首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonlinear propagation of acoustic pulses from a point source of an explosive character (surface explosion or volcano) throughout the atmosphere with stratified wind-velocity and temperature inhomogeneities is studied. The nonlinear distortions of acoustic pulse and its transformation into an N-wave during its propagation to the upper atmosphere are analyzed in the context of a modified Burgers’ equation which takes into account a geometric ray-tube divergence simultaneously with an increase in both nonlinear and dissipative effects with height due to a decrease in atmospheric density. The problem of reflection of a spherical N-wave from an atmospheric inhomogeneous layer with model vertical wind-velocity and temperature fluctuations having a vertical spectrum that is close to that observed within the middle atmosphere is considered. The relation between the parameters (form, length, frequency spectrum, and intensity) of signals reflected from an atmospheric inhomogeneous layer and the parameters of the atmospheric fine layered structure at reflection heights is analyzed. The theoretically predicted forms of signals reflected from stratified inhomogeneities within the stratosphere and the lower thermosphere are compared to the observed typical forms of both stratospheric and thermospheric arrivals from surface explosions and volcanoes in the zones of an acoustic shadow.  相似文献   

2.
A model of anisotropic fluctuations forming in wind velocity and air temperature in a stably stratified atmosphere is described. The formation mechanism of these fluctuations is associated with the cascade transport of energy from sources of atmospheric gravity waves to wave disturbances with shorter vertical scales (than the scales of the initial disturbances generated by the sources) and, at the same time, with longer horizontal scales. This model is used to take into account the effects of infrasonic-wave scattering from anisotropic inhomogeneities of the effective sound speed in the atmosphere. Experimental data on the stratospheric, mesospheric, and thermospheric arrivals of signals (generated by explosion sources such as surface explosions and volcanoes) in the zones of acoustic shadow are interpreted on the basis of the results of calculations of the scattered infrasonic field in the context of the parabolic equation. The signals calculated with consideration for the fine structure of wind velocity and air temperature are compared with the signals observed in a shadow zone. The possibility to acoustically sound this structure at heights of both the middle and upper atmospheres is discussed.  相似文献   

3.
Nonlinear effects manifested in infrasonic signals passing through different atmospheric heights and recorded in the region of a geometric shadow have been studied. The source of infrasound was a surface explosion equivalent to 20–70 t of TNT. The frequencies of the spectral maxima of infrasonic signals, which correspond to the reflections of acoustic pulses from atmospheric inhomogeneities at different heights within the stratosphere-mesosphere-lower thermosphere layer, were calculated using the nonlinear-theory method. A satisfactory agreement between experimental and calculated data was obtained.  相似文献   

4.
A wave theory of propagation of an acoustic pulse in a moving stratified atmospheric layer above the ground with a finite impedance of an underlying ground surface is developed. The shapes of acoustic signals in a near-ground atmospheric waveguide, which are formed due to temperature inversion and a vertical shear of the wind velocity, are calculated based on this theory. These signals are compared with those measured during the experiments where vertical profiles of the wind velocity and temperature in an atmospheric boundary layer have been continuously controlled using a sodar, a temperature profile meter, and acoustic anemometers or thermometers mounted on a 56-meter-high mast. The joint action of a near-ground acoustic waveguide, the impedance of the underlying surface, and a vertical layered structure of the boundary atmospheric layer on a signal shape far from the acoustic source are studied.  相似文献   

5.
This paper provides an overview of the experimental goals and methods of the Long-range Ocean Acoustic Propagation EXperiment (LOAPEX), which took place in the northeast Pacific Ocean between September 10, 2004 and October 10, 2004. This experiment was designed to address a number of unresolved issues in long-range, deep-water acoustic propagation including the effect of ocean fluctuations such as internal waves on acoustic signal coherence, and the scattering of low-frequency sound, in particular, scattering into the deep acoustic shadow zone. Broadband acoustic transmissions centered near 75 Hz were made from various depths to a pair of vertical hydrophone arrays covering 3500 m of the water column, and to several bottom-mounted horizontal line arrays distributed throughout the northeast Pacific Ocean Basin. Path lengths varied from 50 km to several megameters. Beamformed receptions on the horizontal arrays contained 10–20-ms tidal signals, in agreement with a tidal model. Fifteen consecutive receptions on one of the vertical line arrays with a source range of 3200 km showed the potential for incoherent averaging. Finally, shadow zone receptions were observed on an ocean bottom seismometer at a depth of 5000 m from a source at 3200–250-km range.   相似文献   

6.
Abstract

It is desired to track the location of an underwater data collecting platform using acoustic range data. A long‐range and high‐resolution acoustic system for underwater locating has been investigated. The system provides continuous and highly accurate tracking of a platform referenced to bottom‐mounted buoys. Each reference buoy contains an acoustic transponder, which is used to obtain ranging data from the transponder to the platform. The transponder has a signal source that is phase‐modulated by a maximal‐length binary sequence and a correlation processing unit to be capable of detecting received acoustic signals with high SNR in a noisy environment or in attenuation due to long‐range propagation, and to identify multipath acoustic signals. The acoustic system has been designed and sea tests tried. The results of that experiment have yielded capability of a submeter underwater acoustic positioning system.  相似文献   

7.
Results of acoustic sounding of the lower troposphere with the aid of detonation generators of acoustic pulses are given. This sounding method is based on a partial reflection of acoustic pulses with shock fronts from vertical wind-velocity and temperature gradients continuously varying with height in the troposphere and on the penetration of reflected signals into the region of acoustic shadow. Experiments on tropospheric sounding were carried out on the ground of the Barva Innovation Scientific and Technical Center (Talin, Armenia) in September 2015. In these experiments, an antihail acoustic system was first used as a generator of acoustic pulses. Experimental results have been compared with data obtained earlier in similar experiments carried out in the vicinity of Zvenigorod with the use of a special detonation generator of acoustic pulses. Due to the high resolution (in height) of the sounding method, which reaches 1 m in the stably stratified lower troposphere within a height range of 250–600 m, the vertical profiles of layered effective sound speed inhomogeneities with vertical scales from a few to a few tens of meters have been retrieved. The influence of these fluctuations on the form and amplitude of acoustic signals at a long distance from their pulsed source has been studied.  相似文献   

8.
The results of studying variations in the fine layered structure of the upper atmosphere (heights of 20–140 km) according to data obtained from acoustic sounding within the range of infrasonic waves are given. The sources of infrasounds were surface explosions equivalent to 10 kg to 70 t of TNT. These explosions were set off in different seasons in different regions of Russia. Experimental data obtained in 1981–2011 have been analyzed. It has been found that the fine structure in the form of vertically distributed layered formations occurs in the upper atmosphere in all seasons. Moreover, the vertical distribution of both air-temperature and wind-velocity inhomogeneities in the upper atmosphere may be invariable over a time interval of no less than several hours. It has also been found that, throughout the entire atmospheric thickness from the stratopause to the lower thermosphere heights (up to 140 km), the instantaneous height distribution of layered air-temperature and wind-velocity inhomogeneities may remain almost unchanged during a time interval of no less than 20 min.  相似文献   

9.
This paper presents results of combined consideration of sound coherence and array signal processing in long-range deep-water environments. Theoretical evaluation of the acoustic signal mutual coherence function (MCF) of space for a given sound-speed profile and particular scattering mechanism is provided. The predictions of the MCF are employed as input data to investigate the coherence-induced effects on the horizontal and vertical array gains associated with linear and quadratic beamformers with emphasis on the optimal ones. A method of the radiation transport equation is developed to calculate the MCF of the multimode signal under the assumption that internal waves or surface wind waves are the main source of long-range acoustic fluctuations in a deep-water channel. Basic formulations of the array weight vectors and small signal deflection are then exploited to examine optimal linear and quadratic processors in comparison with plane-wave beamformers. For vertical arrays, particular attention is paid also to evaluation of the ambient modal noise factor. The numerical simulations are carried out for range-independent environments from the Northwest Pacific for a sound frequency of 250 Hz and distances up to 1000 km. It was shown distinctly that both signal coherence degradation and modal noise affect large-array gain, and these effects are substantially dependent on the processing technique used. Rough surface sound scattering was determined to cause the most significant effects  相似文献   

10.
The profiles of absolute current velocity obtained by using a lowered acoustic doppler current profiler (LADCP) are presented. In the course of the BSERP-3 expedition, the measurements were carried out in the regions of the Rim Current, anticyclonic eddy, and northwest shelf. In the core of the Rim Current, a unidirectional motion of waters is traced in layers below the main pycnocline down to depths greater than 500 m. Its characteristic velocity can be as high as 0.08 m/sec. It is shown that the direct action of the eddy is detected in the shelf region at distances larger than 20 km from the outer edge of the shelf in the zone bounded by an isobath of 100 m. The formation of multilayer vertical structures in the field of current velocities is revealed in the region of interaction of the anticyclonic eddy with irregularities of the bottom on the side of the shelf. A two-layer structure of currents with specific features in the layer of formed seasonal pycnocline is observed in the region of the shelf down to an isobath of 100 m. The profiles of the moduli of vertical shears of currents averaged over the casts ensemble are presented for the abyssal and shelf parts of the sea. It is shown that the shears induced by the geostrophic currents and wave processes in the region of the main pycnocline are comparable. Below the pycnocline, the shears are mainly determined by the wave processes. Translated from Morskoi Gidrofizicheskii Zhurnal, No. 6, pp. 25–37, November–December, 2008.  相似文献   

11.
Internal gravity wave (IGW) data obtained during the passage of atmospheric fronts over the Moscow region in June–July 2015 is analyzed. IGWs were recorded using a group of four microbarographs (developed at the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences) located at distances of 7 to 54 km between them. Regularities of variations in IGW parameters (spatial coherence, characteristic scales, propagation direction, horizontal propagation velocity, and amplitudes) before, during, and after the passage of an atmospheric front over the observation network, when the observation network finds itself inside the cyclone and outside the front, are studied. The results may be useful in studying the relationships between IGW effects in different physical fields at different atmospheric heights. It is shown that, within periods exceeding 30 min, IGWs are coherent between observation points horizontally spaced at distances of about 60 km (coherence coefficient is 0.6–0.9). It is also shown that there is coherence between wave fluctuations in atmospheric pressure and fluctuations in horizontal wind velocity within the height range 60–200 m. A joint analysis of both atmospheric pressure and horizontal wind fluctuations has revealed the presence of characteristic dominant periods, within which cross coherences between fluctuations in atmospheric pressure and wind velocity have local maxima. These periods are within approximate ranges of 20–29, 37–47, 62–72, and 100–110 min. The corresponding (to these dominant periods) phase propagation velocities of IGWs lie within an interval of 15–25 m/s, and the horizontal wavelengths vary from 52 to 99 km within periods of 35 to 110 min, respectively.  相似文献   

12.
We consider long barotropic waves in a system of two rectangular basins connected by a channel in the case where waves are generated by the moving region of disturbances of atmospheric pressure passing above one of the basins. By using a numerical model, we compute the characteristics of the wave process for various values of the parameters of this system. The results of numerical calculations are compared with the corresponding characteristics obtained for the case of a closed basin. We also analyze the distinctive features of long-wave processes induced in the presence of the channel. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

13.
李焜  方世良 《海洋工程》2015,29(1):105-120
The conventional matched field processing (MFP) uses large vertical arrays to locate an underwater acoustic target. However, the use of large vertical arrays increases equipment and computational cost, and causes some problems such as element failures, and array tilting to degrade the localization performance. In this paper, the matched field localization method using two-hydrophone is proposed for underwater acoustic pulse signals with an unknown emitted signal waveform. Using the received signal of hydrophones and the ocean channel pulse response which can be calculated from an acoustic propagation model, the spectral matrix of the emitted signal for different source locations can be estimated by employing the method of frequency domain least squares. The resulting spectral matrix of the emitted signal for every grid region is then multiplied by the ocean channel frequency response matrix to generate the spectral matrix of replica signal. Finally, the matched field localization using two-hydrophone for underwater acoustic pulse signals of an unknown emitted signal waveform can be estimated by comparing the difference between the spectral matrixes of the received signal and the replica signal. The simulated results from a shallow water environment for broadband signals demonstrate the significant localization performance of the proposed method. In addition, the localization accuracy in five different cases are analyzed by the simulation trial, and the results show that the proposed method has a sharp peak and low sidelobes, overcoming the problem of high sidelobes in the conventional MFP due to lack of the number of elements.  相似文献   

14.
对黄岛试验区实测数据进行最小二乘平差和抗差估计解算,结果表明,对于10km以内的跨海距离,基于三角高程测量的跨海正常高程传递精度为2mm/km,达到二等水准的要求.基于三角高程测量的跨海正常高差与直接观测的水准高差和EGM08模型的计算高差互差均小于3mm/km,与天文重力水准计算的高差互差为5mm/km.  相似文献   

15.
A possible approach to, and preliminary results of, amplitude calibration of acoustic signals backscattered from an ADCP moored at the bottom of the near-shelf zone of the Black Sea is considered. The aim of this work is to obtain vertical profiles of acoustic scattering signal levels, showing the real characteristics of the volume content of suspended sediments in sea water in units of conventional acoustic turbidity for a given signal frequency. In this case, the assumption about the intervals of maximum acoustic transparency and vertical homogeneity of the marine environment in long-term series of ADCP measurements is used. According to this hypothesis, the intervals of the least values of acoustic backscattered signals are detected, an empirical transfer function of the ADCP reception path is constructed, and it is calibrated. Normalized sets of acoustic backscattered signals relative to a signal from a level of conventionally clear water are obtained. New features in the behavior of vertical profiles of an acoustic echo-signal are revealed due to the calibration. The results of this work will be used in subsequent analysis of the vertical and time variations in suspended sediment content in the near-shelf zone of the Black Sea.  相似文献   

16.
Using the phenomenon of the partial reflection of acoustic waves from anisotropic wind-velocity and temperature inhomogeneities in the lower troposphere is justified in determining the structure of these inhomogeneities. The data (obtained with the method of bistatic acoustic sounding) on signals reflected from stratified inhomogeneities in the lower 600-m layer of the troposphere are given. A detonation-type pulsed acoustic source was used. The methods of isolating a small (in amplitude) reflected signal against the background of noise and determining the reflecting-layer height and the partial-reflection coefficient from the measured parameters (time delay and amplitude) of a reflected signal are presented. The method of estimating the vertical gradients of the effective sound speed and the squared acoustic refractive index from the partial-reflection coefficient previously calculated is described on the basis of an Epstein transition-layer model. The indicated parameters are experimentally estimated for concrete cases of recording reflected signals. A comparison of our estimates with independent analogous data simultaneously obtained for the same parameters with monitoring instruments (a sodar and a temperature profiler) has yielded satisfactory results.  相似文献   

17.
The results of experiments on the physical modeling of long-range infrasonic propagation in the atmosphere are given. Such modeling is based on the possible coincidence between the forms of the vertical profiles of the effective sound speed stratification in the atmospheric boundary layer (between 0 and 600 m for the case under consideration) and in the atmosphere as a whole (from the land surface up to thermospheric heights (about 150 km)). The source of acoustic pulses was an oscillator of detonation type. Owing to the detonation of a gas mixture of air (or oxygen) and propane, this generator was capable of producing short, powerful (the maximum acoustic pressure was on the order of 30 to 60 Pa at a distance of 50 to 100 m from the oscillator), and sufficiently stable acoustic pulses with a spectral maximum at frequencies of 40 to 60 Hz and a pulsing period of 20 to 30 s. The sites of acoustic-signal recording were located at different distances (up to 6.5 km) from the source and in different azimuthal directions. The temperature and wind stratifications were monitored in real time during the experiments with an acoustic locator—a sodar—and a temperature profiler. The data on the physical modeling of long-range sound propagation in the atmosphere are analyzed to verify the physical and mathematical models of predicting acoustic fields in the inhomogeneous moving atmosphere on the basis of the parabolic equation and the method of normal waves. A satisfactory agreement between calculated and experimental data is obtained. One more task was to compare the theoretical relations between variations in the azimuths and angles of tilting of sound rays about the horizon and the parameters of anisotropic turbulence in the lower troposphere and stratosphere with the experimental data. A theoretical interpretation of the experimental results is proposed on the basis of the theory of anisotropic turbulence in the atmosphere. The theoretical and experimental results are compared, and a satisfactory agreement between these results is noted.  相似文献   

18.
Two numerical experiments on reconstructing velocity fields, sea level, temperature, and salinity were conducted with account for real atmospheric forcing in autumn 2007 using the Marine Hydrophysical Institute (MHI) hydrodynamic model with an open boundary (northwestern shelf) adjusted to the coastal region of the Black Sea. A high spatial resolution of 500 m and 1.6 km was used, while the bottom topography had a resolution of ~1.6 km. The higher spatial resolution made it possible to reconstruct detailed mesoscale and submesoscale structures of the hydrophysical fields in the upper and deep layers over the northwestern shelf and to obtain quantitative and qualitative characteristics of eddies and jets that are more accurate compared to previous calculations. It was shown that improvement of the spatial resolution up to a few hundred meters makes it possible to take into account the detailed bottom topography and shape of the coastline in the numerical model, which in turn yields a more accurate quantitative and qualitative reconstruction of the mesoscale and submesoscale properties of coastal circulation.  相似文献   

19.
The Mandovi–Zuari estuarine network on the west coast of India consists of shallow strongly converging channels, that receive large seasonal influx of fresh water due to the monsoons. The main channels, the Mandovi and Zuari estuaries, connect the network to the Arabian Sea. Observations show that tidal amplitude in the channels remains unchanged over large distances (|mS40 km) from the mouths of the main channels and then decays rapidly over approximately 10 km near the head. To understand the dynamics behind this behaviour, a numerical model for tidal propagation has been used that simulates the observed tidal elevations well. Momentum balance in the model is predominantly between pressure gradient and friction. In the region of undamped propagation, the model behaviour is consistent with the theory that geometric amplification balances frictional decay leaving the tide unchanged. This balance breaks down near the upstream end, where channels are narrowest, and mean velocity associated with freshwater influx is sufficiently large to prevent upstream propagation of tide. This leads to rapid decay in tidal amplitude. The model also shows that the mean water-level rises in the upstream direction, in the region of the decay.  相似文献   

20.
Nonlinear internal waves are a common event on the continental shelf. The waves depress the high-gradient region of the thermocline and thicken the surface mixed layer with consequent effect on acoustic propagation. After the waves have passed, it may take several hours for the thermocline to rise to its prewave level. To examine the effect of the rising thermocline, oceanographic and acoustic data collected during the 2006 Shallow Water Experiment (SW06) are analyzed. Midfrequency acoustic data (1.5–10.5 kHz) taken for several hours at both fixed range (550 m) and along a tow track (0.1–8.1 km) are studied. At the fixed range, the rising thermocline is shown to increase acoustic intensity by approximately 5 dB . Along the tow track, the transmission loss changes 2 dB for a source–receiver pair that straddles the thermocline. Using oceanographic moorings up to 2.2 km away from the acoustic receiver, a model for the rising thermocline is developed. This ocean model is used as input to a broadband acoustic model. Results from the combined model are shown to be in good agreement with experimental observation. The effects on acoustic signals are shown to be observable, significant, and predictable.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号