首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
利用2008年大洋环球航次,研究了热带、亚热带太平洋和南印度洋中束毛藻丰度的大尺度分布特征,结果表明:在亚热带西北太平洋和热带东南亚海域束毛藻藻丝平均丰度较高,分别为25.2×103和33.3×103m-3,在热带中太平洋、热带东太平洋和南印度洋束毛藻平均丰度较低,分别为1.76×103,0.87×103和1.52×103m-3。各海区束毛藻丰度与水温无明显相关关系。总叶绿素a的分布特征与束毛藻不同,在太平洋呈西低、东高,在热带东南亚海域较高而在南印度洋较低,从总叶绿素a的粒级结构看,微微型浮游植物(0.2~2μm)所占比重最高,其次是微型浮游植物(2~20μm),小型浮游植物(20μm)所占比重最低。各海区束毛藻对总叶绿素a贡献的比例不同,在亚热带西北太平洋和热带东南亚海域较高,分别占总叶绿素a的7.79%和3.92%,在热带中太平洋、热带东太平洋和南印度洋占总叶绿素a的比例较低,均低于1%。在亚热带西北太平洋束毛藻固氮占真光层总新氮输入量的比例较高,这是该海域新氮的重要来源之一,而在热带中太平洋和热带东太平洋束毛藻固氮对真光层新氮的贡献比例则很低。  相似文献   

3.
The phytoplankton community in the western subarctic Pacific (WSP) is composed mostly of pico- and nanophytoplankton. Chlorophyll a (Chl a) in the <2 μm size fraction accounted for more than half of the total Chl a in all seasons, with higher contributions of up to 75% of the total Chl a in summer and fall. The exception is the western boundary along the Kamchatka Peninsula and Kuril Islands and the Oyashio region where diatoms make up the majority of total Chl a during the spring bloom. Among the picophytoplankton, picoeukaryotes and Synechococcus are approximately equally abundant, but the former is more important in term of carbon biomass. Despite the lack of a clear seasonal variation in Chl a concentration, primary productivity showed a large seasonal variation, and was lowest in winter and highest in spring. Seasonal succession in the phytoplankton community is also evident with the abundance of diatoms peaking in May, followed by picoeukaryotes and Synechococcus in summer. The growth of phytoplankton (especially >10 μm cell size) in the western subarctic Pacific is often limited by iron bioavailability, and microzooplankton grazing keeps the standing stock of pico- and nano-phytoplankton low. Compared to the other HNLC regions (the eastern equatorial Pacific, the Southern Ocean, and the eastern subarctic Pacific), iron limitation in the Western Subarctic Gyre (WSG) may be less severe probably due to higher iron concentrations. The Oyashio region has similar physical condition, macronutrient supply and phytoplankton species compositions to the WSG, but much higher phytoplankton biomass and primary productivity. The difference between the Oyashio region and the WSG is also believed to be the results of difference in iron bioavailability in both regions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Primary production in the eastern tropical Pacific: A review   总被引:2,自引:12,他引:2  
The eastern tropical Pacific includes 28 million km2 of ocean between 23.5°N and S and Central/South America and 140°W, and contains the eastern and equatorial branches of the north and South Pacific subtropical gyres plus two equatorial and two coastal countercurrents. Spatial patterns of primary production are in general determined by supply of macronutrients (nitrate, phosphate) from below the thermocline. Where the thermocline is shallow and intersects the lighted euphotic zone, biological production is enhanced. In the eastern tropical Pacific thermocline depth is controlled by three interrelated processes: a basin-scale east/west thermocline tilt, a basin-scale thermocline shoaling at the gyre margins, and local wind-driven upwelling. These processes regulate supply of nutrient-rich subsurface waters to the euphotic zone, and on their basis we have divided the eastern tropical Pacific into seven main regions. Primary production and its physical and chemical controls are described for each.Enhanced rates of macronutrient supply maintains levels of primary production in the eastern tropical Pacific above those of the oligotrophic subtropical gyres to the north and south. On the other hand lack of the micronutrient iron limits phytoplankton growth (and nitrogen fixation) over large portions of the open-ocean eastern tropical Pacific, depressing rates of primary production and resulting in the so-called high nitrate-low chlorophyll condition. Very high rates of primary production can occur in those coastal areas where both macronutrients and iron are supplied in abundance to surface waters. In these eutrophic coastal areas large phytoplankton cells dominate; conversely, in the open-ocean small cells are dominant. In a ‘shadow zone’ between the subtropical gyres with limited subsurface ventilation, enough production sinks and decays to produce anoxic and denitrified waters which spread beneath very large parts of the eastern tropical Pacific.Seasonal cycles are weak over much of the open-ocean eastern tropical Pacific, although several eutrophic coastal areas do exhibit substantial seasonality. The ENSO fluctuation, however, is an exceedingly important source of interannual variability in this region. El Niño in general results in a depressed thermocline and thus reduced rates of macronutrient supply and primary production. The multi-decadal PDO is likely also an important source of variability, with the ‘El Viejo’ phase of the PDO resulting in warmer and lower nutrient and productivity conditions similar to El Niño.On average the eastern tropical Pacific is moderately productive and, relative to Pacific and global means, its productivity and area are roughly equivalent. For example, it occupies about 18% of the Pacific Ocean by area and accounts for 22–23% of its productivity. Similarly, it occupies about 9% of the global ocean and accounts for 10% of its productivity. While representative, these average values obscure very substantial spatial and temporal variability that characterizes the dynamics of this tropical ocean.  相似文献   

5.
太平洋是海表温度年际变化和年代际变化发生的主要区域,但对太平洋海洋热含量变化的研究相对较少。为此, 本文分析了1980—2020年太平洋上层(0~300 m)热含量的时空变化特征。基于IAP数据,本文首先利用集合经验模态分解法(EEMD)提取不同时间尺度的海洋热含量信号,并利用正交经验分解法(EOF)对不同时间尺度的海洋热含量进行时空特征分析,得到了太平洋0~300 m海洋热含量的年际变化、年代际变化以及长期变暖的时空特征。结果表明,除了年际变化之外,热带西北太平洋上层热含量还存在明显的年代际变化和长期变暖趋势。在东太平洋和高纬度西太平洋,热含量的年代际变化特征并不突出。热带西北太平洋热含量的年代际变化在1980—1988年和1999—2013年较高,而在1989—1998年和2014—2020年期间较低。此外,针对热带西北太平洋热含量的经向、纬向和垂向特征分析,发现这种年代际变化主要发生在5°N—20°N,120°E—180°E,次表层50~200 m范围内。热带西北太平洋热含量的年代际变化对全球海表温度的年代际变化有着重要作用。  相似文献   

6.
PDO的三维空间结构和时间演变特征   总被引:2,自引:0,他引:2  
利用再分析次表层海温资料和CCSM3模式的1870-1999年130 a模拟试验的结果,分析了北太平洋年代际变化(PDO)的三维空间结构和时间演变特征.结果表明,CCSM3模式较好的模拟了北太平洋年代际变化的主要特征,对再分析资料和模式结果的分析都表明从北太平洋表层至次表层的中层,年代际变化是非常显著的,PDO不仅仅局...  相似文献   

7.
The oceanic carbon cycle in the tropical-subtropical Pacific is strongly affected by various physical processes with different temporal and spatial scales, yet the mechanisms that regulate air-sea CO2 flux are not fully understood due to the paucity of both measurement and modeling. Using a 3-D physical-biogeochemical model, we simulate the partial pressure of CO2 in surface water (pCO2sea) and air-sea CO2 flux in the tropical and subtropical regions from 1990 to 2004. The model reproduces well the observed spatial differences in physical and biogeochemical processes, such as: (1) relatively higher sea surface temperature (SST), and lower dissolved inorganic carbon (DIC) and pCO2sea in the western than in the central tropical-subtropical Pacific, and (2) predominantly seasonal and interannual variations in the subtropical and tropical Pacific, respectively. Our model results suggest a non-negligible contribution of the wind variability to that of the air-sea CO2 flux in the central tropical Pacific, but the modeled contribution of 7% is much less than that from a previous modeling study (30%; McKinley et al., 2004). While DIC increases in the entire region SST increases in the subtropical and western tropical Pacific but decreases in the central tropical Pacific from 1990 to 2004. As a result, the interannual pCO2sea variability is different in different regions. The pCO2sea temporal variation is found to be primarily controlled by SST and DIC, although the role of salinity and total alkalinity, both of which also control pCO2sea, need to be elucidated by long-term observations and eddy-permitting models for better estimation of the interannual variability of air-sea CO2 flux.  相似文献   

8.
姚圣康  王华 《海洋预报》2006,23(3):72-77
本文通过对2004年西北太平洋热带气旋发生源地、月频数、移动路径、强度等方面的分析,找出2004年西北太平洋热带气旋的特征,并对其大气环流场进行了分析,结果表明:2004年西北太平洋热带气旋偏多、偏强,路径以近、远海转向为多,前期赤道东太平洋海温偏低、西太平洋副高位置偏北、偏东,是2004年西北太平洋热带气旋偏多的主要原因。  相似文献   

9.
利用1986/1987ENSO事件前后的深水CTD资料,计算了热带西太平洋(141°~165°E,10°N~10°S)相对于不同等压面的势能空间分布和时间变化。结果表明,ENSO期间热带西太平洋单位面积上水柱的势能明显减小,而热带西太平洋势能的经向变化明显大于纬向变化。经向变化的特征是赤道外势能大于赤道上的势能。势能最大值位于4°N和4°S,而最大年际变化则发生于7°N,远大于赤道附近。最后,还分析了热带西太平洋势能分布的地域性特征,并指出了这些特征与海洋水文特征的联系。  相似文献   

10.
ENSO variability and the eastern tropical Pacific: A review   总被引:3,自引:0,他引:3  
El Niño-Southern Oscillation (ENSO) encompasses variability in both the eastern and western tropical Pacific. During the warm phase of ENSO, the eastern tropical Pacific is characterized by equatorial positive sea surface temperature (SST) and negative sea level pressure (SLP) anomalies, while the western tropical Pacific is marked by off-equatorial negative SST and positive SLP anomalies. Corresponding to this distribution are equatorial westerly wind anomalies in the central Pacific and equatorial easterly wind anomalies in the far western Pacific. Occurrence of ENSO has been explained as either a self-sustained, naturally oscillatory mode of the coupled ocean–atmosphere system or a stable mode triggered by stochastic forcing. Whatever the case, ENSO involves the positive ocean–atmosphere feedback hypothesized by Bjerknes. After an El Niño reaches its mature phase, negative feedbacks are required to terminate growth of the mature El Niño anomalies in the central and eastern Pacific. Four requisite negative feedbacks have been proposed: reflected Kelvin waves at the ocean western boundary, a discharge process due to Sverdrup transport, western Pacific wind-forced Kelvin waves, and anomalous zonal advections. These negative feedbacks may work together for terminating El Niño, with their relative importance being time-dependent.ENSO variability is most pronounced along the equator and the coast of Ecuador and Peru. However, the eastern tropical Pacific also includes a warm pool north of the equator where important variability occurs. Seasonally, ocean advection seems to play an important role for SST variations of the eastern Pacific warm pool. Interannual variability in the eastern Pacific warm pool may be largely due to a direct oceanic connection with the ENSO variability at the equator. Variations in temperature, stratification, insolation, and productivity associated with ENSO have implications for phytoplankton productivity and for fish, birds, and other organisms in the region. Long-term changes in ENSO variability may be occurring and are briefly discussed. This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific.  相似文献   

11.
利用9层15波全球大气环流谱模式研究了太平洋海温异常对南海西南季风建立早晚的影响作用.结果表明:西-中太平洋海温异常数值试验结果最能反映出南海西南季风爆发早、晚年4~5月份大气环流的差异特征.数值试验结果显示:西太平洋海温正(负)异常可导致西太平洋副高减弱(加强);中太平洋海温正(负)异常主要使得中太平洋上空的洋中槽减弱(加深);东太平洋海温正(负)异常可造成东太平洋赤道两侧高层环流产生反气旋性(气旋性)变化,孟加拉湾-南海-西太平洋热带地区出现东风(西风)异常,西太副高加强(减弱).可见西太平洋海温异常和东太平洋海温异常都可以对副高强弱变化产生明显影响,从而对南海西南季风建立早晚产生影响,只不过西太平洋海温异常的影响作用更为显著.西太平洋正(负)海温异常与中太平洋负(正)海温异常经常是同时出现的,其激发出的与向东传的Kelvin波和向西传的行星波相联系的环流异常为南海季风建立早(晚)提供有利的条件,因而这一海温分布型是影响南海西南季风建立早晚的重要影响因子.  相似文献   

12.
Abstract-Heat content of the upper layer above the 20℃ isotherm in the tropical Pacific Ocean isestimated by using the sea temperature data set with a resolution 2°latitude×5°longitude (1980~1993)for the water depths (every 10 m) from 0 m to 400 m, and its temporal and spatial variabilities are an-alyzed. (1) The temporal variability indicates that the total heat in the upper layer of the equatorial Pa-cific Ocean is charcterized by the interannual variability. The time series of the equatorial heat anomaly5 months lead that of the El Nino index at the best positive lag correlation between the two, and theformer 13 months lag behind the latter at their best negative lag correlation. Therefore the equatorialheat content can be used as a better predictor than the El Nino index for a warm or cold event. In addi-tion, it is also found that less heat anomaly in the equator corresponds to the stronger warm events inthe period (1980~1993) and much more heat was accumulated in the 4 years including 1992/1  相似文献   

13.
A biogeochemical model of the tropical Pacific has been used to assess the impact of interannual variability in a western Pacific iron source on the iron-limited ecosystem of the central and eastern Pacific during the 1997–1998 El Niño. A reference simulation and two simulations with an iron source in the western Pacific have been performed. The two “source” simulations differed only in the temporal variability of the iron source. In the variable source simulation, the iron concentration in the source region was proportional to the velocity of the New Guinea Coastal Undercurrent (NGCUC). In the constant source simulation, the same time-averaged concentration of iron was imposed with no temporal variability. The variable source was designed to mimic variations of iron flux from the northeast slope of New Guinea to the NGCUC due to modulation of sedimentary iron resuspension as previously hypothesized. Through the comparison of these simulations, it appeared that: (i) an iron source in the NGCUC, regardless of its source variability, increases biomass in the eastern equatorial Pacific because of the greater eastward iron flux by the Equatorial Undercurrent and (ii) a variable NGCUC iron source does not change the temporal variability of eastern Pacific chlorophyll, and in particular the timing and intensity of the June 1998 bloom. To explain eastern Pacific biological variability, local rather than remote processes are needed, such as wind-driven upwelling, the local depth of the thermocline, tropical instability waves and biological processes such as high grazing pressure. Therefore, while the western Pacific sources of dissolved iron are important in our model to sustain annually integrated equatorial Pacific production, they are unlikely to strongly constrain the timing of blooms in the central and eastern Pacific such as during the 1998 La Niña.  相似文献   

14.
利用一个斜压两层海洋模式解析地研究了赤道东、西太平洋对信风张弛的响应特征.研究表明:当赤道上空偏东信风张弛或转为西风时,由于打破了海洋原来的平衡关系,结果在赤道东、西太平洋的温跃层附近产生了扰动并开始传播.西太平洋温跃层附近的扰动向东传播的速度远大于东太平洋扰动向西传播的速度,而且与东太平洋温跃层扰动向西传播的狭窄范围和小振幅相比,西太平洋温跃层扰动向东传播的范围和强度均很大.这与最近几次强厄尔尼诺增暖事件暖水从赤道西太平洋向赤道中、东太平洋的迅速传播特征是一致的.  相似文献   

15.
Using a gridded array for real-time geostrophic oceanography(Argo) program float dataset, the features of upperocean salinity stratification in the tropical Pacific Ocean are studied. The salinity component of the squared Brunt-V?is?l? frequency N~2( N_S~2) is used to represent salinity stratification. Layer-max N_S~2(LMN), defined as the N_S~2 maximum over the upper 300 m depth, and halocline depth(HD), defined as the depth where the N_S~2 maximum is located, are used to specifically describe the intensity of salinity stratification. Salinity stratification in the Topical Pacific Ocean has both spatial and temporal variability. Over the western and eastern equatorial Pacific, the LMN has a large magnitude with a shallow HD, and both have completely opposite distributions outside of the equatorial region. An obvious seasonal cycle in the LMN occurs in the north side of eastern equatorial Pacific and freshwater flux forcing dominates the seasonal variations, followed by subsurface forcing.At the eastern edge of the western Pacific warm pool around the dateline, significant interannual variation of salinity stratification occurs and is closely related to the El Ni?o Southern Oscillation event. When an El Ni?o event occurs, the precipitation anomaly freshens sea surface and the thermocline shoaling induced by the westerly wind anomaly lifts salty water upward, together contribute to the positive salinity stratification anomaly over the eastern edge of the warm pool. The interannual variations in ocean stratification can slightly affect the propagation of first baroclinic gravity waves.  相似文献   

16.
使用1979年1月至1984年12月向外长波辐射(OLR)资料,对热带地区积云对流的长期变化特征进行了研究。结果表明:热带地区积云对流活动存在显著的季节变化,冬季积云对流区主要是东西向,位于南印度洋和西太平洋的近赤道地区;夏季则北移至北印度洋和菲律宾附近的西太平洋地区。低纬地区积云对流活动存在明显的季节性位移,北印度洋地区的积云对流活动主要集中在5—10月,7—8月位置最北;北半球热带西太平洋地区的积云对流活动则主要集中在6—11月,8—9月位置最北。标准差分析表明,冬季北半球热带西太平洋、赤道中太平洋及热带印度洋东部地区积云对流的年际变化最明显。经验正交函数(EOF)分析的主要空间型反映了赤道中太平洋、热带西太平洋、阿拉伯海和副热带西太平洋地区的积云对流活动存在一定的关系。结合遥相关计算还表明秋云对流存在4种遥相关型,即2种东西向偶极型涛动型、西太平洋型和北印度洋型。  相似文献   

17.
通过海气耦合模式CCSM3(The Community Climate System Model version 3),研究在北大西洋高纬度淡水强迫下,北太平洋冬季的海表温度SST、风场及流场的响应及其区域性差异。结果表明:淡水的注入使北太平洋整体变冷,但有部分区域异常增暖;在太平洋东部赤道两侧,SST的变化出现北负南正的偶极子型分布。阿留申低压北移的同时中纬度西风减弱,热带附近东北信风增强。黑潮和南赤道流减弱,北太平洋副热带逆流和北赤道流增强,日本海被南向流控制。风场及流场的改变共同导致了北太平洋SST异常出现复杂的空间差异:北太平洋中高纬度SST的降温主要由大气过程决定,海洋动力过程主要影响黑潮、日本海及副热带逆流区域的SST,太平洋热带地区SST异常由大气与海洋共同主导。  相似文献   

18.
19.
Eleven years (1997–2007) of SeaWiFS observations and Ocean General Circulation Model sensitivity experiments are used to understand chlorophyll–a variability in the southern tropical Indian Ocean. The strong offshore Ekman transport forced by anomalous southeasterly winds are responsible for inducing higher chlorophyll-a in the eastern equatorial Indian Ocean. In the case of the southwest tropical Indian Ocean, Rossby waves and local upwelling are responsible for lifting the phytoplankton from deep chlorophyll maxima to the surface. Both intraseasonal dynamical response and interannual forcing are responsible for the phytoplankton blooming in the western basin, whereas the interannual forcing is mainly responsible in the east.  相似文献   

20.
依托中国“大洋一号”第20和第21调查航次,分析测定了东、西赤道太平洋4个站位的颗粒态生物硅浓度及其粒级结构。结果显示赤道太平洋采样站各层位颗粒态生物硅(PBSi)总浓度分布范围为5~65 nmol/dm3,东赤道太平洋的调查站位颗粒态生物硅的总浓度平均值达46 nmol/dm3,是西赤道太平洋的近3倍。PBSi的粒径结果显示在东赤道太平洋调查站位0.8~20 μm粒径颗粒是PBSi的主要来源,其平均贡献率高达64%;而在西赤道太平洋2种粒径的生物硅贡献率相当。营养盐分布对PBSi的浓度及粒径分布有显著的影响,并在一定程度上控制了“硅质泵”的组成结构,是控制大洋生物泵运转的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号