首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Understanding the hydrodynamic interactions between ocean waves and the oscillating water column (OWC) wave energy converter is crucial for improving the device performance. Most previous relevant studies have focused on testing onshore and offshore OWCs using 2D models and wave flumes. Conversely, this paper provides experimental results for a 3D offshore stationary OWC device subjected to regular waves of different heights and periods under a constant power take–off (PTO) damping simulated by an orifice plate of fixed diameter. In addition, a 3D computational fluid dynamics (CFD) model based on the RANS equations and volume of fluid (VOF) surface capturing scheme was developed and validated against the experimental data. Following the validation stage, an extensive campaign of computational tests was performed to (1) discover the impact of testing such an offshore OWC in a 2D domain or a wave flume on device efficiency and (2) investigate the correlation between the incoming wave height and the OWC front wall draught for a maximum efficiency via testing several front lip draughts for two different rear lip draughts under two wave heights and a constant PTO damping. It is found that the 2D and wave flume modelling of an offshore OWC significantly overestimate the overall power extraction efficiency, especially for wave frequencies higher than the chamber resonant frequency. Furthermore, a front lip submergence equal to the wave amplitude affords maximum efficiency whilst preventing air leakage, hence it is recommended that the front lip draught is minimized.  相似文献   

2.
The oscillating water column (OWC) device is in a leading position for wave power extraction but has not achieved fully commercial at the current stage. In addition to enhancing the OWC performance, installing OWCs on floating breakwaters, which owns the merits of both cost-sharing and offshore power supply, is a practicality with high economic viability. In this study, a series of wave-flume experiments were conducted in regular waves to examine the wave power extraction of a floating box-type breakwater with dual pneumatic chambers. The flow characteristics of the orifices used to simulate the PTOs was pre-calibrated through another series of experiments, so the power extraction in this study can be obtained with only the pressure measurement. The effects of wave period, chamber draft, water depth and arrangement of chambers on the power extraction were examined. Our experimental results showed that the power extraction was mainly due to the water column oscillation inside the chamber, and differentiation in the designed natural periods of dual chambers could widen the efficiency bandwidth of power extraction. The front chamber always played the main role in power extraction and its natural period should be designed against the dominating period of the wave spectrum; in contrast, the power extraction of the rear chamber was only a supplement and its natural period should be designed against longer waves which were more easily transmitted, thus a PTO of small power capacity maybe more realistic. It was also worth noting that the water column oscillation was more dependent on the wave period rather than controlled by the wave scattering under different water depths.  相似文献   

3.
Wave Energy Converters (WECs) have excellent potential as a source of renewable energy that is yet to be commercially realised. Recent attention has focused on the installation of Oscillating Water Column (OWC) devices as a part of harbor walls to provide advantages of cost–sharing structures and proximity of power generation facilities to existing infrastructure. In this paper, an incompressible three–dimensional CFD model is constructed to simulate a fixed Multi–Chamber OWC (MC–OWC) device. The CFD model is validated; the simulation results are found to be in good agreement with experimental results obtained from a scale physical model tested in a wave tank. The validated CFD model is then used for a benchmark study of 96 numerical tests. These investigate the effects of the PTO damping caused by the power take–off (PTO) system on device performance. The performance is assessed for a range of regular wave heights and periods. The results demonstrate that a PTO system with an intermediate damping can be used for all chambers in the MC–OWC device for most wave period ranges, except for the long wave periods. These require a higher PTO damping. An increased incident wave height reduces the device capture width ratio, but there is a noticeable improvement for long wave periods.  相似文献   

4.
The motion and the drift force of a floating OWC (oscillating water column) wave energy device in regular waves are studied taking account of the oscillating surface-pressure due to the pressure drop across the duct of the air chamber. The potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine-type Green function while the outer problem with the Kelvin-type Green function. The added mass, wave damping and excitation coefficients as well as the motion and drift force of the OWC device are calculated for various values of parameter related to the pressure drop.  相似文献   

5.
In order to study the effects of coastline on wave power absorption, we describe here a linearized theory of an oscillating water column (OWC) installed on a straight coast. The sea depth is assumed to be constant and the coast is a vertical cliff. The column is a vertical circular cylinder half embedded in the cliff and open on the seaside. Forced by incident waves from any direction, the water surface inside pushes the dry air above through a Wells turbine system to generate power. Carrying out the linearized theories of radiation and diffraction analytically, we calculate the coefficients of apparent mass and radiation damping, and the chamber pressure. Optimum absorption efficiency is examined under the constraint of constant chamber volume. Results are compared with a parallel study of an OWC installed either offshore or at the tip of a thin breakwater.  相似文献   

6.
Wave elevations and water particle velocities were measured in a laboratory surf zone created by the breaking of a narrow-band irregular wave train on a 1/35 plane slope. The incident waves form wave groups that are strongly modulated. It is found that the waves that break close to the shoreline generally have larger wave-height-to-water-depth ratios before breaking than the waves that break farther offshore. After breaking, the wave-height-to-water-depth ratio for the individual waves approaches a constant value in the inner surf zone, while the standard deviation of the wave period increases as the still water depth decreases. In the outer surf zone, the distribution of the period-averaged turbulent kinetic energy is closely correlated to the initial wave heights, and has a wider variation for narrow-band waves than for broad-band waves. In the inner surf zone, the distribution of the period-averaged turbulent kinetic energy is similar for narrow-band waves and broad-band waves. It is found that the wave elevation and turbulent kinetic energy time histories for the individual waves in a wave group are qualitatively similar to those found in a spilling regular wave. The time-averaged transport of turbulent kinetic energy by the ensemble-averaged velocity and turbulence velocity under the irregular breaking waves are also consistent with the measurements obtained in regular breaking waves. The experimental results indicate that the shape of the incident wave spectrum has a significant effect on the temporal and spatial variability of wave breaking and the distribution of turbulent kinetic energy in the outer surf zone. In the inner surf zone, however, the distribution of turbulent kinetic energy is relatively insensitive to the shape of the incident wave spectrum, and the important parameters are the significant wave height and period of the incident waves, and the beach slope.  相似文献   

7.
本文对振荡水柱波能装置的水柱做了时域计算,研究了内水柱在气室处于封闭状态、有阻尼状态和无阻尼状态下的动力响应。得出了相应的波浪载荷,并对波能装置的几种保护措施作了探讨。数值结果表明,带有阻尼的气室不能有效地阻止内水柱的运动,将使结构承受危险载荷的打击;全封闭的气室能有效地阻止内水柱的运动,但可能使气室里产生高压;收缩口与破浪锥联合作用,可以消耗水柱的动能,大大地减少载荷,是一种有前途的保护措施。  相似文献   

8.
The performance of an oscillating water column (OWC) wave energy converter depends on many factors, such as the wave conditions, the tidal level and the coupling between the chamber and the air turbine. So far most studies have focused on either the chamber or the turbine, and in some cases the influence of the tidal level has not been dealt with properly. In this work a novel approach is presented that takes into account all these factors. Its objective is to develop a virtual laboratory which enables to determine the pneumatic efficiency of a given OWC working under specific conditions of incident waves (wave height and period), tidal level and turbine damping. The pneumatic efficiency, or efficiency of the OWC chamber, is quantified by means of the capture factor, i.e. the ratio between the absorbed pneumatic power and the available wave energy. The approach is based on artificial intelligence—in particular, artificial neural networks (ANNs). The neural network architecture is chosen through a comparative study involving 18 options. The ANN model is trained and, eventually, validated based on an extensive campaign of physical model tests carried out under different wave conditions, tidal levels and values of the damping coefficient, representing turbines of different specifications. The results show excellent agreement between the ANN model and the experimental campaign. In conclusion, the new model constitutes a virtual laboratory that enables to determine the capture factor of an OWC under given wave conditions, tidal levels and values of turbine damping, at a lower cost and in less time than would be required for conventional laboratory tests.  相似文献   

9.
The wave power extraction by a cylindrical oscillating water column (OWC) device with a quadratic power take-off (PTO) model was studied experimentally and theoretically. In the experiment, a scaled model OWC was tested in a wave flume, with an orifice being used to simulate a quadratic PTO mechanism. In the theoretical analysis, the quadratic PTO model was linearized based on Lorenz's principle of equivalent work, which allows us to perform a frequency domain analysis using an eigen-function matching method. The effects of higher harmonic components and the spatial non-uniformity of the surface velocity inside the chamber were discussed. A semi-analytical model was proposed to understand the viscous loss affecting the measured capture length. Our treatment of the quadratic PTO model was validated by comparing quasi-linear theoretical capture length and the laboratory measurement. Our results also showed that the effects of spatial non-uniformity and viscous loss could be noticeable for shorter waves.  相似文献   

10.
In this paper, the extreme wave loads on an on-shore wave power device are investigated. First, boundary element method is applied to solve the three dimensional potential problem based on the small amplitude wave assumption. Then the motion of the Oscillating Water Column (OWC) inside the device and its laods on the device are calculated in time domain. Several protective techniques often applied are simulated by changing the constraint of the upper end of the chamber of the device. Numerical results are used to judge the effectiveness of these techniques. The investigation shows that damping can not effectively restrain the motion of OWC when the period of incident wave is long, which may cause dangerous loads on the structure. The shut chamber can effectively restrain the motion of OWC, but alternatively cause high pressure in the chamber. A Contracting opening with a Taper (CT) can exhaust a great amount of kinetic energy of OWC, and significantly decrease the loads. It is a promising protective tec  相似文献   

11.
A pile-supported OWC breakwater is a novel marine structure in which an oscillating water column (OWC) is integrated into a pile-supported breakwater, with a dual function: generating carbon-free energy and providing shelter for port activities by limiting wave transmission. In this work we investigate the hydrodynamics of this novel structure by means of an analytical model based on linear wave theory and matched eigenfunction expansion method. A local increase in the back-wall draft is adopted as an effective strategy to enhance wave power extraction and reduce wave transmission. The effects of chamber breadth, wall draft and air chamber volume on the hydrodynamic performance are examined in detail. We find that optimizing power take-off (PTO) damping for maximum power leads to both satisfactory power extraction and wave transmission, whereas optimizing for minimum wave transmission penalizes power extraction excessively; the former is, therefore, preferable. An appropriate large enough air chamber volume can enhance the bandwidth of high extraction efficiency through the air compressibility effect, with minimum repercussions for wave transmission. Meanwhile, the air chamber volume is found to be not large enough for the air compressibility effect to be relevant at engineering scales. Finally, a two-level practical optimization strategy on PTO damping is adopted. We prove that this strategy yields similar wave power extraction and wave transmission as the ideal optimization approach.  相似文献   

12.
Investigation on the Oscillating Buoy Wave Power Device   总被引:4,自引:0,他引:4  
SU  Yongling 《中国海洋工程》2002,16(1):141-149
An oscillating buoy wave power device (OD) is a device extracting wave power by an oscillating buoy. Being excited by waves, the buoy heaves up and down to convert wave energy into electricity by means of a mechanical or hydraulic device. Compared with an Oscillating Water Column (OWC) wave power device, the OD has the same capture vvidth ratio as the OWC does, but much higher secondary conversion efficiency. Moreover, the chamber of the OWC, which is the most expensive and difficult part to be built, is not necessary for the OD, so it is easier to construct an OD. In this paper, a nu-merical calculation is conducted for an optimal design of the OD firstly, then a model of the device is built and, a model test is carried out in a wave tank. The results show that the total efficiency of the OD is much higher than that of the OWC and that the OD is a promising wave power device.  相似文献   

13.
刘臻 《中国海洋工程》2011,25(1):169-178
Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world.The air chamber is utilized to convert the wave energy into the pneumatic energy.The numerical wave tank based on the two-phase VOF model is established in the present study to investigate the operating performance of OWC air chamber.The RANS equations,standard k-ε turbulence model and dynamic mesh technology are employed in the numerical model.The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated.  相似文献   

14.
基于VOF模型的OWC气室波浪场数值分析   总被引:1,自引:0,他引:1  
近年来,振荡水柱形式在波能转换装置中得到了广泛应用,由于波况不同,需对气室加以研究并对其形状参量进行优化,从而使空气流速和能量转换达到最大值.利用基于VOF模型建立二维数值波浪水槽,将数值计算的振荡水柱在气室内的升沉运动与物理模型试验进行比较,验证其正确性,并将OWC气室的研究手段予以推广.  相似文献   

15.
Phase control may substantially increase the power absorption in point-absorber wave energy converters. This study deals with validation of dynamic models and latching control algorithms for an oscillating water column (OWC) inside a fixed vertical tube of small circular cross-section by small-scale testing. The paper describes experimental and numerical results for the system's dynamics, using simple and practical latching control techniques that do not require the prediction of waves or wave forces, and which will be relevant to any type of point-absorbing devices.In the experimental set-up, the upper end of the tube was equipped with an outlet duct and a shut-off valve, which could be controlled to give a latching of the inner free surface movement. The pressure drop through the open valve is used as a simplified measure of the energy extraction. The control was realized by using the real-time measurement signals for the inner and outer surface displacement.A mathematical model of the system was established and applied in numerical simulation. In the case the OWC's diameter is much smaller than the wavelength and the wave amplitude much smaller than the draft, the free surface movement inside the tube can be described as an oscillating weightless piston. For this hydrodynamic problem an analytical solution is known. In addition, the mathematical model includes the effects of viscous flow losses, the air compressibility inside the chamber and the pressure drop across the valve. Experimental results were used to calibrate some of the model parameters, and the total model was formulated as a coupled system of six non-linear, first-order differential equations. Time-domain integration was used to simulate the system in order to test the control strategies and compare with experimental results.  相似文献   

16.
An Oscillating Water Column (OWC) device can output energy through reciprocating or unidirectional airflow. The unidirectional airflow is helpful to utilize a simple and high-efficiency unidirectional air turbine. The pentagonal BBDB proposed by us based on OWC principle can be regarded as a floating Oscillating Body and its Power Take-Off (PTO) consists of a chamber, a water column, a turbine and a generator. The Capture Width Ratio (CWR) of the pentagonal BBDB model with the reciprocating and unidirectional airflow was studied in this paper. The wave flume test results indicate the mean CWR of the pentagonal BBDB model with reciprocating airflow can reach up to 121.91% and the mean CWR of the model with unidirectional airflow could reach 100.94% during the whole wave cycle in regular waves. For irregular waves, the mean CWR of the model with the unidirectional airflow is as high as 62.83% during the whole wave cycle. Hopefully, the combination of the pentagonal BBDB with the check valve to output power during the air exhalation and conventional high-efficiency unidirectional turbine will improve the total efficiency of the BBDB.  相似文献   

17.
The hydrodynamic functioning of an oscillating water column (OWC) in the presence of an underwater tri-dimensional mound (UTDM) through large-scale ocean engineering basin experiments is described. Experiments are carried out with both regular and irregular waves and are compared to numerical models. The analysis is based on the measurements of the wave amplification in the water column for the OWC performance and on surface deformation upwave and over the UTDM for the wave transformation due to both UTDM and OWC. A significant increase of the capture-width ratio due to wave focusing above the mound is observed experimentally. This wave focusing is also well described numerically with a refraction–diffraction model. The wave amplification in the water column for both regular and irregular waves is compared to results from a linear potential model based on an integral matching method. Linear behaviour of the hydrodynamic response of the device is verified for both open and partially closed conditions, in particular for irregular waves.  相似文献   

18.
This paper presents a 1D time-domain model for an oscillating water column (OWC) based on previous works on trapped air cavities for marine vehicles. The paper describes the coupling between the hydrodynamic and the thermodynamic forces for an OWC with an orifice. The model enables to obtain the water elevation and pressure variation inside the chamber in the time-domain for regular and irregular waves. The numerical predictions are compared with experimental data performed on a model scale OWC.  相似文献   

19.
气旋天气过程引起的大浪是石臼港近海灾害性海浪之一。本文对1979年12月的一次气旋天气影响下的实测海浪进行了分析;论述了波要素的某些特点、波高与周期分布以及风与浪的关系;并讨论了风浪谱及其参量特征,得到了一个与实测谱接近的拟合谱形式。  相似文献   

20.
Mathematical modeling conducted in this study evaluated the hydrodynamic performance of a wave-driven artificial upwelling device in ocean waves off the Hawaiian islands. The device consisted of a buoy (4.0 m in diameter) and a tail pipe (1.2 m in diameter, 300 m in length) with a flow controlling valve. Random ocean waves off the Hawaiian islands used in the device's modeling analysis were synthesized from a wave spectrum obtained from available data. For comparison, the device's performance was also evaluated in regular waves whose height and period are the same as the significant wave height and wave period of random Hawaiian waves. Modeling results indicated that an upwelling flow of 0.95 m3/sec can be generated by this device in random Hawaiian waves and an upwelling flow rate of 0.45 m3/sec can be generated in regular waves. A simple mathematical model which assumed that the device exactly follows the incident waves was used in previous studies. Analysis results also indicated that the simple model cannot satisfactorily simulate the relative velocity and acceleration of the water column in the device. Since the relative velocity and acceleration are important factors in determining the rate of upwelling flow, the simple model must be applied with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号