首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
南海混合层近惯性能通量的时空变化   总被引:1,自引:1,他引:0  
On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation(SODA), the wind-induced near-inertial energy flux(NIEF) in the mixed layer of the South China Sea(SCS) is estimated by a slab model, and the model results are verified by observational data near the Xisha Islands in the SCS. Then, the spatial and temporal variations of the NIEF in the SCS are analyzed. It is found that, the monthly mean NIEF exhibits obvious spatial and temporal variabilities, i.e., it is large west of Luzon Island all the year, east of the Indo-China Peninsula all the year except in spring, and in the northern SCS from May to September. The large monthly mean NIEF in the first two zones may be affected by the large local wind stress curl whilst that in the last zone is probably due to the shallow mixed layer depth. Moreover, the monthly mean NIEF is relatively large in summer and autumn due to the passage of typhoons. The spatial mean NIEF in the mixed layer of the SCS is estimated to be about 1.25 m W/m2 and the total wind energy input from wind is approximately 4.4 GW. Furthermore, the interannual variability of the spatial monthly mean NIEF and the Ni?o3.4 index are negatively correlated.  相似文献   

2.
The World Ocean Database(WOD) is used to evaluate the halocline depth simulated by an ice-ocean coupled model in the Canada Basin during 1990–2008. Statistical results show that the simulated halocline is reliable.Comparing of the September sea ice extent between simulation and SSM/I dataset, a consistent interannual variability is found between them. Moreover, both the simulated and observed September sea ice extent show staircase declines in 2000–2008 compared to 1990–1999. That supports that the abrupt variations of the ocean surface stress curl anomaly in 2000–2008 are caused by rapid sea ice melting and also in favor of the realistic existence of the simulated variations. Responses to these changes can be found in the upper ocean circulation and the intermediate current variations in these two phases as well. The analysis shows that seasonal variations of the halocline are regulated by the seasonal variations of the Ekman pumping. On interannual time scale, the variations of the halocline have an inverse relationship with the ocean surface stress curl anomaly after 2000,while this relationship no longer applies in the 1990 s. It is pointed out that the regime shift in the Canada Basin can be derived to illustrate this phenomenon. Specifically, the halocline variations are dominated by advection in the 1990 s and Ekman pumping in the 2000 s respectively. Furthermore, the regime shift is caused by changing Transpolar Drift pathway and Ekman pumping area due to spatial deformation of the center Beaufort high(BH)relative to climatology.  相似文献   

3.
The ensemble optimal interpolation (EnOI) is applied to the regional ocean modeling system (ROMS) with the ability to assimilate the along-track sea level anomaly (TSLA). This system is tested with an eddy-resolving system of the South China Sea (SCS). Background errors are derived from a running seasonal ensemble to account for the seasonal variability within the SCS. A fifth-order localization function with a 250 km localization radius is chosen to reduce the negative effects of sampling errors. The data assimilation system is tested from January 2004 to December 2006. The results show that the root mean square deviation (RMSD) of the sea level anomaly decreased from 10.57 to 6.70 cm, which represents a 36.6% reduction of error. The data assimilation reduces error for temperature within the upper 800 m and for salinity within the upper 200 m, although error degrades slightly at deeper depths. Surface currents are in better agreement with trajectories of surface drifters after data assimilation. The variance of sea level improves significantly in terms of both the amplitude and position of the strong and weak variance regions after assimilating TSLA. Results with AGE error (AGE) perform better than no AGE error (NoAGE) when considering the improvements of the temperature and the salinity. Furthermore, reasons for the extremely strong variability in the northern SCS in high resolution models are investigated. The results demonstrate that the strong variability of sea level in the high resolution model is caused by an extremely strong Kuroshio intrusion. Therefore, it is demonstrated that it is necessary to assimilate the TSLA in order to better simulate the SCS with high resolution models.  相似文献   

4.
The seasonal variation of mixing layer depth(MLD) in the ocean is determined by a wind stress and a buoyance flux.A South China Sea(SCS) ocean data assimilation system is used to analyze the seasonal cycle of its MLD.It is found that the variability of MLD in the SCS is shallow in summer and deep in winter,as is the case in general.Owing to local atmosphere forcing and ocean dynamics,the seasonal variability shows a regional characteristic in the SCS.In the northern SCS,the MLD is shallow in summer and deep in winter,affected coherently by the wind stress and the buoyance flux.The variation of MLD in the west is close to that in the central SCS,influenced by the advection of strong western boundary currents.The eastern SCS presents an annual cycle,which is deep in summer and shallow in winter,primarily impacted by a heat flux on the air-sea interface.So regional characteristic needs to be cared in the analysis about the MLD of SCS.  相似文献   

5.
Based on monthly mean Simple Ocean Data Assimilation(SODA) products from 1958 to 2007,this study analyzes the seasonal and interannual variability of the North Equatorial Current(NEC) bifurcation latitude and the Indonesian Throughflow(ITF) volume transport. Further,Empirical Mode Decomposition(EMD) method and lag-correlation analysis are employed to reveal the relationships between the NEC bifurcation location,NEC and ITF volume transport and ENSO events. The analysis results of the seasonal variability show that the annual mean location of NEC bifurcation in upper layer occurs at 14.33°N and ITF volume transport has a maximum value in summer,a minimum value in winter and an annual mean transport of 7.75×106 m3/s. The interannual variability analysis indicates that the variability of NEC bifurcation location can be treated as a precursor of El Ni?o. The correlation coefficient between the two reaches the maximum of 0.53 with a time lag of 2 months. The ITF volume transport is positively related with El Ni?o events with a maximum coefficient of 0.60 by 3 months. The NEC bifurcation location is positively correlated with the ITF volume transport with a correlation coefficient of 0.43.  相似文献   

6.
Seasonal variations of phytoplankton/chlorophyll-a (Chl-a) distribution, sea surface wind, sea height anomaly, sea surface temperature and other oceanic environments for long periods are analyzed in the South China Sea (SCS), especially in the two typical regions off the east coast of Vietnam and off the northwest coast of Luzon, using remote sensing data and other oceanographic data. The results show that seasonal and spatial distributions of phytoplankton biomass in the SCS are primarily influenced by the monsoon winds and oceanic environments. Off the east coast of Vietnam, Chl-a concentration is a peak in August, a jet shape extending into the interior SCS, which is associated with strong southwesterly monsoon winds, the coastal upwetling induced by offshore Ekman transport and the strong offshore current in the western SCS. In December, high Chl-a concentration appears in the upwelling region off the northwest coast of Luzon and spreads southwestward. Strong mixing by the strong northeasterly monsoon winds, the cyclonic circulation, southwestward coastal currents and river discharge have impacts on distribution of phytoplankton, so that the high phytoplankton biomass extends from the coastal areas over the northern SCS to the entire SCS in winter. These research activities could be important for revealing spatial and temporal patterns of phytoplankton and their interactions with physical environments in the SCS.  相似文献   

7.
The seasonal variability of the significant wave height(SWH) in the South China Sea(SCS) is investigated using the most up-to-date gridded daily altimeter data for the period of September 2009 to August 2015. The results indicate that the SWH shows a uniform seasonal variation in the whole SCS, with its maxima occurring in December/January and minima in May. Throughout the year, the SWH in the SCS is the largest around Luzon Strait(LS) and then gradually decreases southward across the basin. The surface wind speed has a similar seasonal variation, but with different spatial distributions in most months of the year. Further analysis indicates that the observed SWH variations are dominated by swell. The wind sea height, however, is much smaller. It is the the largest in two regions southwest of Taiwan Island and southeast of Vietnam Coast during the northeasterly monsoon, while the largest in the central/southern SCS during the southwesterly monsoon. The extreme wave condition also experiences a significant seasonal variation. In most regions of the northern and central SCS, the maxima of the 99 th percentile SWH that are larger than the SWH theoretically calculated with the wind speed for the fully developed seas mainly appear in August–November, closely related to strong tropical cyclone activities.Compared with previous studies, it is also implied that the wave climate in the Pacific Ocean plays an important role in the wave climate variations in the SCS.  相似文献   

8.
The variability of the sea surface temperature(SST) in the China seas has been studied in seasonal,interannual and interdecadal scales based on the monthly data of HadISST spanning from 1870 to 2007. The main results obtained are SST in the China offshore changes most actively at the seasonal scale with the intensity diminishing from north to south,as the temperature differences between summer and winter reaching 17 and 4 C in the northern and southern areas,respectively. Moreover,seasonal variation near the coastal regions seems relatively stronger than that far from the coastline;significant interannual variations are detected,with the largest positive anomaly occurring in 1998 in the overall area. But as far as different domains are concerned,there exists great diversity,and the difference is also found between winter and summer. Differed from the seasonal variations,where the strongest interannual variability takes place,resides to the south of that of the seasonal ones in the northern section,nevertheless in the South China Sea,the most significant interannual variability is found in the deep basin;interdecadal changes of summer,winter and annual mean SST in different domains likewise present various features. In addition,a common dominant warming in recent 20 a are found in the overall China offshore with the strongest center located in the vicinity of the Changjiang Estuary in the East China Sea,which intensifies as high as 1.3 C during the past 130 a.  相似文献   

9.
The Luzon Strait is the main impact pathway of the Kuroshio on the circulation in South China Sea (SCS). Based on the analysis of the 1997–2007 altimeter data and 2005–2006 output data from a high resolution global HYCOM model, the total Luzon Strait Transport (LST) has remarkable subseasonal oscillations with a typical period of 90 to 120 days, and an average value of 1.9 Sv into SCS. Further spectrum analysis shows that the temporal variability of the LST at different depth is remarkable different. In the upper layer (0–300 m), westward inflow has significant seasonal and subseasonal variability. In the bottom layer (below 1 200 m), eastward outflow exhibits remarkable seasonal variability, while subseasonal variability is also clear. In the intermediate layer, the westward inflow is slightly bigger than the eastward outflow, and both of them have obvious seasonal and subseasonal variability. Because the seasonal variation of westward inflow and eastward outflow is opposite, the total transport of intermediate layer exhibits significant 50–150 days variation, without obvious seasonal signals. The westward Rossby waves with a period of 90 to 120 days in the Western Pacific have very clear correlationship with the Luzon Strait Transport, this indicates that the interaction between these westward Rossby waves and Kuroshio might be the possible mechanism of the subseasonal variation of the LST.  相似文献   

10.
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns. The annual cycle of the SCS gener- al circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July--August (January--February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which de- velopa into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 e- vent in response to the peak Pacific El Nino in 1997, the overall SCS sea level is found to have a significant rise during 1999~ 2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years.  相似文献   

11.
CMIP5模式对中国近海海表温度的模拟及预估   总被引:2,自引:0,他引:2  
基于观测和再分析资料;利用多种指标和方法评估了国际耦合模式比较计划(CMIP5)中21个模式对中国近海海温的月、季节和年际变化模拟能力。多模式集合能够再现气候平均意义下近海海温的空间分布特征;但量值上存在一定的低估。在渤海和黄海;集合平均与观测差别比较明显。在年际尺度上;与观测数据对比;模式模拟海温与Niño3指数相关性较小。中国近海海表面温度在1960-2002年有明显的升高趋势;从2003年开始增温趋缓。评估结果表明;ACCESS1.0、BCC-CSM1.1、HadGEM2-ES、IPSL-CM5A-MR、CMCC-CM、FGOALS-g2、CNRM-CM5-2、INMCM4八个模式对中国近海海温的变化有较好的模拟能力。利用ACCESS1.0、INMCM4、BCC-CSM1.1、IPSL-CM5A-MR、CMCC-CM这5个模式结果对中国近海海温未来的变化进行了预估。在RCP4.5、RCP8.5情景下;未来近100年中国近海海温有明显升高趋势;最优模式多模式集合平均增温分别可达到1.5℃、3.3℃;净热通量变化和平流变化共同促进了东海升温。  相似文献   

12.
南海混合层深度的季节变化及年际变化特征   总被引:2,自引:0,他引:2  
通过分析新的SODA(Simple Ocean Data Assimilation)资料,得到南海混合层时空场的分布特征,剖析了南海混合层深度的季节及年际变化特征。资料分析表明:南海混合层存在着显著的季节和年际变化,且两者的均方差分布存在一定的差异。在季节变化中,冬季混合层在南海北部及西北陆架区深,在南海南部及吕宋冷涡处浅;夏季混合层在南海西北部浅,东南深。南海这种混合层深度分布特征除了与热通量的季节变化有关外,在相当大的程度上与季风引起的Ekman输送及Ekman抽吸有关。混合层深度距平场EOF(Empirical Othorgnal Function)第一模和第二模时间变化的主信号均为周期的年际变化信号,其中第一模态约为3 a,第二模态则有1.8,2.4和4.3 a的3个显著周期。EOF第一模显示混合层深度在南海东南部年际变化幅度最大,且滞后Nino3指数7个月时相关性最好(相关系数为0.422 3);EOF第二模显示在南海南部和北部混合层深度呈反位相变化。  相似文献   

13.
本文利用PHC、ECCO2、SODA、GECCO3和CMIP6资料,分析了北冰洋热含量的水平分布特征、季节变化和长期变化趋势等,评估了CMIP6模式对北冰洋海洋热含量的模拟能力。研究发现,北冰洋海洋热含量表现出明显的季节变化:热含量在4月份最低,9月份最高;在历史情形下(1850?2014年),相较观测和再分析资料,CMIP6多模式集合平均(MME)的上层500 m热含量在格陵兰海偏暖,在挪威海、巴伦支海和欧亚海盆偏冷,MME的全水深热含量在北冰洋几乎所有区域均偏暖,在格陵兰海偏差最大;CMIP6模式对北冰洋温度剖面模拟偏差较大,MME平均温度在1 000 m以深均高于观测和再分析资料。在未来情形下(2015?2100年),MME表现出明显的北冰洋增暖情形,但绝大多数中国模式没有表现出明显的增暖情形。中国模式中,BCC-CSM2-MR和BCC-ESM1对北冰洋年平均热含量的模拟较差,CIESM对热含量季节和年代际变化模拟较差,FIO-ESM-2-0对北冰洋上层500 m年平均热含量及热含量季节和年代际变化的模拟都比较好。  相似文献   

14.
南海暖水季节和年际变化的初步研究   总被引:1,自引:1,他引:1  
南海暖水具有明显的季节和年际变化。利用气候平均的COADS资料和NCEP大气资料分析了南海暖水的季节变化及其与海面净热通量的关系,以及由此引起的南海地区大气环流的变化。发现海面净热通量在南海暖水的季节变化过程中起到了主要的作用;冬季无暖水存在时,最大上升气流位于赤道及以南地区的印尼群岛附近,夏季最大上升气流北移到了南海暖水上空,南海暖水上空对流强烈,成为大气的对流活动中心。利用50年逐月的SODA海温资料进行垂直方向的3次样条插值,定义并计算南海暖水的强度指数,分析南海暖水的年际变化,并对南海暖水的几个异常暖年份作了合成分析,探讨了暖水年际变化的形成因素。  相似文献   

15.
1 IntroductionThe South China Sea (SCS) is the largestmarginal sea in the western Pacific (see Fig. 1). It con-nects with the SCS through the Taiwan Strait, with thePacific through the Luzon Strait, with the Sulu Seathrough the Mindoro and Balabac Straits and with theJava Sea and Andaman Sea through the Sunda Shelf(For convenience, here we refer to the section at 1.5°N,Fig. 2). It is shown that the seasonal SCS circulation ismostly affected by the summer/winter monsoon, andthe no…  相似文献   

16.
The present study documents the atmosphere–ocean interaction in interannual variations over the South China Sea (SCS). The atmosphere–ocean relationship displays remarkable seasonality and regionality, with an atmospheric forcing dominant in the northern and central SCS during the local warm season, and an oceanic forcing in the northern SCS during the local cold season. During April–June, the atmospheric impact on the sea surface temperature (SST) change is characterized by a prominent cloud-radiation effect in the central SCS, a wind-evaporation effect in the central and southern SCS, and a wind-driven oceanic effect along the west coast. During November–January, regional convection responds to the SST forcing in the northern SCS through modulation of the low-level convergence and atmospheric stability. Evaluation of the precipitation–SST and precipitation–SST tendency correlation in 24 selected models from CMIP5 indicates that the simulated atmosphere–ocean relationship varies widely among the models. Most models have the worst performance in spring. On average, the models simulate better the atmospheric forcing than the oceanic forcing. Improvements are needed for many models before they can be used to understand the regional atmosphere–ocean interactions in the SCS region.  相似文献   

17.
利用SODA(Simple Ocean Data Assimilation)数据、XBT(Expendable Bathythermograph)观测数据和绕岛环流理论(island rule)诊断计算结果评估了一个涡相容(eddy-permitting)全球海洋环流模式——LICOM对南海贯穿流及南海上层热含量的模拟能力,同时利用模式输出探讨了南海贯穿流对南海上层热含量的影响。NEC(North Equatorial Current)分叉的垂向结构、南海内区环流的季节和吕宋海峡体积输送的年际变化等分析结果都表明,LICOM能获取西北太平洋-印尼海域环流和南海贯穿流的合理模拟结果。模式模拟的南海上层热含量季节变化与观测及同化数据都表现出良好的一致性,尤其在南海内区。相关分析表明,吕宋海峡热输送主要控制着南海内区上层的热含量变化,两者呈显著负相关,这进一步证实了南海贯穿流作为一支冷平流调制着南海上层热含量变化的重要事实。  相似文献   

18.
南海表层水温场的时空特征与长期变化趋势   总被引:9,自引:0,他引:9  
本文利用月平均表层水温(SST)、850hPa经向风和西太平洋副热带高压等资料分析了南海表层水温距平(SSTA)场的时空特征和长期变化趋势,并探讨了SST的年际和长期变化原因.结果表明,南海SSTA场分别存在着以全域同位相振荡和东南一西北向反位相振荡的两个主要模态.其中,前者是主要模态,以年际振荡为主,而后者则是次要模态,以季节振荡为主.进一步分析发现,南海中部的SST存在着显著的年际和年代际变化,并在1981年前后发生了一次由低到高的气候转变,而且南海中部SST的长期变化趋势非常明显,在1950—2006年间增温0.92℃.相关和合成分析表明,南海SST的年际和长期变化可能是由南海上空的经向风异常和西太平洋副热带高压的纬向变动引起的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号