首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal coastal upwelling was analyzed along the NW African coastline (11–35°N) from 1981 to 2012. Upwelling magnitudes are calculated by wind speed indices, sea-surface temperature indices and inferred from meteorological station, sea-surface height and vertical water column transport data. A permanent annual upwelling regime is documented across 21–35°N and a seasonal regime across 12–19°N, in accordance with the climatology of previous studies. Upwelling regions were split into three zones: (1) the Mauritania–Senegalese upwelling zone (12–19°N), (2) the strong permanent annual upwelling zone (21–26°N) and (3) the weak permanent upwelling zone (26–35°N). We find compelling evidence in our various indices for the Bakun upwelling intensification hypothesis due to a significant coastal summer wind speed increase, resulting in an increase in upwelling-favorable wind speeds north of 20°N and an increase in downwelling-favorable winds south of 20°N. The North Atlantic Oscillation plays a leading role in modifying interannual variability during the other seasons (autumn–spring), with its influence dominating in winter. The East Atlantic pattern shows a strong correlation with upwelling during spring, while El Niño Southern Oscillation and Atlantic Multi-decadal Oscillation teleconnections were not found. A disagreement between observationally-based wind speed products and reanalysis-derived data is explored. A modification to the Bakun upwelling intensification hypothesis for NW Africa is presented, which accounts for the latitudinal divide in summer wind regimes.  相似文献   

2.
以分析季节对大西洋声传播的影响为研究目的,应用WOA13季节平均数据和Mackenzie声速经验公式,分析了大西洋声道轴和表层声速值的四季分布情况,再利用BELLHOP水声学数值模型,在设定的声源频率1 000 Hz和掠射角15°~-15°情况下,仿真计算选用位置点5 m深度声源的四季声传播情况,研究结果表明:按照实际的季节,大西洋会聚区波导的反转深度,冬季最小,春季增大,夏季最大,秋季再减小.在中低纬度的典型声速剖面下,夏季会聚区跨度最大,秋季和冬季递减,春季最小,第一会聚区的四季跨度差在1 km内.在高纬度的正梯度声速剖面下,夏季声传播距离最远,秋季减小,冬季最近,春季增大,且传播距离的差别较大.各变化规律均以四季循环更替的形式出现.  相似文献   

3.
The paper describes a lidar and presents the results of lidar sensing of the vertical ozone distribution (VOD); the lidar measurements are analyzed together with data from a network of meteorological stations situated along the 132° E meridian. VODs over Primorye and Japan in the winter period are compared. An analysis showed that an interrelation exists between the subtropical jet stream and the structures of VOD and tropopause inversion layer. Specifically, the region of the VOD local maximum above the tropopause is in the upper part of the tropopause inversion layer and the width of the maximum depends on the distance from the core of the subtropical jet stream. It is found that the local ozone minimum in the lower stratosphere corresponds to the local minimum of the squared Brunt-Vaisala frequency within this same altitude range in the winter season, when two tropopauses frequently overlap. It is conjectured that the local ozone maximum and tropopause inversion layer may be associated with mixing processes in the layer where stratospheric and tropospheric circulation cells come into contact near the core of the subtropical jet stream.  相似文献   

4.
Utilizing the 45 a European Centre for Medium-Range Weather Forecasts(ECMWF)reanalysis wave data(ERA-40),the long-term trend of the sea surface wind speed and(wind wave,swell,mixed wave)wave height in the global ocean at grid point 1.5×1.5 during the last 44 a is analyzed.It is discovered that a majority of global ocean swell wave height exhibits a significant linear increasing trend(2–8 cm/decade),the distribution of annual linear trend of the significant wave height(SWH)has good consistency with that of the swell wave height.The sea surface wind speed shows an annually linear increasing trend mainly concentrated in the most waters of Southern Hemisphere westerlies,high latitude of the North Pacific,Indian Ocean north of 30 S,the waters near the western equatorial Pacific and low latitudes of the Atlantic waters,and the annually linear decreasing mainly in central and eastern equator of the Pacific,Juan.Fernandez Archipelago,the waters near South Georgia Island in the Atlantic waters.The linear variational distribution characteristic of the wind wave height is similar to that of the sea surface wind speed.Another find is that the swell is dominant in the mixed wave,the swell index in the central ocean is generally greater than that in the offshore,and the swell index in the eastern ocean coast is greater than that in the western ocean inshore,and in year-round hemisphere westerlies the swell index is relatively low.  相似文献   

5.
《Ocean Modelling》2011,40(3-4):209-219
Meridional shifts of the Gulf Stream (GS) jet on interannual to decadal timescales and the corresponding oceanic changes around the GS are investigated using a near global eddy-resolving ocean model hindcast from 1960 to 2003. The simulated variability in the shifts of the GS jet axis shows good agreement with observations, and lags atmospheric fluctuations characterized by the North Atlantic Oscillation by about 2 years. This lagged response of the GS jet to the atmospheric variations is attributed to the westward propagation of the undulation of the jet axis from 45°W to 75°W, which has a wavelength of about 4000 km and a displacement of 0.5°. The propagation direction and phase speed of about 2.8 cm s−1 are consistent with the thin-jet theory. The shifts of the jet axis in the downstream region are likely induced by wind fluctuations through Ekman convergence over the central North Atlantic. Associated with the northward (southward) shift of the jet axis, sea surface temperature is warming (cooling) around and north of the jet, and the former warming has a deep and meridionally narrow subsurface structure, consistent with the northward shift of the jet. The meridional shifts of the jet accompany coherent meridional shifts of energetic eddy activity regions around the GS. Our numerical results suggest that the GS jet brings the atmospheric signals from the central to the western North Atlantic, and the resultant meridional shift of the jet induces the notable oceanic changes around the GS.  相似文献   

6.
Based on the satellite altimetry dataset of sea level anomalies, the climatic hydrological database World Ocean Atlas-2009, ocean reanalysis ECMWF ORA-S3, and wind velocity components from NCEP/NCAR reanalysis, the interannual variability of Antarctic Circumpolar Current (ACC) transport in the ocean upper layer is investigated for the period 1959–2008, and estimations of correlative connections between ACC transport and wind velocity components are performed. It has been revealed that the maximum (by absolute value) linear trends of ACC transport over the last 50 years are observed in the date-line region, in the Western and Eastern Atlantic and the western part of the Indian Ocean. The greatest increase in wind velocity for this period for the zonal component is observed in Drake Passage, at Greenwich meridian, in the Indian Ocean near 90° E, and in the date-line region; for the meridional component, it is in the Western and Eastern Pacific, in Drake Passage, and to the south of Africa. It has been shown that the basic energy-carrying frequencies of interannual variability of ACC transport and wind velocity components, as well as their correlative connections, correspond to the periods of basic large-scale modes of atmospheric circulation: multidecadal and interdecadal oscillations, Antarctic Circumpolar Wave, Southern Annual Mode, and Southern Oscillation. A significant influence of the wind field on the interannual variability of ACC transport is observed in the Western Pacific (140° E–160° W) and Eastern Pacific; Drake Passage and Western Atlantic (90°–30° W); in the Eastern Atlantic and Western Indian Ocean (10°–70° E). It has been shown in the Pacific Ocean that the ACC transport responds to changes of the meridional wind more promptly than to changes of the zonal wind.  相似文献   

7.
The variability of the New Guinea Coastal Current (NGCC) and New Guinea Coastal Undercurrent (NGCUC) were examined from one year time series of current data from ADCP moorings at 2°S, 142°E and 2.5°S, 142°E. Change in the hydrographic structure induced by monsoonal wind forcing was also examined from hydrographic data along the 142°E covering consecutively two winter seasons and two summer seasons. The westward NGCUC was observed to persist year around. The annual mean depth of the current core was 220 m, the mean speed of the zonal component was 54 cm/s with a standard deviation of 15 cm/s at the 2.5°S site. Velocity fluctuations at 20–30 day period were observed year around. Seasonal reversal of the surface intensified NGCC was clearly observed. In the boreal summer characterized by the southeasterly monsoon, westward currents of over 60 cm/s were dominant in the surface layer. The warm, low-salinity layer thickened at this time and sloped down toward the New Guinea coast from the equator. This surface water accumulation may be caused by onshore Ekman drift at the New Guinea coast, combined with weak Ekman upwelling at the equator. In the boreal winter, an eastward surface current developed to 100 cm/s extending down to 100 m depth in response to the northwesterly monsoonal winds. Coastal upwelling was indicated in this season and the surface water accumulated at the equator due to Ekman convergence. Shipboard ADCP data indicated that the NGCUC intensified in boreal summer as the width and depth of the NGCUC increased.  相似文献   

8.
The paper considers zonal mean (65° S–65° N, with a step of 5°) monthly mean NCEP/DOE reanalysis data on zonal wind and temperature at levels of 20 to 100 mb and the TOMS data of version 8 on total ozone (TO) for the period 1979–2005. The results of calculating linear-trend coefficients, correlation coefficients, and characteristic decay times and the data of spectral analysis are presented. In recent decades, the decrease in TO and the cooling of the lower stratosphere were accompanied by a weakening of the westerly wind. For deseasonalized series, the significance of their linear trends are evaluated with the use of the Monte Carlo method and it is shown that TO trends are significant at a level of 0.99 in extratropical latitudinal zones and that temperature trends are significant everywhere except in a narrow equatorial zone and in latitudes south of 50° S, whereas wind trends are significant only at a 50-mb level in the latitudinal belt 30°–50° in both hemispheres. According to the results of spectral analysis, for the majority of latitudinal zones, a triplet in the range of quasibiennial oscillations and oscillations with periods of about 4–6 and 9–13 years manifest themselves most persistently in the series of temperature, wind, and TO. Maximum correlation coefficients of the series of TO, wind, and temperature are observed over the equator, and, depending on altitude and latitude, TO variations may lag or lead temperature and wind variations in phase. Latitudinal distributions of characteristic decay times show an increase in this parameter in tropical and equatorial zones and its opposite behavior with altitude for temperature and wind fields.  相似文献   

9.
利用调查数据及遥感数据揭示了2013年南沙群岛海域温跃层的季节变化特征,温跃层上界深度平均值春、夏、冬季基本一致,介于45~47 m之间,秋季最大,达60 m;温跃层厚度平均值夏、秋、冬季基本一致,介于85~87 m之间,春季相对较小,为78 m。温跃层强度平均值春、夏、秋、冬季几乎一致,介于0.13~0.15℃/m之间。调查海域温跃层上界深度季节变化的形成机理为:春季西深东浅的原因是西部受净热通量较小、大风速、负的风应力旋度以及中南半岛东部外海的中尺度暖涡和反气旋环流共同作用,东部近岸海域净热通量高值、风速相对较小及风应力旋度引起的Ekman抽吸效应共同控制;夏季深度分布较均匀的原因是10°N以北风致涡动混合强但受Ekman抽吸影响,10°N以南风致涡动混合弱但风应力旋度为负值;秋季深度较其他季节平均加深15 m的原因是南沙群岛海域被暖涡占据,暖涡引起的反气旋式环流使得温跃层上界深度被海水辐聚下压;冬季正的风应力旋度产生的Ekman抽吸和冷涡引起的气旋式环流共同作用,使得温跃层上界深度较秋季平均抬升15 m。  相似文献   

10.
本文使用基于热成风速度的涡旋识别拓展方法,通过海表面温度数据对黑潮延伸体区域50-100公里涡旋进行研究,发现50-100公里涡旋主要分布在黑潮延伸体流轴两侧,气旋涡和反气旋涡的寿命、半径分布具有一致性。气旋涡多出现在35°N以北,反气旋涡在35°N以南比较集中,与尺度较小的中尺度涡旋分布特征较为相似。冬夏两季涡旋地理分布存在一定差异,主要与不同季节该区域海表温度梯度及风应力旋度的变化有关。35°N以南50-100公里涡旋数量的季节性变化与风速大小的季节性变化存在明显的正相关性。35°N以南50-100公里涡旋三倍半径内风速异常和风应力旋度归一化表明,气旋涡对应风速负异常而反气旋涡对应风速正异常,反气旋涡的产生依赖于风应力负旋度,气旋涡的生成与风应力正旋度有关。  相似文献   

11.
The dynamic importance of the Southern Indian Ocean (SIO) lies in the fact that it connects the three major world oceans: the Pacific, Atlantic, and Indian Oceans. Modeling study has been used to understand the circulation pattern of this very important region. Simulation of SIO (10°N–60°S and 30°E–120°E) is performed with z-coordinate Ocean General Circulation Model (OGCM) viz; MOM3.0 and the results have been compared with observed ship drift data. It is found that except near coastal boundaries and in equatorial region, the simulated current reproduce most well known current pattern such as Antarctic Circumpolar Current (ACC), South Equatorial Current (SEC) etc. and bears a resemblance to that of the observed data; however the magnitude of the surface current is weaker in model than the observed data, which may be due to deficiency in the forcing field and boundary condition and problem with observed data. The annual mean wind stress curl computed over the oceanic domain reveals about ACC and its similar importance. The way in which the ocean responds to the windstress and vertically integrated transport using model output is fascinating and rather good.  相似文献   

12.
The Yellow Sea Cold Water Mass(YSCWM) is one of the important water mass in the Yellow Sea(YS).It is distributed in the lower layer in the Yellow Sea central trough with the temperature less than 10 C and the salinity lower than 33.0.To understand the variability of the YSCWM,the hydrographic data obtained in April and August during 2009–2011 are analyzed in the southeastern Yellow Sea.In August 2011,relatively warm and saline water compared with that in 2009 and 2010 was detected in the lower layer in the Yellow Sea central area.Although the typhoon passed before the cruise,the salinity in the Yellow Sea central trough is much higher than the previous season.It means that the saline event cannot be explained by the typhoon but only by the intrusion of saline water during the previous winter.In April 2011,actually,warm and saline water(T >10 C,S >34) was observed in the deepest water depth of the southeastern area of the Yellow Sea.The wind data show that the northerly wind in 2011 winter is stronger than in 2009 and 2010 winter season.The strong northerly wind can trigger the intrusion of warm and saline Yellow Sea Warm Current.Therefore,it is proposed that the strong northerly wind in winter season leads to the intrusion of the Yellow Sea Warm Current into the Yellow Sea central trough and influenced a variability of the YSCWM in summer.  相似文献   

13.
The surface area and volume densities (S and V) of the particles of stratospheric background aerosol in the 15–20 km and 20–25 km layers for 2002–2005 were obtained from measurements of the aerosol extinction coefficient with the SAGE III instrument by using the linear-regression method of solving the inverse problem. The measurements were taken within the latitudinal belts 43°–80°N and 34°–58°S. The spatial and temporal dependences of S and V demonstrate homogeneous distribution fields in summer, whereas noticeable inhomogeneities are observed in winter and early spring. In all years of the measurements, an increase in the integral characteristics of stratospheric background aerosol was observed during the fall-to-winter transition period. Longitudinal variations in S and V can be both slight and significant (50–70%). Analysis of the interannual variability of the mean areas and volumes of aerosol particles shows that their minima (as a rule) were observed in 2002 and their maxima were observed in 2005. In most of the cases, no monotonic annual variations in the aerosol characteristics are noted. The dependence of the aerosol parameters on the phase of the quasi-biennial oscillations of zonal wind in the stratosphere is observed. The data obtained for 2002–2005 are, on the whole, in good agreement with the climatological data obtained for 1996–1999.  相似文献   

14.
The seasonal variability of the carbon dioxide (CO2) system in the Southern Ocean, south of 50°S, is analysed from observations obtained in January and August 2000 during OISO cruises conducted in the Indian Antarctic sector. In the seasonal ice zone, SIZ (south of 58°S), surface ocean CO2 concentrations are well below equilibrium during austral summer. During this season, when sea-ice is not obstructing gas exchange at the air–sea interface, the oceanic CO2 sink ranges from −2 to −4 mmol/m2/d in the SIZ. In the permanent open ocean zone, POOZ (50–58°S), surface oceanic fugacity fCO2 increases from summer to winter. The seasonal fCO2 variations (from 10 to 30 μatm) are relatively low compared to seasonal amplitudes observed in the subtropics or the subantarctic zones. However, these variations in the POOZ are large enough to cross the atmospheric level from summer to winter. Therefore, this region is neither a permanent CO2 sink nor a permanent CO2 source. In the POOZ, air–sea CO2 fluxes calculated from observations are about −1.1 mmol/m2/d in January (a small sink) and 2.5 mmol/m2/d in August (a source). These estimates obtained for only two periods of the year need to be extrapolated on a monthly scale in order to calculate an integrated air–sea CO2 flux on an annual basis. For doing this, we use a biogeochemical model that creates annual cycles for nitrate, inorganic carbon, total alkalinity and fCO2. The changing pattern of ocean CO2 summer sink and winter source is well reproduced by the model. It is controlled mainly by the balance between summer primary production and winter deep vertical mixing. In the POOZ, the annual air–sea CO2 flux is about −0.5 mol/m2/yr, which is small compared to previous estimates based on oceanic observations but comparable to the small CO2 sink deduced from atmospheric inverse methods. For reducing the uncertainties attached to the global ocean CO2 sink south of the Polar Front the regional results presented here should be synthetized with historical and new observations, especially during winter, in other sectors of the Southern Ocean.  相似文献   

15.
A comparison of monthly wind stress derived from winds of NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis and UWM/COADS (The University of Wisconsin-Milwaukee/Comprehensive Ocean-Atmosphere Data Set) dataset (1950–1993), and of NCEP/NCAR reanalysis and satellite-based QuikSCAT dataset (2000–2006), is made over the South Atlantic (10°N–40°S). On a mean seasonal scale, the comparison shows that these three wind stress datasets have qualitatively similar patterns. Quantitatively, in general, from about the equator to 20°S in the mid-Atlantic the wind stress values are stronger in NCEP/NCAR data than those in UWM/COADS data. On the other hand, in the Intertropical Convergence Zone (ITCZ) area the wind stress values in NCEP/NCAR data are slightly weaker than those in UWM/COADS data. In the South Atlantic, between 20° S–40°S, the QuikSCAT dataset presents complex circulation structures which are not present in NCEP/NCAR and UWM/COADS data. The wind stress is used in a numerical ocean model to simulate ocean currents, which are compared to a drifting-buoy observed climatology. The modeled South Equatorial Current agrees better with observations between March–May and June–August. Between December–February, the South Equatorial Current from UWM/COADS and QuikSCAT experiments is stronger and more developed than that from NCEP/NCAR experiment. The Brazil Current, in turn, is better represented in the QuikSCAT experiment. Comparison of the annual migration of ITCZ at 20° and 30°W in UWM/COADS and NCEP/NCAR data sources show that the southernmost position of ITCZ at 30°W in February, March and April coincides with the rainy season in NE Brazil, while the northernmost position of ITCZ at 20°W in August coincides with the maximum rainfall of Northwest Africa.  相似文献   

16.
基于Argo数据的吕宋海峡东部海域的会聚区特征分析   总被引:2,自引:0,他引:2  
利用2010-2013年的Argo浮标观测资料,对吕宋海峡东部海域(19°~23°N,123~127°E)的会聚区特征进行综合分析。研究结果如下:(1)吕宋海峡东部海域4个季节表面的声速从大至小依次为夏季、秋季、春季和冬季,夏季最大为1 543.5m/s,冬季最小为1 533.4m/s;混合层深度从大到小依次为冬季、秋季、春季和夏季;(2)采用WOA13气候态数据对声速剖面进行深海延拓,获得全海深的声速剖面,分析4个季节的声道特征。声道轴深度和声速较为稳定,声道轴深度在1 000~1 040m之间,声道轴处的声速为1 482m/s,4个季节的平均声道厚度都超过4 500m,利于会聚区形成;(3)研究区较易发生会聚现象,发生会聚现象概率高于50%的占70.6%;会聚现象的发生概率季节变化明显,春季、冬季极易发生声场的会聚现象,夏季最小;(4)运用RAMGeo声场模型对研究区4个季节的声传播损失进行仿真,分析会聚区的季节变化特征。当声源深度100m,接收深度10m时,第一会聚区,离声源的距离在61~64km左右,夏季离声源最近,春、冬季较远;会聚区宽度上,夏季最宽为10km,春季最窄为4.6km;会聚区增益分布特点与会聚区宽度刚好相反,春季最大为14.6dB,夏季最小为8.5dB。  相似文献   

17.
The spatial structure of surface air temperature (SAT) anomalies in the extratropical latitudes of the Northern Hemisphere (NH) during the 20th century is studied from the data obtained over the period 1892–1999. The expansion of the mean (over the winter and summer periods) SAT anomalies into empirical orthogonal functions (EOFs) is used for analysis. It is shown that variations in the mean air temperature in the Arctic region (within the latitudes 60°–90°N) during both the winter and summer periods can be described with a high accuracy by two spatial orthogonal modes of variability. For the winter period, these are the EOF related to the leading mode of variability of large-scale atmospheric circulation in the NH, the North Atlantic Oscillation, and the spatially localized (in the Arctic) EOF, which describes the Arctic warming of the mid-20th century. The expansion coefficient of this EOF does not correlate with the indices of atmospheric circulation and is hypothetically related to variations in the area of the Arctic ice cover that are due to long-period variations in the influx of oceanic heat from the Atlantic. On the whole, a significantly weaker relation to the atmospheric circulation is characteristic of the summer period. The first leading variability mode describes a positive temperature trend of the past decades, which is hypothetically related to global warming, while the second leading EOF describes a long-period oscillation. On the whole, the results of analysis suggest a significant effect of natural climatic variability on air-temperature anomalies in the NH high latitudes and possible difficulties in isolating an anthropogenic component of climate changes.  相似文献   

18.
Surface distribution and seasonal variation of alkalinity and specific alkalinity in Kuroshio area of the East ChinaSea and their application to the water mass tracing are discussed in this paper. Results show a distinct seasonal variation of the alkalinity, which is concerned with the process of vertical mixing. Different specific alkalinity in various water masses has been found. On the basis of the difference of the specific alkalinity and the distribution of alkalinity, two water fronts in summer season, located at 27°-30°N and 124°-1 27°E, (Ⅰ), and at the northern waters about one latitude from the Taiwan Island, (Ⅱ); one in winter season at about one longitude from coast of mainland of China and 26°-30°N were found. In summer season, about 1-2 longitudes eastward shift of front (Ⅰ) is found by comparison of data in May and August. And the high alkalinity of the northern East China Sea in summer season may be caused by the Huanghe River runoff flowing southward along with the Huanghai Sea  相似文献   

19.
东中国海环流及其季节变化的数值模拟   总被引:1,自引:0,他引:1  
关于东中国海环流的研究,国内外学者已做了大量的工作。早期科学家们主要依赖于对温盐资料和少数测流资料的分析研究对渤、黄、东海的环流结构有了较系统和深入的认识。东中国海环流是由一个气旋式的“流涡”组成,东侧主要是北上的黑潮-对马暖流-黄海暖流及其延伸部分;西侧为南下的沿岸流系。黑潮对东中国海环流的影响是如此之大,以致于除了某些局部区域外,上述海域主要流系的冬、夏季分布形式比较相似而无本质上的差异(胡敦欣等,1993)。但本文所研究海域正处于世界上最显著的季风区,冬、夏季盛行风向基本相反,过渡季节(春、秋季)风向多变,风力减弱;海洋热盐结构季节变化明显(如冬季混合强,而夏季层化明显等),这些因素都使得东中国海环流存在着较明显的季节变化。 自20世纪80年代以来,东中国海环流的数值模拟工作逐步展开,并已成为研究环流结构及其形成机制的强有力工具。但由于数值模式本身以及计算方案的缺陷(如有些学者用固定的风场、温盐场对东中国海环流进行诊断模拟等)和观测资料的不足,数值模拟的结果难以得到验证,渤、黄、东海的环流研究中仍有大量的问题存在争议,以待澄清。例如,台湾暖流的来源、流径;对马暖流的来源;夏季黄海暖流的流径以及黄海冷水团环流等均有不同的论述。对黄、东海环流季节变化的数值模拟工作也较少,多用冬、夏典型月份的风场强迫积分至稳定态,给出冬、夏季环流,这种做法值得商榷。三维环流模式很难在1个月内达到稳定态,尤其是夏季层化明显、风力减弱的情况下,非常定风场的影响更应引起人们的重视。 本文采用比较符合实际的计算方案,用年循环风场和海面热通量场为外强迫,对渤、黄、东海的环流及其季节变化进行了模拟,并对一些争议问题进行了探讨。  相似文献   

20.
詹国能 《台湾海峡》1996,15(4):352-356
本文应用任意3a中850hPa上的风及500hPa和地面气象资料,对台湾海峡地区出现低空急流的天气气候特征,形成急流的天气背景及其影响下的天气进行初步分析。结果表明,台湾海峡地区850hPa低空急流具有明显的季风特征和特定的地理影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号