global distributions of the major semidiurnal (M2 and S2) and diurnal (K1 and O1) baroclinic tide energy are investigated using a hydrostatic sigma-coordinate numerical model. A series of numerical simulations using various horizontal grid spacings of 1/15–1/5° shows that generation of energetic baroclinic tides is restricted over representative prominent topographic features. For example, nearly half of the diurnal (K1 and O1) baroclinic tide energy is excited along the western boundary of the North Pacific from the Aleutian Islands down to the Indonesian Archipelago. It is also found that the rate of energy conversion from the barotropic to baroclinic tides is very sensitive to the horizontal grid spacing as well as the resolution of the model bottom topography; the conversion rate integrated over the global ocean increases exponentially as the model grid spacing is reduced. Extrapolating the calculated results in the limit of zero grid spacing yields the estimate of the global conversion rate to be 1105 GW (821, 145, 102, 53 GW for M2, S2, K1, and O1 tidal constituents, respectively). The amount of baroclinic tide energy dissipated in the open ocean below a depth of 1000 m, in particular, is estimated to be 500–600 GW, which is comparable to the mixing energy estimated by Webb and Suginohara (Nature 409:37, 2001) as needed to sustain the global overturning circulation.  相似文献   

9.
A global ocean tide model (NAO.99b model) representing major 16 constituents with a spatial resolution of 0.5° has been estimated by assimilating about 5 years of TOPEX/POSEIDON altimeter data into barotropic hydrodynamical model. The new solution is characterized by reduced errors in shallow waters compared to the other two models recently developed; CSR4.0 model (improved version of Eanes and Bettadpur, 1994) and GOT99.2b model (Ray, 1999), which are demonstrated in comparison with tide gauge data and collinear residual reduction test. This property mainly benefits from fine-scale along-track tidal analysis of TOPEX/POSEIDON data. A high-resolution (1/12°) regional ocean tide model around Japan (NAO.99Jb model) by assimilating both TOPEX/POSEIDON data and 219 coastal tide gauge data is also developed. A comparison with 80 independent coastal tide gauge data shows the better performance of NAO.99Jb model in the coastal region compared with the other global models. Tidal dissipation around Japan has been investigated for M2 and K1 constituents by using NAO.99Jb model. The result suggests that the tidal energy is mainly dissipated by bottom friction in localized area in shallow seas; the M2 ocean tidal energy is mainly dissipated in the Yellow Sea and the East China Sea at the mean rate of 155 GW, while the K1 energy is mainly dissipated in the Sea of Okhotsk at the mean rate of 89 GW. TOPEX/POSEIDON data, however, detects broadly distributed surface manifestation of M2 internal tide, which observationally suggests that the tidal energy is also dissipated by the energy conversion into baroclinic tide.  相似文献   

10.
为了了解潮流从西北太平洋经吕宋海峡进入南海内的变化及其垂向结构,本文利用在吕宋海峡附近沿东西方向布放的多套潜标同步获得的高分辨率ADCP长时间连续观测上层海流资料,使用调和分析方法将实测海流分解成3部分:不随时间变化的定常流、周期性潮流和剩余流,并将潮流分解为正压潮流和斜压潮流。通过对实测海流中各组分的分析,得到以下结论:该区域潮流类型在不同深度上有明显变化;M2潮自吕宋海峡传入南海后强度显著减弱75%左右,K1、O1分潮在上层强度减弱约三分之一。从垂向变化来看,在潮流强度上,各站点垂直方向上潮流强度均发生变化。从方向上看,各分潮潮流椭圆东西向特征明显,长轴变化较大,短轴(南北向特征)垂向变化不显著;潮流运动主要沿逆时针方向,垂直方向上潮流明显减弱或增强时会发生转向。斜压潮流主要集中在上表层,100m左右以下随深度逐渐减弱。东西方向斜压潮流能量比正压潮流强,而南北向的流比较稳定,且斜压潮流能量远小于正压潮流。定常流强度在各站点呈现相似的变化趋势,随深度变化减弱。  相似文献   

11.
《Oceanologica Acta》2003,26(5-6):597-607
A three-dimensional baroclinic shelf sea model is employed to simulate the tidal and non-tidal residual current in the South China Sea. The four most significant constituents, M2, S2, K1 and O1, are included in the experiments with tidal effect. At most stations, the computed harmonic constants agree well with the observed ones. The circulations of the South China Sea in summer (August) and winter (December) are mainly discussed. It is shown that the barotropic tidal residual current is too weak to affect the South China Sea circulation, whilst the contribution of the baroclinic tidal residual current to the South China Sea circulation would be important in the continental shelf sea areas, especially in the Gulf of Thailand and Gulf of Tonkin. In the deep-sea areas, the upper barotropic or baroclinic tidal residual current is relatively very weak, however, the speed order of the deep baroclinic tidal residual current can be the same as that of the mean current without tidal effect. Moreover, the baroclinic tidal residual current seems to be related to the different seasonal stratification of ocean.  相似文献   

12.
Numerical study of baroclinic tides in Luzon Strait   总被引:6,自引:1,他引:5  
The spatial and temporal variations of baroclinic tides in the Luzon Strait (LS) are investigated using a three-dimensional tide model driven by four principal constituents, O1, K1, M2 and S2, individually or together with seasonal mean summer or winter stratifications as the initial field. Barotropic tides propagate predominantly westward from the Pacific Ocean, impinge on two prominent north-south running submarine ridges in LS, and generate strong baroclinic tides propagating into both the South China Sea (SCS) and the Pacific Ocean. Strong baroclinic tides, ∼19 GW for diurnal tides and ∼11 GW for semidiurnal tides, are excited on both the east ridge (70%) and the west ridge (30%). The barotropic to baroclinic energy conversion rate reaches 30% for diurnal tides and ∼20% for semidiurnal tides. Diurnal (O1 and K1) and semidiurnal (M2) baroclinic tides have a comparable depth-integrated energy flux 10–20 kW m−1 emanating from the LS into the SCS and the Pacific basin. The spring-neap averaged, meridionally integrated baroclinic tidal energy flux is ∼7 GW into the SCS and ∼6 GW into the Pacific Ocean, representing one of the strongest baroclinic tidal energy flux regimes in the World Ocean. About 18 GW of baroclinic tidal energy, ∼50% of that generated in the LS, is lost locally, which is more than five times that estimated in the vicinity of the Hawaiian ridge. The strong westward-propagating semidiurnal baroclinic tidal energy flux is likely the energy source for the large-amplitude nonlinear internal waves found in the SCS. The baroclinic tidal energy generation, energy fluxes, and energy dissipation rates in the spring tide are about five times those in the neap tide; while there is no significant seasonal variation of energetics, but the propagation speed of baroclinic tide is about 10% faster in summer than in winter. Within the LS, the average turbulence kinetic energy dissipation rate is O(10−7) W kg− 1 and the turbulence diffusivity is O(10−3) m2s−1, a factor of 100 greater than those in the typical open ocean. This strong turbulence mixing induced by the baroclinic tidal energy dissipation exists in the main path of the Kuroshio and is important in mixing the Pacific Ocean, Kuroshio, and the SCS waters.  相似文献   

13.
南海北部陆架海域内潮特征的观测研究   总被引:1,自引:0,他引:1  
利用2014年南海东沙岛西北部海域70余天的流速剖面高频观测资料,研究分析了该海区正压潮、内潮的时空分布特征。结果表明,观测海区正压潮流以O_1,K_1,M_2,S_2为主;斜压潮流中,除四大分潮之外,MU_2与2Q_1分潮能量也较强;内潮的主轴方向基本沿东南-西北方向,近似与局地等深线垂直。全日内潮的锁相部分占全日内潮能量的17.5%,而半日内潮的锁相部分占半日内潮能量的30%;进一步研究发现半日内潮主要由第一模态主导,而全日内潮第二模态占比50%,约为其第一模态能量的两倍;内潮模态能量占比显示出显著的大小潮调制的半月周期。对比不同垂向模态计算方法发现,当流速观测深度有限时,利用全水深温盐资料计算观测范围内流速垂向模态是更为准确的方式。  相似文献   

14.
Mode-1 internal tides were observed the western North Atlantic using an ocean acoustic tomography array deployed in 1991–1992 centered on 25°N, 66°W. The pentagonal array, 700-km across, acted as an antenna for mode-1 internal-tides. Coherent internal-tide waves with O(1 m) displacements were observed traveling in several directions. Although the internal tides of the region were relatively quiescent, they were essentially phase locked over the 200–300 day data record lengths. Both semidiurnal and diurnal internal waves were detected, with wavenumbers consistent with those calculated from hydrographic data. The M2 internal-tide energy flux was estimated to be about 70 W m−1, suggesting that mode-1 waves radiate 0.2 GW of energy, with large uncertainty, from the Caribbean island chain at this frequency. A global tidal model (TPXO 5) suggested that 1–2 GW is lost from the M2 barotropic tide over this region, but the precise value was uncertain because the complicated topography makes the calculation problematic. In any case, significant conversion of barotropic to baroclinic tidal energy does not occur in the western North Atlantic basin. It is apparent, however, that mode-1 internal tides have very weak decay and retain their coherence over great distances, so that ocean basins may be filled up with such waves. Observed diurnal amplitudes were an order of magnitude larger than expected. The amplitude and phase variations of the K1 and O1 constituents observed over the tomography array were consistent with the theoretical solutions for standing internal waves near their turning latitude. The energy densities of the resonant diurnal internal waves were roughly twice those of the barotropic tide at those frequencies.  相似文献   

15.
本文利用南海西沙群岛潟湖区29 d的全水深浮标观测资料研究了潟湖区内正压潮和内潮的基本特征,采用深度平均方法分析海流的适用性,并讨论潟湖区内潮的主要来源。深度平均流的动能谱显示全日潮流占主导,其动能占整体海流动能的41%。对比分析深度平均流和Tpxo7.2模式预测的全日、半日潮流的调和常数,两者均表明全日正压潮流受地形调制,主轴方向为西北?东南向,而半日正压潮流主轴方向为东?西向。两种方法得到的全日正压潮流大?小潮存在半个相位(6~7 d)的差异,进一步分析发现全日正压潮和全日内潮潮龄不同,存在部分相互抵消,且全日内潮大潮发生时间在深度上存在差异,推测由于缺少海表和海底的测量数据,导致深度平均方法得到的全日正压潮仍然包含全日内潮信号。调和分析结果表明,全日内潮的动能中相干部分占比高达91%,说明潟湖区的全日内潮是正压潮与局地岛礁地形相互作用产生,而从远场传播而来的可能性很小。  相似文献   

16.
南麂岛附近海域潮汐和潮流的特征   总被引:4,自引:2,他引:2  
以2008年冬季在浙江近海南麂岛附近投放的4个底锚系观测的水位和流速资料为依据,分析了潮汐和潮流特征。水位谱分析结果显示半日分潮最显著,全日分潮其次;近岸的浅水分潮比离岸大。水位调和分析结果表明:潮汐类型均为正规半日潮,近岸处的平均潮差大于3m,最大可能潮差大于6m,潮汐呈现出显著的低潮日不等和回归潮特征。流速谱分析结果显示半日分潮流最强,全日分潮流其次,且比半日分潮流小得多;近岸浅水分潮流比远离岸显著。流速调和分析结果表明:潮流类型均为正规半日潮流,靠近岸的两个站浅水分潮流较显著;最显著的半日分潮流是M2分潮流,其最大流速介于0.32~0.48m/s之间,全日分潮流均很弱,最大流速小于0.06m/s。M2分潮流均为逆时针旋转,椭圆率越靠近海底越大;最大分潮流流速分布为中上层最大、表层略小、底层最小;最大分潮流流速方向的垂向变化很小,底层比表层略为偏左;最大分潮流流速到达时间随深度的加深而提前,底层比中上层约提前30min。潮流椭圆的垂向分布显示这里的半日分潮流以正压潮流为主;日分潮流则表现出很强的斜压性。  相似文献   

17.
A mathematical model is suggested for calculating current, density, and pressure fields in the area of a solitary bottom rise (seamount). The model is based on a set of non-linear differential equations governing the motion of an inviscid continuously stratified fluid. The algorithm for solving the equations is based on the splitting technique. The model has been used to compute non-linear baroclinic waves generated by a barotropic tide in the seamount area. Translated by Vladimir A. Puchkin.  相似文献   

18.
A combination of a three-dimensional hydrodynamic model and in-situ measurements provides the structures of barotropic tides, tidal circulation and their relationship with turbulent mixing in the Java Sea, which allow us to understand the impact of the tides on material distribution. The model retains high horizontal and vertical resolutions and is forced by the boundary conditions taken from a global model. The measurements are composed of the sea level at coastal stations and currents at moorings embedded in Seawatch buoys, in addition to hydrographic data. The simulated tidal elevations are in good agreement with the data for the K1 and M2 constituents. The K1 tide clearly shows the lowest mode resonance in the Java Sea with intensification around the nodal point in the central region. The M2 tide is secondary and propagates westward from the eastern open boundary, along with a counterclockwise amphidromic point in the western part. The K1 tide produces a major component of tidal energy, which flows westward and dissipates through the node region near the Karimata Strait. Meanwhile, the M2 tide dissipates in the entire Java Sea. However, the residual currents are mainly induced by the M2 tide, which flows westward following the M2 tidal wave propagation. The tidal mixing is mainly caused by K1 tide which peaks at the central region and is consistent with the uniform temperature and salinity along the vertical dimension. This mixing is expected to play an important role in the vertical exchange of nutrients and control of biological productivity.  相似文献   

19.
三门湾外海的潮汐和潮流特征   总被引:1,自引:0,他引:1  
针对2009年5月-7月三门湾外海D8和D9两个站位布放的防渔网底拖锚系ADCP连续观测获取的流速资料和水位资料,采用调和分析和功率谱分析等研究方法,分析了该海域的潮汐和潮流特征,结果显示:该海域潮汐类型为正规半日潮,近岸的D9站浅水分潮比离岸的D8站显著,潮汐呈现出回归潮特征。三门湾外海潮流半日分潮能量最大, 各层潮流呈现出旋转流性质;椭圆率随水深增加;M2K1分潮流最大流速均在次表层最大;最大分潮流速发生时刻底层比中、上层提前约半小时;该海域潮流的半日分潮流以正压为主,全日分潮流则表现出较为明显的斜压性。  相似文献   

20.
Tidal currents derived from current meter measurements are compared with the output from a barotropic tidal model of the New Zealand region. For the semi‐diurnal constituents there was very good agreement for the M2 tide and good agreement for the S2 tide. For the diurnal constituents (Kl, Ol) it was found that as the amplitude of the constituents decreased so did both the model/observation agreement and the accuracy of the observed tidal ellipse parameters. Consequently it was not possible to decide whether differences arose through shortcomings in the model or in the data. However, the overall performance of the model as a prognostic tool for ocean tidal current simulation appears to be good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号