首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Based on the consideration of operation environment and structural property, an optimnm design model of offshore jacket platform is developed in this paper, namely, the reliability-based full-life cycle optimum design model. In this model, the time-dependent reliability assessment method for structural members is established by combination of the decrease, of sectional size and performance deterioration of material. The initial investment, maintenance cost and failure loss cost are assembled into the model. The total cost of the platform structure system in its full service period is chosen as the objective function, and the initial reliabilities of the layer elements partitioned in advance are taken as the design variables. Different models are obtained, depending on whether the system reliability eonstraint is considered or not. This optimum design model can result in the lowest full-life cost and the optimal initial layer reliability of an offshore jacket platform in the design of marine structures. The feasibility of this model is illustrated with an actual jacket platform in the Liaodong Gulf as an example.  相似文献   

2.
A conceptual design of using novel telescopic piles to position a multi-modular very large floating structure(VLFS),which is supposed to be severed as a movable floating airport, is proposed. The telescopic piles can automatically plug in the soil to resist the environmental loads and pull out from the soil to evacuate or move on to the next operational sea. The feasibility demonstration of the conceptual design includes two parts: function verification and structure design. In the latter part of the conceptual design, a time-domain structural analysis is firstly conducted by using Abaqus software. The simulation results suggest that the preliminary structure scheme is not optimum due to the insufficient structure utilization, although both structure safety of the piles and positioning accuracy are guaranteed. To realize a cost reduction of construction and installation, a Genetic Algorithm-Finite Element Analysis(GA-FEA) method is employed to perform structural optimization. After optimization, 31 percent of the weight of each pile is reduced and higher structure utilization is maintained. The difference of the self-weight and allowable buoyancy of a single module(SMOD) of a semisubmersible-type VLFS is much larger than the weight of the piles.Combined with the function verification in our previous work, the conceptual design of using the novel telescopic pile to position VLFS is demonstrated to be feasible.  相似文献   

3.
The application of very large floating structure (VLFS) to the utilization of ocean space and exploitation of ocean resources has become one of the issues of great interest in international ocean engineering field. Owing to the advantage of simplicity in structure and low cost of construction and maintenance, box-type VLFS can be used in the calm water area near the coast as the structure configuration of floating airport. In this paper, a 3D linear hydroelastic theory is used to study the dynamic response of box-type VLFS in sinusoidal regular waves. A beam model and a 3D FEM model are respectively employed to describe the dynamic characteristics of the box-type structure in vacuum. A hydrodynamic model (3D potential theory of flexible body) is applied to investigate the effect of different dry models on the hydroelastic response of box-type structure. Based on the calculation of hydroelastic response in regular waves, the rigid body motion displacement, flexible deflection, and the short term and long  相似文献   

4.
黄维平  刘超 《海洋工程》2012,30(3):125-130
基于渤海和南海的海洋平台设计环境条件,分析了近年来我国近海极端海洋环境条件的发生规律及其对海洋平台疲劳设计条件的冲击。采用Miner’s线性累积疲劳损伤准则和疲劳可靠性理论,研究了极端海况引起的疲劳损伤对海洋平台疲劳寿命的影响,提出了考虑极端海洋环境条件的海洋平台疲劳设计方法。研究表明,由于近年来全球气候变换带来的极端气象条件频发,导致海洋工程结构经历传统意义上的多年一遇海洋环境条件的概率大大增加,使得现行的海洋平台疲劳设计条件偏离了实际的海洋环境条件。数值算例表明,极端海况引起的疲劳损伤在总的疲劳损伤的比例大大增加,甚至成为疲劳损伤的主要部分。因此,这些极端海况引起的疲劳损伤对结构疲劳寿命的影响不容忽略,考虑极端海洋环境条件的海洋平台疲劳设计符合近年来的灾害性海况频发的现状。  相似文献   

5.
Since offshore towers are high-cost, high-risk structures, reliability analysis is of great importance in their design. This paper presents a possible practical approach to certify a design through selective critical member reliability estimates. After a brief review of current research in this field, the authors outline a procedure for reliability estimation of structural members in extreme stress and fatigue limit states. A spectral approach for the extreme response statistics with stochastic loading is described. The reliabilities are computed by the Level II first-order second moment (advanced) method. The fatigue reliability is estimated with a narrow-banded stress assumption with discrete, but significant sea states within the life of the structure. Two numerical examples, a three shallow water model and a two-dimensional deep water model are presented along with the influences of stochastic variables (sea state, current, tubular member diameter) on reliabilities (extreme stress and fatigue damage).  相似文献   

6.
The hydroelastic responses of a very-long floating structure (VLFS) placed behind a reverse T-shape freely floating breakwater with a built-in oscillating water column (OWC) chamber are analyzed in two dimensions. The Bernoulli–Euler beam equation is coupled with the equations of rigid and elastic motions of the breakwater and the VLFS. The interaction of waves between the floating rigid breakwater and the elastic VLFS is formulated in a consistent manner. It has been shown numerically that the structural deflections of the VLFS can be reduced significantly by a suitably designed reverse T-shape floating breakwater.  相似文献   

7.
Optimal Design of TMD Under Long-Term Nonstationary Wave Loading   总被引:3,自引:0,他引:3  
—Traditionally,the use of a tuned mass damper(TMD)is to improve the surviability of the pri-mary structure under extraordinary loading environment while the design loading condition is describedby either a harmonic function or a stationary random process that can be fully characterized by a powerspectral density(PSD)function.Aiming at prolonging the fatigue life of an offshore platform,this studyconsiders an optimal design of TMD for the platform under long-term nonstationary loading due tolong-term random sea waves characterized by a probabilistic power spectral density(PPSD)function.Inprinciple,a PPSD could be derived based on numerous ordinary PSD functions;and each of them is treat-ed as realization of the corresponding PPSD.This study provides a theoretical development for theoptimal TMD design by minimizing the cost function to be the mean square value of the expectedlong-term response.A numerical example is presented to illustrate the developed design procedure.  相似文献   

8.
The design and performance of an offshore structure depends largely upon the response of the structure to the environmental loading such as waves. The extreme response chosen for the design of a structure should meet its lifetime response, operational response as well as the fatigue damage. The failure of the structural member may be caused by the maximum instantaneous stress experienced by the member due to a given environment. This is considered short-term as opposed to long-term or fatigue damage. The short-term response statistics are obtained on the basis of one particular seastate. Since this seastate is invariably high, nonlinearity in the excitation and response of the structure is almost invariably present. The general nonlinear problem in the extreme response prediction is largely unsolved. Response characteristics are often obtained from the perturbation methods and equivalent linearization techniques. Unlike nonlinear problems, these methods greatly simplify the analysis for extreme values. This paper reviews the available approximation techniques in the response computation and the limits of their applicability in a design situation. Results are illustrated so that a designer may evaluate the suitability of a method in a particular design condition.  相似文献   

9.
This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure (VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direct coupling method. The updated Lagrangian formulae are applied to establish the equilibrium equations of the VLFS and the total potential formula is employed for fluids in the numerical model including the viscous effect of the perforated plates through the Darcy''s law. The hybrid finite element-boundary element (FE-BE) method is implemented to determine the response reduction of VLFS with attached perforated plates under various oblique incident waves. Also, the numerical solutions are validated against a series of experimental tests. The effectiveness of the attached perforated plates in reducing the deflections of the VLFS can be significantly improved by selecting the proper design parameters such as the porous parameter, submergence depth, plate width and inclination angle for the given sea conditions.  相似文献   

10.
运用ANSYS/AQWA对某超大型浮体平台进行水动力响应计算和结构响应分析,在此基础上选择3个典型疲劳热点区域建立有限元子模型,求出各区域的热点应力传递函数。依据谱分析法的疲劳计算流程对危险节点进行疲劳分析,计算疲劳损伤和寿命。分析结果表明,横浪时对平台造成的疲劳损伤最大。横撑与下浮体围壁连接处以及立柱外壳与上箱体底板连接处这两处的疲劳寿命不满足设计要求。建议对该结构连接处进行改进或重新设计。  相似文献   

11.
This work presents a semi-analytical methodology to select design environmental conditions based on long-term cross-section utilization ratios at the TDZ (Touchdown Zone) for steel catenary risers. This approach uses simplified analytical models to calculate time series of short-term utilization ratios, defined according to the DnV-OS-F201 (2010) standard. After processing these time series, long-term utilization ratios can be determined with relatively low computational cost. By evaluating long-term utilization ratios, it is possible to define short-term design environmental conditions, defined as short-term conditions for which the extreme riser responses are equal to the long-term ones. This kind of methodology may represent a substantial change to the traditional focus given to riser design, which is based on responses obtained from extreme environmental conditions, instead of on the extreme responses.  相似文献   

12.
Xu  Sheng-wen  Liang  Ming-xiao  Wang  Xue-feng  Ding  Ai-bing 《中国海洋工程》2020,34(2):185-197
In this paper, a methodology for designing mooring system deployment for vessels at varying water depths is proposed. The Non-dominated Sorting Genetic Algorithm-II(NSGA-II) is combined with a self-dependently developed vessel-mooring coupled program to find the optimal mooring system deployment considering both station-keeping requirements and the safety of the mooring system. Two case studies are presented to demonstrate the methodology by designing the mooring system deployments for a very large floating structure(VLFS) module and a semi-submersible platform respectively at three different water depths. It can be concluded from the obtained results that the mooring system can achieve a better station-keeping ability with relatively shorter mooring line when deployed in the shallow water. The safety factor of mooring line is mainly dominated by the maximum instantaneous tension increment in the shallow water, while the pre-tension has a decisive influence on the safety factor of the mooring line in the deep water.  相似文献   

13.
A time domain finite element method (FEM) for the analysis of transient elastic response of a very large floating structure (VLFS) subjected to arbitrary time-dependent external loads is presented. This method is developed directly in time domain and the hydrodynamic problem is formulated based on linear, inviscid and slightly compressible fluid theory and the structural response is analyzed on the thin plate assumption. The time domain finite element procedure herein is validated by comparing numerical results with available experimental data. Finally, the transient elastic response of a pontoon-type VLFS under the landing of an airplane is computed by the proposed time domain FEM. The time histories of the applied force and the position and velocity of an airplane during landing are modeled with data from a Boeing 747-400 jumbo jet.  相似文献   

14.
《Ocean Engineering》2007,34(3-4):362-370
The conceptual design of a very large floating structure (VLFS) requires a convenient computer code for predicting hydroelastic behavior of it. The code should not be time consuming, but it should be flexible for all environmental conditions. In order to meet the needs, we apply the ray theory for predicting hydroelastic behavior of a mat-like VLFS. The hydroelastic behavior of the VLFS is treated as wave propagation in the platform. The theory itself is based on the classical ray theory, which yields a quick computational scheme. The parabolic approximation is applied to smoothing the discontinuous deformation obtained by the classical ray theory. An experimental technique in a small wave tank with a mini scale model has been developed. Through comparisons with the mini scale experiment and other data found in literatures, it is confirmed that the ray theory has enough accuracy for the conceptual design, unless the assumptions of the ray theory are completely violated.  相似文献   

15.
孙德成  方辉  刘勇 《海洋工程》2020,38(6):42-52
开孔沉箱孔洞周围存在以三轴循环应力为特征的复杂承载区,其中混凝土损伤速度远大于单轴应力条件,局部疲劳损伤快速累积使结构整体承载能力迅速下降。考虑迎浪面入射波浪与消浪室内反射波浪的循环作用,针对开孔区域复杂应力状态下的疲劳损伤问题,基于不可逆损伤力学发展的数值计算方法模拟开孔板疲劳过程,得到循环荷载作用下不同类型开孔板的损伤演化历程,并计算损伤后整体结构极限承载力大小,通过综合对比孔洞损伤发展规律和结构极限承载能力,建立了疲劳作用下开孔沉箱极限承载能力判断依据。现有规范依据设计使用年限、波浪条件、作用效应组合等确定材料与结构强度,但并未充分体现开孔结构的优势与承载特点,在此基础上文中补充了开孔结构的优化设计以及实际寿命判断。  相似文献   

16.
A ring-shaped spar-type Very Large Floating Structure (VLFS) is proposed as an intermediate base for supporting deepwater resource exploitation far away from the coast line. The proposed VLFS is composed of eight rigidly connected deep-draft spar-type modules and an inside harbor. A double-layered perforated-wall breakwater is vertically attached to the VLFS and pierces through the water surface to attenuate the wave energy in the inside harbor. The hydrodynamic performance characteristics of the ring-shaped VLFS was experimentally evaluated in the present study, focusing on the motion responses, wave elevations, and wave run-ups. The natural periods of the motions in vertical plane were determined to be larger than 40 s, which is much larger than common wave periods. This enhanced the motion performance in vertical plane and afforded favorable habitation and operation condition on the VLFS. A large surge damping was induced by the vertical breakwater, which tended to significantly affect the surge and pitch motions, but had a negligible effect on the heave motion. The component frequencies of the wave elevations in the inside harbor and the wave run-ups were identical with those of the incident waves. The wave attenuation was frequency-dependent and effective for the common wave frequencies, with a smaller loss coefficient observed in higher sea state. The wave attenuation and wave run-ups tended to improve in the absence of the leeward walls.  相似文献   

17.
A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer (GFRP) composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix tension/compression are considered to describe the damage behaviors. To give the flapwise and edgewise loading along the blade span, the Blade Element Momentum Theory (BEMT) is adopted. In conjunction with the hydrodynamic analysis, the structural analysis of the composite blade is cooperatively performed with the Hashin damage model. The damage characteristics of the composite blade, under normal and extreme operational conditions, are comparatively analyzed. Numerical results demonstrate that the matrix tension damage is the most significant failure mode which occurs in the mid-span of the blade. The blade internal configurations including the box-beam, I-beam, left-C beam and right-C beam are compared and analyzed. The GFRP and carbon fiber reinforced polymer (CFRP) are considered and combined. Numerical results show that the I-beam is the best structural type. The structural performance of composite tidal turbine blades could be improved by combining the GFRP and CFRP structure considering the damage and cost-effectiveness synthetically.  相似文献   

18.
This paper investigates the characteristics of bending moments, shear forces and stresses at unit connections of very large floating structures (VLFS) under wave loads. The responses of VLFS are calculated by solving multi-body motion equation considering hydroelasticity and connection stiffness. Hydroelastic responses are calculated by the direct method. Higher-order boundary element method (HOBEM) is used for fluid analysis and finite element method (FEM) is introduced for structural analysis. The equation of motion is modified to describe the unit connections by employing spring elements. Bending moments and shear forces at the connections are obtained from the dynamic equilibrium condition for pressures and inertia forces. Two types of VLFS units such as tandem arranged units and side-by-side arranged units are considered in the numerical examples. The influences of connection stiffness, wave frequency and heading angle on responses of VLFS are investigated through the numerical examples. Rigid body analysis along with hydroelastic analysis is also carried out in the numerical analysis and comparison of those two approaches is discussed.  相似文献   

19.
The hydroelastic responses of a very-long floating structure (VLFS) in waves connected to a floating oscillating-water-column (OWC) breakwater system by a pin are analyzed by making use of the modal expansion method in two dimensions. The Bernoulli–Euler beam equation for the VLFS is coupled with the equations of motions of the breakwater taking account of the geometric and dynamic boundary conditions at the pin. The Legendre polynomials are employed as admissible functions representing the assumed modes of the VLFS with pinned-free-boundary conditions. It has been shown numerically that the deflections, bending moments and shear forces of the VLFS in waves can be reduced significantly by a pin-connected OWC breakwater. The time-mean horizontal drift forces of the VLFS equipped with the breakwater calculated by the near-field method are also presented.  相似文献   

20.
李萍  李林斌 《海洋工程》2014,32(3):14-21
基于中国南海海域风暴环境条件,研究分析南海海域固定式导管架平台结构整体性和可靠性,以及新建固定式平台结构设计准则。采用海洋环境数据后报方法,得到南海海域1972~2011共40年的风、浪、流联合数据,从中抽取风暴环境条件;利用通用荷载模型,将40年间的风暴环境数据转变成结构的荷载数据,即基底剪力或倾覆力矩;并计算得到风暴环境荷载的短期及长期分布,以及任意风暴下荷载的概率分布;根据结构可靠性模型,结合荷载的长期分布,研究基于结构暴露等级及失效概率的固定式平台结构强度储备比。根据计算,得到了不同暴露等级下中国南海平台的强度储备比,并与墨西哥湾及北海海域进行了比较,为新建平台提供设计参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号