首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
长江口邻域叶绿素a和初级生产力的分布   总被引:40,自引:6,他引:40  
海水中的叶绿素a浓度是浮游植物现存量的重要指标,其分布反映出了水体中浮游植物的丰度及其变化规律.初级生产力反映了水域初级生产者通过光合作用生产有机碳的能力,是海洋生物链的第一个环节,是海洋生态系统研究的重要内容,也是海域生物资源评估的重要依据.河口及其邻近海域是人类活动较为频繁的海域,也是生物海洋学研究过程的重要区域.长江口是陆源物质输入东海的主要场所,径流把大量的悬浮泥沙和丰富的溶解营养盐带入海洋,造成了长江口邻近海域独特的生态环境特征,成为了诸多研究的焦点.  相似文献   

2.
龙小志  王珍岩 《海洋与湖沼》2022,53(6):1322-1337
台风作为事件性的强动力因素,其对河口海域沉积环境的影响目前研究较少,开展典型台风事件对长江口外海域悬浮体分布的影响研究对于深入理解长江径流挟带陆源物质向东海陆架扩散机制等具有重要意义。利用2015年09号台风"灿鸿"过境前后长江口外海域现场调查数据,分析台风前后长江口外水体结构和悬浮体粒度分布变化,结合同期环境观测数据与开源数据,阐明台风对河口外海域悬浮体分布的影响机制。结果表明:长江口外海域悬浮体中细颗粒组分(≤ 128μm)主要为无机矿物颗粒,而粗颗粒组分(>128μm)主要是生源有机颗粒。生源有机粗颗粒主要分布于中上层水体,而无机细颗粒主要分布于底层水体,使得长江口外海域悬浮体平均粒径分布呈双层结构。台风前后悬浮体粒度分布变化反映了台风对长江口外海域物理和生物过程的双重影响,其中物理过程主要影响无机细颗粒分布变化,生物过程主要影响有机粗颗粒。台风期间强烈的偏北风使得长江冲淡水在口门外海域由东北输运转为往东输运,与长江冲淡水输运方向一致的表层无机细颗粒在台风后输运方向同样往东。另外,台风作用在河口区产生的下降流将12250-4站位底部再悬浮的泥质沉积物向东搬运至12300-4站,导致12300-4站底层悬浮体浓度增加、粒度变细。台风过境还造成长江口外海域初级生产力提高,而浮游植物生长对悬浮体中有机粗颗粒的形成有促进作用,使得口门外海域上层水体中有机粗颗粒体积浓度升高。长江口外海域由于台风过境导致悬浮体中无机细颗粒和生源有机颗粒含量均增加,使得其平均粒径整体变化不大。  相似文献   

3.
杭州湾——舟山渔场秋季浮游植物现存量和初级生产力   总被引:17,自引:5,他引:17  
1995年9月在杭州湾和长江口至舟山海区进行了浮游植物细胞丰度、叶绿素a浓度和初级生产力的现场观测研究.结果表明,表层水浮游植物平均细胞丰度为(22.68±63.33)×104个/dm3;平均叶绿素a浓度为2.80±3.46μg/dm3,小于20μm的微型和微微型浮游生物细胞对叶绿素a的贡献占71%;平均初级生产力(C)为692.5±1192.4mg/(m2·d),小于20μm的微型和微微型浮游生物细胞对总生产力的贡献占68%.河口区悬浮物质浓度高,浮游植物光合作用受光的限制,各项生物参数与真光层深度紧密相关.生物锋区位于真光层深度10~20m、盐度26~32的长江冲淡水稀释区.同时探讨了浮游植物细胞活性(R)与光合作用同化数(AN)、叶绿素a与初级生产力、叶绿素a与海面光谱反射率的相互关系,为海洋水色遥感在初级生产力的应用研究提供科学依据  相似文献   

4.
东海赤潮高发区营养盐时空分布特征及其控制要素   总被引:13,自引:4,他引:13  
东海长江口、舟山渔场附近海域是我国近海赤潮爆发严重的区域之一。在影响该海域营养盐分布的水团中 ,长江冲淡水向表层输入了大量的氮、磷、硅营养盐 ,台湾暖流主要对底层和长江口外上升流区有贡献 ,苏北沿岸水、闽浙沿岸水主要影响近岸区域。同时 ,营养盐在海水 -沉积物界面的交换作用 ,大气湿沉降作用等也影响着该海域营养盐的时空分布。结合2002年4月~2003年3月对29°00′~32°00′N、122°00′~124°00′E海域四季航次调查的营养盐分布规律 ,该海域可分为三片区域 ,由岸边向外海分别为高营养盐、低浮游植物区 ,较高营养盐、高浮游植物区和较低营养盐、低浮游植物区。随着近年来营养盐输入通量的增加 ,富营养化程度加大 ,受化学、物理、生物等因素综合作用 ,高浮游植物区赤潮爆发频率和规模逐年增加 ,已为中国近海典型的赤潮高发区  相似文献   

5.
杭州湾——舟山渔场秋季浮游植物现存量和初级生产力   总被引:8,自引:0,他引:8  
1995年 9月在杭州湾和长江口至舟山海区进行了浮游植物细胞丰度、叶绿素a浓度和初级生产力的现场观测研究 .结果表明 ,表层水浮游植物平均细胞丰度为(2 2 6 8± 6 3 33)× 1 0 4个 /dm3;平均叶绿素a浓度为 2 80± 3 46 μg/dm3,小于 2 0μm的微型和微微型浮游生物细胞对叶绿素a的贡献占 71 % ;平均初级生产力 (C)为6 92 5± 1 1 92 4mg/ (m2 ·d) ,小于 2 0 μm的微型和微微型浮游生物细胞对总生产力的贡献占 6 8% .河口区悬浮物质浓度高 ,浮游植物光合作用受光的限制 ,各项生物参数与真光层深度紧密相关 .生物锋区位于真光层深度 1 0~ 2 0m、盐度 2 6~ 32的长江冲淡水稀释区 .同时探讨了浮游植物细胞活性 (R)与光合作用同化数 (AN)、叶绿素a与初级生产力、叶绿素a与海面光谱反射率的相互关系 ,为海洋水色遥感在初级生产力的应用研究提供科学依据  相似文献   

6.
近岸海域浮游植物水华动力机制研究进展和展望   总被引:2,自引:1,他引:1  
水华是一段时期内浮游植物种群丰度和生物量快速、显著增加的过程,其对整个海域的初级生产力水平和各生源要素循环等均有重要影响.水华发生的机制非常复杂,通常与水动力条件、气象条件、温度、盐度分布与变化、营养盐的补充与循环、浮游植物种类特征等因素密切相关.本文从湍流混合及垂直对流、浮游动物的摄食作用、光合作用有效光强和营养盐对浮游植物生长的影响和多因素的共同作用等方面综述了国内外水华机制研究的进展和现状,分析了中国近海海域水华机制研究所面临的问题.需要结合海上观测、卫星遥感、模式模拟等手段对浮游植物水华进行综合全面的研究.  相似文献   

7.
秋季东、黄海异养细菌(Heterotrophic Bacteria)的分布特点   总被引:27,自引:1,他引:27  
2000年10-11月,乘"北斗号"考察船进行秋季"东、黄海生态系统动力学与生物资源可持续利用"大面调查,研究秋季东、黄海异养细菌的分布.结果表明,异养细菌在黄海和东海的丰度分别在(2.37-13.33)×108 cell/L和(3.05-13.62)×108 cell/L之间.细菌丰度最高值出现在长江口附近,且断面E和断面F各站位的细菌丰度明显高于其他断面.异养细菌丰度大小以长江口为中心向外海依次递减.东、黄海水体异养细菌生物量分别在244.45-1812.90mgC/m2和100.60-940.87mgC/m2之间.东、黄海异养细菌丰度无显著差异,但是东海海域水体异养细菌生物量高于黄海海域.异养细菌空间分布与浮游植物叶绿素在东海有一定的相关性,黄海异养细菌与硝酸盐浓度的相关性极显著.  相似文献   

8.
长江口、杭州湾水域沉积物对磷吸附行为的研究   总被引:18,自引:0,他引:18  
赤潮发生于沿海一带,尤其是河口海湾水体中的一种生态异常现象,赤潮的发生会对水体生态环境和海水养殖业造成毁灭性打击[1~3].自20世纪70年代以来,赤潮的发展已经成为我国沿海最突出的环境问题之一,目前研究表明,水体的富营养化与赤潮的存在有着某种内在的联系,富营养化的水体可为赤潮生物的生长提供了物质基础.海洋浮游植物对氮、磷的吸收是按一定比例进行的,当N/P>30时,则认为该海域属于磷受限的环境;相反,当N/P<8时,则认为是氮受限的环境[4].我国长江口赤潮多发区氮、磷比的范围为83:1~31:1[5],说明该海域浮游植物的生长均受磷的限制.  相似文献   

9.
基于2014—2015年4个季节的现场调查数据,系统阐述了珠江口水域浮游植物叶绿素a和初级生产力的空间分布和季节特征,并结合环境因子进行了分析。结果表明:研究水域表层年平均叶绿素a浓度和初级生产力分别为3.77mg·m~(–3)和27.86mg C·m~(–3)·h~(–1),季节变化均为春季夏季秋季冬季。径流量是珠江口浮游植物空间分布的主要驱动因素,并且浮游植物的旺发与河口盐度锋面的位置密切相关。径流较小的季节,由于珠江口外营养盐浓度较低,叶绿素a浓度高值区出现在内伶仃洋水域;随着径流量的增加,叶绿素a浓度高值区随盐度锋面向珠江口外移动,而口门附近浮游植物生长受光限制和径流稀释影响并未出现高值。初级生产力的空间分布趋势与浮游植物叶绿素a相似,二者之间存在显著的正相关关系。研究还表明:夏季,珠江口外由于浮游植物旺发消耗了大量营养盐,磷酸盐浓度被耗尽使其成为浮游植物生长的限制因子;冬季,光限制和低温可能是造成浮游植物初级生产力较低的原因。与以往研究结果对比,珠江口初级生产力处于中间水平,浮游植物碳同化系数年平均值为7.51mg C·(mg Chl a)~(–1)·h~(–1),河口固碳水平为261.52g C·m~(–2)·y~(–1)。  相似文献   

10.
基于2010年10月在长江口海域海洋综合调查,利用多参数CTD现场调查数据、悬浮体浓度测定数据,对该区悬浮体和叶绿素的空间分布及影响因素进行系统的研究,探讨三峡工程蓄水7a以来长江口的悬浮体和叶绿素的分布特征及变化.结果表明:浊度值与悬浮体浓度存在良好的线性关系,盐度对该线性关系没有明显的影响;长江口及其邻近海域悬浮体主要分布在123°E以西的海域,表现为近岸高、离岸低,表层低、底层高,其分布主要受到水团、长江输入、上升流等的影响;叶绿素在123°E往东的海域含量较高,近岸低,在123°E~124°E之间叶绿素含量最高,其分布主要受到水团、浮游植物种类和季节变化及营养盐的共同影响.与三峡工程蓄水前对比,悬浮体高值区的界限往西移动了近半个经度,同季节的叶绿素含量的平均值降低.  相似文献   

11.
长江口及邻近海区营养盐结构与限制   总被引:5,自引:0,他引:5  
通过研究长江口及邻近海域溶解无机氮(DIN=NO3-+NO2-+NH4+)、磷酸盐(PO43-)、硅酸盐(SiO32-)所表征的营养盐区域结构特征及影响因素,在分析营养盐绝对限制情况的基础上,划分了潜在相对营养限制区域。结果表明,123°E以西近岸表层区域DIN/P比值全年均高于16,而Si/DIN除秋季外基本小于1,显示出长江冲淡水影响下"过量氮"的特征。春夏季河口锋面区(31°~32.5°N,122.5°~124°E)硅藻的大量生长可使DIN/P异常升高和Si/DIN异常降低。秋季研究区域北部DIN/P西低东高且Si/DIN西高东低是由于在高DIN、低PO43-的长江冲淡水影响下,近岸受相对低DIN、高SiO32-的苏北沿岸流南下入侵影响而被分割而成。冬季长江口门东北部存在的高DIN/P和低Si/DIN区则主要由于寡营养盐的黑潮水深入陆架,向东北输送的部分长江冲淡水和增强的苏北沿岸流共同作用造成DIN升高所致。利用Redfield比值进行了不同站位表层潜在相对营养限制情况的区分。近岸123°E以西受高DIN、SiO32-长江冲淡水影响,四季多呈现PO43-潜在相对限制,而在春夏季由于浮游植物的大量吸收PO43-,造成局部PO43-绝对限制及潜在相对限制。春夏季氮限(DIN潜在相对限制)一般发生在外海部分站位,但较为零散。秋季除了东南外海大部分站位外,受苏北沿岸流影响在长江口北部近岸也存在氮限。随着低DIN/P的黑潮表层水(KSW)的入侵加强,冬季外海氮限站位增多。硅限(SiO32-潜在相对限制)在夏季发生在赤潮高发区,而冬季南部存在较多硅限站位表明KSW中SiO32-相对较为缺乏。  相似文献   

12.
桑沟湾养殖海域营养盐和沉积物-水界面扩散通量研究   总被引:7,自引:0,他引:7  
利用2006年4,7,11月和2007年1月4个航次对桑沟湾养殖海域的观测资料,分析了该海域营养盐分布、结构特征、主要控制过程以及沉积物-水界面扩散通量,结果表明,该海域的营养盐分布具有明显的季节变化,海水中NO3-,NO2-,PO43-,DOP,TDP和SiO32-浓度皆是秋季最高,而NH4+,DON,TDN浓度则为夏季最高;各种营养盐的最低值除DON外都出现在春季。春季湾内外海水交换不畅,再加上大型藻类海带等生长旺盛期的消耗,使营养盐浓度处于较低水平,在夏秋两季丰水期沿岸河流注入对该海域营养盐的影响较大,冬季无机营养盐浓度分布主要受沿岸流的影响。磷的结构变化较大,其中DOP百分含量在夏季最高,达到81%。从春季到秋季海水中TDN的结构变化从以DON为主转变成以DIN为主。硅和氮的原子比值全年变化不大,硅和氮和氮和磷原子比值春夏两季的高于秋冬季的。分析营养盐化学计量限制标准和浮游植物生长的最低阈值结果表明,磷是春夏两季桑沟湾浮游植物生长的限制性因素;春季硅浓度低于浮游植物生长的最低阀值,也是一个潜在的限制因素。计算结果显示桑沟湾沉积物释放的NH4+,SiO32-和PO43-对初级生产力的贡献较小,与其他浅海环境相比,桑沟湾沉积物-水界面的营养盐通量处于较低或中等水平。  相似文献   

13.
2010-2011年胶州湾叶绿素a与环境因子的时空变化特征   总被引:2,自引:1,他引:1  
王玉珏  刘哲  张永  汪岷  刘东艳 《海洋学报》2015,37(4):103-116
2010年4、6、8、10月和2011年1、3月在胶州湾开展了6个航次的综合调查,研究了表层海水温度、盐度、营养盐和叶绿素a浓度的时空变化特征。调查期间,总无机氮(DIN)、磷酸盐(PO4)和硅酸盐(SiO3)多呈现东北部湾边缘高,而湾内和湾口低的空间分布特征。季节变化表明,DIN和PO4主要受养殖排放、河流径流输入和浮游植物生长消耗的影响,呈现初夏和秋季高,夏末和冬季低的特点;而SiO3主要受河流径流输入和浮游植物消耗的影响,呈现夏、秋高,而冬、春低的特点。营养盐浓度和结构分析表明,胶州湾存在PO4和SiO3的绝对和相对限制;SiO3限制尤其严重,是控制胶州湾浮游植物生长的主要环境因子。SiO3和PO4的限制主要表现在冬季,几乎遍布整个海湾;夏季降水可有效缓解海域的SiO3限制。叶绿素a浓度呈现春、夏季高,秋、冬季低的季节分布,温度、营养盐浓度与结构和季节性贝类养殖活动是控制胶州湾叶绿素a浓度时空分布的关键因素。  相似文献   

14.
This study focuses on the comparison of oceanic and coastal cold-core eddies with inner-shelf and East Australian Current (EAC) waters at the time of the spring bloom (October 2008). The surface water was biologically characterised by the phytoplankton biomass, composition, photo-physiology, carbon fixation and by nutrient-enrichment experiments. Marked differences in phytoplankton biomass and composition were observed. Contrasted biomarker composition suggests that biomarkers could be used to track water masses in this area. Divinyl chlorophyll a, a biomarker for tropical Prochlorophytes, was found only in the EAC. Zeaxanthin a biomarker for Cyanophytes, was found only within the oceanic eddy and in the EAC, whereas chlorophyll b (Chlorophytes) was only present in the coastal eddy and at the front between the inner-shelf and EAC waters.This study showed that cold-core eddies can affect phytoplankton, biomass, biodiversity and productivity. Inside the oceanic eddy, greater phytoplankton biomass and a more complex phytoplankton community were observed relative to adjacent water masses (including the EAC). In fact, phytoplankton communities inside the oceanic eddy more closely resembled the community observed in the inner-shelf waters. At a light level close to half-saturation, phytoplankton carbon fixation (gC d−1) in the oceanic eddy was 13-times greater than at the frontal zone between the eddy and the EAC and 3-times greater than in the inner-shelf water. Nutrient-enrichment experiments demonstrated that nitrogen was the major macronutrient limiting phytoplankton growth in water masses associated with the oceanic eddy. Although the effective quantum yield values demonstrate healthy phytoplankton communities, the phytoplankton community bloomed and shifted in response to nitrogen enrichments inside the oceanic eddy and in the frontal zone between this eddy and the EAC. An effect of Si enrichment was only observed at the frontal zone between the eddy and the EAC. No response to nutrient enrichment was observed in the inner-shelf water where ambient NOx, Si and PO4 concentrations were up to 14, 4 and 3-times greater than in the EAC and oceanic eddy. Although results from the nutrient-enrichment experiments suggest that nutrients can affect biomass and the composition of the phytoplankton community, the comparison of all sites sampled showed no direct relationship between phytoplankton biomass, nutrients and the depth of the mixed layer. This is probably due to the different timeframe between the rapidly changing physical and chemical oceanography in the separation zone of the EAC.  相似文献   

15.
In order to investigate effects of benthic flux on the short-term variations in the distribution of nutrients in coastal waters, the concentrations of nutrients (PO4 3-, NH4 + NO3 -, NO2 - and H4SiO4) and other oceanographic parameters were measured every three hours over a 24-hour period at four fixed stations in the water column of Aburatsubo Bay, a shallow semi-enclosed inlet. Sediment cores were also taken from a fixed station once in each season over one year to quantitatively determine their benthic flux. Consistent linear negative correlations were found between their concentrations and salinity in the surface layers. This result suggests that fresh water was the main source of these nutrients and a physical mixing was the major process controlling their distribution. Monthly variations of PO4 3- and NH4 + monitored for 18 months in the bay also indicate that the high surf concentration of these nutrients was associated with the appearance of low salinity waters. On the other hand, in the bottom layers, a linear correlation between the concentration of the nutrients and salinity became weak, especially for NH4 + and PO4 3-. Their concentrations were higher than the predicted value from the conservative mixing between the fresh water and seawater, indicating the possibility of another source in the bottom layers. Benthic flux is suggested as a possible source. Pore water profiles of NH4 + and PO4 3- indicate their flux towards the overlying seawater, which is quantitatively consistent with their water column distributions.  相似文献   

16.
从上行控制角度,通过野外采样和围隔培养实验,研究了水母的代谢及分解过程对水体环境中pH、溶解氧、营养盐组成的影响,以及该过程中浮游植物的变化。实验结果表明,沙海蜇在代谢过程中短时间内会大量消耗水体中的溶解氧(dissolved oxygen,DO),使水体出现低氧和轻度酸化。代谢过程释放出大量营养盐,使水体中的溶解无机氮(dissolved inorganic nitrogen,DIN)浓度在24h内增加为原来的12倍,溶解无机磷(dissolved inorganic phosphorus,DIP)浓度增加了40多倍,进而引起水体中叶绿素a(chlorophyll a,chl a)浓度的增加。沙海蜇的分解过程使水体表现出明显的低氧(缺氧)和酸化现象。沙海蜇生物量越大,分解时间越长,对水体的改变程度越明显,此外,还释放出大量的营养盐并改变原有的营养盐结构,可以刺激甲藻和绿藻的生长,甚至可能引发藻华。  相似文献   

17.
Water quality of Osaka Bay is greatly influenced by freshwater discharge from rivers, to the effect of salinity playing a major role in forming the stratification. The tidal front is expected to appear in such an area even in winter considering the theory of the formation of a tidal front. From the field observation, we recognized a tidal front in winter for the first time in Osaka Bay. The critical value of a parameter log(H/U 3) for generation of a tidal front is obtained as a function of river discharge and cooling effect through sea surface. Differences of nutrients (NH4–N, PO4–P) concentration across the front are not clear, probably because they are utilized by phytoplankton easily. But in (NO2–N)+(NO3–N), DIN, PP and T–P, there is a discontinuity structure across the front, even if the absolute value of concentration difference is small.  相似文献   

18.
We studied the seasonal change of the spatial distribution of nitrite (NO-2), nitrate (NO-3), reactive phosphate (PO3-4), and silicate (SiO2) in the Colorado River Delta. We also generated 24-h time series at one location to study their short-period variability. The delta is a negative estuary. During summer, salinity may be as high as 40. Amplitude of spring tides is as large as 9 m, and this causes great water turbidity by sediment resuspension. Nutrient concentrations were high throughout the whole year, with lower values towards the oceanic region. Maximum nutrient values in the river delta were 15, 53, 11·5 and 92 μM, for NO-2, NO-3, PO3-4, and SiO2, respectively. Most values were under 2, 40, 5, and 60 μM, for NO-2, NO-3, PO3-4, and SiO2, respectively. Our nutrient data show no clear seasonal pattern. Possibly, high NO-3 values in the delta are due to groundwater input, mostly at the internal extreme, and high NO-2, PO3-4, and SiO2 values are due to resuspension of sediments and mixing of porewaters with the water column, caused mainly during spring tides. In the case of NO-2, oxidation of NH+4 in the water column would be part of the mechanism. This would explain the high negative correlation between NO-3 and sea-level, and the relatively low correlation between the other nutrients and sea-level, for the time series generated at a single location.  相似文献   

19.
通过对目前生态动力学模型的总结和综合,以生态系统中氮、磷营养盐循环为主线,建立了适用于海洋围隔浮游生态系统的多变量的营养盐迁移-转化动力学模型.该模型包括浮游植物、浮游动物、溶解无机态营养盐、溶解有机态营养盐和生物碎屑5个模块,涉及溶解无机氮、磷酸盐、溶解有机氮、溶解有机磷、浮游植物、浮游动物和生物碎屑7个状态变量.分别利用1999年秋季和2000年夏季胶州湾围隔生态实验数据进行了模型和验证工作,成功地模拟了富加营养盐条件下围隔浮游生态系统中氮、磷营养盐生物化学迁移-转化过程,并确定了20余个参数的量值.  相似文献   

20.
The photosynthetic properties of phytoplankton populations as related to physical–chemical variations on small temporal and spatial scales and to phytoplankton size structure and pigment spectra were investigated in the Northern Adriatic Sea off the Po River delta in late winter 1997. Large diatoms (fucoxanthin) dominated the phytoplankton in the coastal area whereas small phytoflagellates (mainly 19′-hexanoyloxyfucoxanthin, chlorophyll b, 19′-butanoyloxyfucoxanthin) occurred outside the front. The front was defined by the steep gradient in density in the surface layer separating low-salinity coastal waters from the offshore waters.Physical features of the area strongly influenced phytoplankton biomass distributions, composition and size structure. After high volumes of Po River discharge several gyres and meanders occurred in the area off the river delta in February. Decreasing river discharge and the subsequent disappearance of the gyres and the spreading dilution of the river plume was observed in March. The dynamic circulation of February resulted in high photosynthetic capacity of the abundant phytoplankton population (>3.40 mg m−3). In March, the slow circulation and an upper low-salinity water layer, segregated from the deeper layers, resulted in lack of renewal of this water mass. The huge phytoplankton biomass, up to 15.77 mg chl a m−3, became nutrient depleted and showed low photosynthetic capacity. In February, an exceptionally high PmaxB, 20.11 mg C (mg chl a)−1 h−1 was recorded in the Po River plume area and average PmaxB was three-fold in February as compared to the March recordings, 10.50 mg C (mg chl a)−1 h−1 and 3.22 mg C (mg chl a)−1 h−1, respectively.The extreme variability and values of phytoplankton biomass in the innermost plume area was not always reflected in primary production. Modeling of circulation patterns and water mass resilience in the area will help to predict phytoplankton response and biomass distributions. In the frontal area, despite a considerable variability in environmental conditions, our findings have shown that the phytoplankton assemblages will compensate for nutrient depression and hydrographic constraints, by means of size and taxonomic composition and, as a result, the variability in the photosynthetic capacity was much less pronounced than that observed for other parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号