首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ocean Modelling》2010,31(4):310-322
A global spectral barotropic ocean model is introduced to describe the depth-averaged flow. The equations are based on vorticity and divergence (instead of horizontal momentum); continents exert a nearly infinite drag on the fluid. The coding follows that of spectral atmospheric general circulation models using triangular truncation and implicit time integration to provide a first step for seamless coupling to spectral atmospheric global circulation models and an efficient method for filtering of ocean wave dynamics. Five experiments demonstrate the model performance: (i) Bounded by an idealized basin geometry and driven by a zonally uniform wind stress, the ocean circulation shows close similarity with Munk’s analytical solution. (ii) With a real land–sea mask the model is capable of reproducing the spin-up, location and magnitudes of depth-averaged barotropic ocean currents. (iii) The ocean wave-dynamics of equatorial waves, excited by a height perturbation at the equator, shows wave dispersion and reflection at eastern and western coastal boundaries. (iv) The model reproduces propagation times of observed surface gravity waves in the Pacific with real bathymetry. (v) Advection of tracers can be simulated reasonably by the spectral method or a semi-Langrangian transport scheme. This spectral barotropic model may serve as a first step towards an intermediate complexity spectral atmosphere–ocean model for studying atmosphere–ocean interactions in idealized setups and long term climate variability beyond millennia.  相似文献   

2.
The cloverleaf buoy is designed to determine the directional wave spectra with high directional resolution by measuring the vertical acceleration, surface slope, and curvature of the ocean wave surface. This paper describes the properties of the directional wave spectra measured with the cloverleaf buoy during the Atlantic Remote Sensing Land Ocean Experiment (ARSLOE). It is shown that the directional wave spectra measured under relatively constant wind agree fairly well with the similarity spectrum reported previously, but some differences are found in the spectral parameters. The differences in the scale parameters are attributed to unstable atmospheric conditions, though reasonable explanations for those in the shape parameters are difficult now.  相似文献   

3.
The velocity fluctuations of wind over wind-waves in a wind tunnel are measured with a X-type hot-wire anemometer at some heights over the water surface.The observed vertical profiles of the wave-induced velocity fluctuations and the wave-induced Reynolds stress at the wave spectral peak frequency are different from those expected from the inviscid quasi-laminar model;i.e., the observed vertical profiles of the power spectral density of the wave-induced horizontal or vertical velocity fluctuations of wind have the minimum value at the height much heigher than the critical layer, and the value of the wave-induced Reynolds stress is negative at several heights over the water surface. From the comparison between the experimental results and the numerical solutions of a linear model of the turbulent shear flow over the wavy boundary, it is shown that the discrepancy described above can be attributed to the atmospheric turbulence.  相似文献   

4.
A global spectral barotropic ocean model is introduced to describe the depth-averaged flow. The equations are based on vorticity and divergence (instead of horizontal momentum); continents exert a nearly infinite drag on the fluid. The coding follows that of spectral atmospheric general circulation models using triangular truncation and implicit time integration to provide a first step for seamless coupling to spectral atmospheric global circulation models and an efficient method for filtering of ocean wave dynamics. Five experiments demonstrate the model performance: (i) Bounded by an idealized basin geometry and driven by a zonally uniform wind stress, the ocean circulation shows close similarity with Munk’s analytical solution. (ii) With a real land–sea mask the model is capable of reproducing the spin-up, location and magnitudes of depth-averaged barotropic ocean currents. (iii) The ocean wave-dynamics of equatorial waves, excited by a height perturbation at the equator, shows wave dispersion and reflection at eastern and western coastal boundaries. (iv) The model reproduces propagation times of observed surface gravity waves in the Pacific with real bathymetry. (v) Advection of tracers can be simulated reasonably by the spectral method or a semi-Langrangian transport scheme. This spectral barotropic model may serve as a first step towards an intermediate complexity spectral atmosphere–ocean model for studying atmosphere–ocean interactions in idealized setups and long term climate variability beyond millennia.  相似文献   

5.
The paper addresses the plane linear problem on generation of an internal wave in a continuously stratified ocean by a moving atmospheric front. The front exhibits air pressure perturbations, as well as the field of tangential wind stress. In the frame of a model for the planetary atmospheric boundary layer, a relationship between the air pressure and wind fields has been derived, generalizing Ackerbloom's formulae for the case of a moving atmospheric anomaly. Using the Fourier transform, a relation has been obtained for the wave's signature in the wake of a moving atmospheric perturbation, and the respective analysis has been performed. Numerical estimates of the internal wave amplitudes have been acquired for the mean density stratification in the Kuril-Kamchatka region. Comparative analysis of the effectiveness of wave signature generation by the moving areas of surface pressures and tangential wind stresses has been carried out. It has been demonstrated that the latter field determines the effectiveness of baroclinic wave signature generation. Translated by Vladimir A. Puchkin.  相似文献   

6.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as ±0.3 m, and surface wind speed of ±1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ ±1.4 nos) over those determined earlier with GEOSAT data.  相似文献   

7.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as - 0.3 m, and surface wind speed of - 1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ - 1.4 nos) over those determined earlier with GEOSAT data.  相似文献   

8.
Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyō, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions.  相似文献   

9.
We here investigate the frequency and intensity of oscillations in oceanographic data within intraseasonal time scales using spectral analysis of surface wind and wave time-series data collected at off-island weather stations or moored buoys around Taiwan. Data from marine weather stations were used to trace atmospheric conditions, while we used buoy data to examine sea states. The spectra and wavelet scalogram of the wind fields revealed oscillations with a period of around 20–33 days, and the energy density of the wind field at the off-island stations was stronger than that at the data buoy stations. However, the wavelet scalogram of the wave height measured at the buoy stations was stronger than its associated wind field. This long-period oscillation is consistent with the wavelet scalogram of the wind field calculated from the off-island weather stations. About 20–33 day oscillations exist within intraseasonal variations, which are closely linked to the atmospheric environment and to wind and ocean wave fields. Oscillations with a period of 5–10 days are a pronounced feature over northeastern Taiwan waters during the winter season and can be interpreted as the wave pattern following synoptic weather systems.  相似文献   

10.
Microwave remote sensing is one of the most useful methods for observing the ocean parameters. The Doppler frequency or interferometric phase of the radar echoes can be used for an ocean surface current speed retrieval,which is widely used in spaceborne and airborne radars. While the effect of the ocean currents and waves is interactional. It is impossible to retrieve the ocean surface current speed from Doppler frequency shift directly. In order to study the relationship between the ocean surface current speed and the Doppler frequency shift, a numerical ocean surface Doppler spectrum model is established and validated with a reference. The input parameters of ocean Doppler spectrum include an ocean wave elevation model, a directional distribution function, and wind speed and direction. The suitable ocean wave elevation spectrum and the directional distribution function are selected by comparing the ocean Doppler spectrum in C band with an empirical geophysical model function(CDOP). What is more, the error sensitivities of ocean surface current speed to the wind speed and direction are analyzed. All these simulations are in Ku band. The simulation results show that the ocean surface current speed error is sensitive to the wind speed and direction errors. With VV polarization, the ocean surface current speed error is about 0.15 m/s when the wind speed error is 2 m/s, and the ocean surface current speed error is smaller than 0.3 m/s when the wind direction error is within 20° in the cross wind direction.  相似文献   

11.
The paper considers the effects of sea roughness and atmospheric stability on the wind wave growth by using the logarithmic boundary layer profile including a stability function, as well as adopting Toba et al.'s [J. Phys. Ocean. 34 (1990) 705] significant wave height formula combined with some commonly used sea surface roughness formulations. The wind wave growth is represented by the non-dimensional total wave energy relative to that for neutral stability used by Young [Coast. Engng 34 (1998) 23]. For a given velocity at the 10 m elevation, spectral peak period and stability parameter, the wind wave growth is determined.  相似文献   

12.
The physical mechanism by which seasonally varying atmospheric wind stress exerted on the sea surface is communicated to the solid earth as oceanic pressure torque (continental torque) and bottom frictional torque is investigated with a linear shallow‐water numerical model of barotropic oceans. The model has a realistic land–ocean distribution and is driven by a seasonally varying climatic wind stress. A novel way to decompose the wind stress into rotational and non‐rotational components is devised. The rotational component drives ocean circulations as classical theories of wind‐driven circulations demonstrate. The non‐rotational component does not produce ocean circulations within the framework of a barotropic shallow‐water model, but balances with the pressure gradient force due to surface displacement in the steady state. Based on this decomposition, it is shown that most of the continental torque which plays a major role in producing the seasonal variation of length of day (LOD) is caused by the non‐rotational component of the wind stress. Both continental torque due to the wind‐driven circulation produced by the rotational component of the wind stress and the bottom frictional torque are of minor importance.  相似文献   

13.
In this paper, the low-frequency fluctuations of sea level and their relationship to atmospheric forcing along the coasts of the Huanghai Sea and the East China Sea are studied. Spectrum analyses are made for the time series of daily mean sea level, atmospheric pressure and wind stress at seven coastal stations. It is found that at all the stations, the main part of the energy of the sea level fluctuations, within the (2-60)-day period, is concentrated on the (12-60)-day period band and that an obvious spectral peak appears at the 3-day period. Along the coast of the Huanghai Sea, variations in the sea level are greater in winter than in summer. In winter, along the coasts of the Huanghai Sea and the East China Sea there is a kind of sea level fluctuations propagating southwards. Among the many factors causing sea level variation, the most obvious one is atmospheric pressure, followed next by the alongshore wind stress.  相似文献   

14.
北极海域海面风场和海浪遥感观测能力分析   总被引:1,自引:1,他引:0  
杨俊钢  张杰  王桂忠 《海洋学报》2018,40(11):105-115
卫星遥感是开展北极海域海面风场和海浪分布特征与变化规律研究的重要手段。本文基于在轨多源卫星遥感数据,从遥感观测空间覆盖、时间覆盖和多源卫星遥感数据融合等方面开展北极海域海面风场与海浪遥感观测能力分析,研究主要结果为:基于ASCAT和HY-2A散射计可实现北极海域海面风场遥感观测,通过多星联合观测可获取北极海域时空分辨率优于12 h和0.1°的海面风场遥感融合数据;基于HY-2A、CryoSat-2、SARAL和Sentinel-3高度计可实现北极海域海浪遥感观测,同样通过多星联合观测可获取北极海域时空分辨率优于1 d和0.25°的海浪有效波高遥感融合数据;基于2016年北极海面风场和海浪遥感融合数据,分析得出北极海域海面风场和海浪在2月处于极大值,然后逐渐减小,7月最小,随后开始逐渐增大。本研究表明,基于多源散射计和高度计遥感观测可实现北极海域海面风场和海浪的高时空分辨率遥感业务化监测。  相似文献   

15.
Data on the temporal variability of sea wave spectral components in the frequency range 1–8 Hz, collected by a drifting vessel in the Pacific ocean (wind speed 1–10 m/s), are discussed in this paper. For the frequency range 3–6 Hz (wind speed 5–8 m/s), a weak variability of the ripples is observed, synchronous with long waves; in the remaining part of the spectral range studied the fluctuations are fortuitous. It is concluded that the wind plays a crucial role in forming the ripples' fluctuation characteristics in the high-frequency part of the spectrum.Translated by Vladimir A. Puchkin.  相似文献   

16.
Internal gravity wave (IGW) data obtained during the passage of atmospheric fronts over the Moscow region in June–July 2015 is analyzed. IGWs were recorded using a group of four microbarographs (developed at the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences) located at distances of 7 to 54 km between them. Regularities of variations in IGW parameters (spatial coherence, characteristic scales, propagation direction, horizontal propagation velocity, and amplitudes) before, during, and after the passage of an atmospheric front over the observation network, when the observation network finds itself inside the cyclone and outside the front, are studied. The results may be useful in studying the relationships between IGW effects in different physical fields at different atmospheric heights. It is shown that, within periods exceeding 30 min, IGWs are coherent between observation points horizontally spaced at distances of about 60 km (coherence coefficient is 0.6–0.9). It is also shown that there is coherence between wave fluctuations in atmospheric pressure and fluctuations in horizontal wind velocity within the height range 60–200 m. A joint analysis of both atmospheric pressure and horizontal wind fluctuations has revealed the presence of characteristic dominant periods, within which cross coherences between fluctuations in atmospheric pressure and wind velocity have local maxima. These periods are within approximate ranges of 20–29, 37–47, 62–72, and 100–110 min. The corresponding (to these dominant periods) phase propagation velocities of IGWs lie within an interval of 15–25 m/s, and the horizontal wavelengths vary from 52 to 99 km within periods of 35 to 110 min, respectively.  相似文献   

17.
In conventional marine seismic exploration data processing, the sea surface is usually treated as a horizontal free boundary. However, the sea surface is affected by wind and waves and there often exists dynamic small-range fluctuations. These dynamic fluctuations will change the energy propagation path and affect the final imaging results. In theoretical research, different sea surface conditions need to be described, so it is necessary to study the modeling method of dynamic undulating sea surface. Starting from the commonly used sea surface mathematical simulation methods, this paper mainly studies the realization process of simple harmonic wave and Gerstner wave sea surface simulation methods based on ocean wave spectrum, and compares their advantages and disadvantages. Aiming at the shortcomings of the simple harmonic method and Gerstner method in calculational speed and sea surface simulation effect, a method based on wave equation and using dynamic boundary conditions for sea surface simulation is proposed. The calculational speed of this method is much faster than the commonly used simple harmonic method and Gerstner wave method. In addition, this paper also compares the new method with the more commonly used higher-order spectral methods to show the characteristics of the improved wave equation method.  相似文献   

18.
In the satellite synthetic aperture radar (SAR) images of the Bohai Sea and Huanghai Sea, the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km. Comparing SAR observations with sea surface wind fields and surface weather maps, the authors find that the occurrence of the wave-like phenomena is associated with the passing of atmospheric front. The authors define the waves as atmospheric frontal gravity waves. The dynamical parameters of the wave packets are derived from statistics of 9 satellite SAR images obtained from 2002 to 2008. A two-dimensional linear physical wave model is used to analyze the generation mechanism of the waves. The atmospheric frontal wave induced wind variation across the frontal wave packet is compared with wind retrievals from the SAR images. The CMOD-5 (C-band scatterometer ocean geophysical model function) is used for SAR wind retrievals VV (transmitted vertical and received vertical) for ENVISAT and HH (transmitted horizontally and received horizontally) for RADARSAT-1. A reasonable agreement between the analytical solution and the SAR observation is reached. This new SAR frontal wave observation adds to the school of SAR observations of sea surface imprints of AGWs including island lee waves, coastal lee waves, and upstream Atmospheric Gravity Waves (AGW).  相似文献   

19.
Simulation of a storm surge caused by Typhoon 9918 in the Yatsushiro Sea, Kyushu, Japan was hindcasted by the synchronous coupled wind-wave-surge model composed of a Meso-scale meteorological model (MM5) for the wind and sea surface pressure, a spectral third-generation wind-wave model (Wavewatch III) for waves, and the coastal ocean model (Princeton Ocean Model). Inclusion of the whitecap wave breaking stresses (whitecap dissipation stress) in the coastal ocean model made it possible to reproduce the extreme surge height in the extremely shallow bay.  相似文献   

20.
Probability distributions of wave phases in association with distributions of surface elevations arestudied with wave records.Wave records of different nature are used for comparison.These are surface fluc-tuations acquired during wind wave flume experiments,representing wave generation under strong wind:andwave records measured in the northern part of Taiwan for waves in natural environments.Three probabilitymodels,the unifrom distribution,the beta distribution,and a model from Tayfun and Lo(1989)are adoptedto study the possible distributions of wave phases.It is found that when surface elevations become skewed,wave phases deviate from the usually assumed uniform distribution and a better model would be the beta dis-tribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号