首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mesozooplankton (>200 μm) grazing impact (% phytoplankton standing crop consumed d−1) was determined by the gut fluorescence method during three springs (2000, 2001 and 2002) and two winters (2002 and 2003) in a coastal upwelling region off northern California. Wind events, in terms of both magnitude and duration, varied inter-annually and seasonally and included both upwelling-favorable and relaxation events. Grazing impact of mesozooplankton also varied inter-annually and seasonally, and was highest during June 2000 (mean=129% of standing crop d−1), a prolonged period of wind “relaxation” and phytoplankton bloom. In contrast, mean grazing impact was lower during periods of stronger, more persistent winds, more active upwelling, greater cross-shelf transport, and lower chlorophyll concentration (25% and 38% in May–June 2001 and 2002, respectively). Wintertime conditions (January 2002 and 2003) were characterized by weakly upwelling or downwelling-favorable winds, low chlorophyll concentration, and lower mean mesozooplankton grazing impact (13% and 12%, respectively). The larger (>500 μm) size class contributed proportionally more to total mesozooplankton (>200 μm) grazing impact than the smaller (200–500 μm) size class during all sampling periods except spring 2002. These results suggest that mesozooplankton grazing impact is higher in spring than in winter, and that during the spring upwelling season, grazing is higher during periods of wind relaxation (weak upwelling) than during periods of stronger upwelling. Further, these results suggest an important role of mesozooplankton grazers on phytoplankton dynamics in the upwelling region off northern California.  相似文献   

2.
In contrast with the marine reaches of estuaries, few studies have dealt with zooplankton grazing on phytoplankton in the upper estuarine reaches, where freshwater zooplankton species tend to dominate the zooplankton community. In spring and early summer 2003, grazing by micro- and mesozooplankton on phytoplankton was investigated at three sites in the upper Schelde estuary. Grazing by mesozooplankton was evaluated by monitoring growth of phytoplankton in 200 μm filtered water in the presence or absence of mesozooplankton. In different experiments, the grazing impact was tested of the calanoïd copepod Eurytemora affinis, the cyclopoid copepods Acanthocyclops robustus and Cyclops vicinus and the cladocera Chydorus sphaericus, Moina affinis and Daphnia magna/pulex. No significant grazing impact of mesozooplankton in any experiment was found despite the fact that mesozooplankton densities used in the experiments (20 or 40 ind. l−1) were higher than densities in the field (0.1–6.9 ind. l−1). Grazing by microzooplankton was evaluated by comparing growth of phytoplankton in 30 and 200 μm filtered water. Microzooplankton in the 30–200 μm size range included mainly rotifers of the genera Brachionus, Trichocerca and Synchaeta, which were present from 191 to 1777 ind. l−1. Microzooplankton had a significant grazing impact in five out of six experiments. They had a community grazing rate of 0.41–1.83 day−1 and grazed up to 84% of initial phytoplankton standing stock per day. Rotifer clearance rates estimated from microzooplankton community grazing rates and rotifer abundances varied from 8.3 to 41.7 μl ind.−1 h−1. CHEMTAX analysis of accessory pigment data revealed a similar phytoplankton community composition after incubation with and without microzooplankton, indicating non-selective feeding by rotifers on phytoplankton.  相似文献   

3.
Chlorophyll-a (chl-a) concentration has an important economic effect in coastal and marine environments on fisheries resources and marine aquaculture development. Monthly climatologies the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) derived chl-a from February 1998 to August 2004 around Funka Bay were used to investigate the spatial and temporal variability of chl-a concentrations. SeaWiFS-derived suspended sediment, MODIS derived sea surface temperature (SST), solar radiation and wind data were also analyzed. Results showed two distinct chlorophyll blooms in spring and autumn. Chl-a concentrations were relatively low (<0.3 mg m3) in the bay during summer, with high concentrations occurring along the coast, particularly near Yakumo and Shiraoi. In spring, chl-a concentrations increased, and a large (>2 mg m3) phytoplankton bloom occurred. The spatial and temporal patterns were further confirmed by empirical orthogonal function (EOF) analysis. About 83.94% of the variability could be explained by the first three modes. The first chl-a mode (77.93% of the total variance) explained the general seasonal cycle and quantified interannual variability in the bay. The spring condition was explained by the second mode (3.89% of the total variance), while the third mode (2.12% of the total variance) was associated with autumn condition. Local forcing such as the timing of intrusion of Oyashio water, wind condition and surface heating are the mechanisms that controlled the spatial and temporal variations of chlorophyll concentrations. Moreover, the variation of chlorophyll concentration along the coast seemed to be influenced by suspended sediment caused by resuspension or river discharge.  相似文献   

4.
The seasonal dynamics of chlorophyll a and the main accessory pigments accompanied by microscopic observations on live and fixed material were investigated in the Urdaibai estuary, Spain. Fucoxanthin was the dominant pigment during the peak in chlorophyll a, with which it was strongly correlated. Concentrations of fucoxanthin (81·30 μg l−1) in the upper estuary were amongst the highest found in the literature, and were mainly associated with diatoms and symbiotic dinoflagellates. In the lower estuary, fucoxanthin showed values typical of coastal waters (<5 μg l−1) and was mainly due to diatoms and prymnesiophytes. Chlorophyllb concentration was high along the estuary, followed the same seasonal pattern as chlorophyll a, and was associated with the presence of euglenophytes, chlorophytes and prasinophytes. High values of 19′-butanoyloxyfucoxanthin were often measured, but no organisms containing this pigment were observed in live or fixed samples. Alloxanthin and peridinin were found in low concentrations which was in agreement with cell counts of cryptophytes and peridinin-containing dinoflagellates. Two main patterns of phytoplankton assemblages were observed along the estuary. In the upper segments, during the chlorophylla maximum fucoxanthin containing algae masked the other algal groups, which were relatively more abundant during or after enhanced river flows. In the lower estuary, although dominated by fucoxanthin-containing algae, the other algal groups were important all year around. In this study, the use of diagnostic pigments has provided considerable insight into the temporal and spatial dynamics of phytoplankton assemblages by detecting phytoplankton taxa generally underestimated or overlooked by microscopy.  相似文献   

5.
Using the seawater dilution technique, we measured phytoplankton growth and microzooplankton grazing rates within and outside of the 1999 Bering Sea coccolithophorid bloom. We found that reduced microzooplankton grazing mortality is a key component in the formation and temporal persistence of the Emiliania huxleyi bloom that continues to proliferate in the southeast Bering Sea. Total chlorophyll a (Chl a) at the study sites ranged from 0.40 to 4.45 μg C l−1. Highest phytoplankton biomass was found within the bloom, which was a mixed assemblage of diatoms and E. huxleyi. Here, 75% of the Chl a came from cells >10 μm and was attributed primarily to the high abundance of the diatom Nitzschia spp. Nutrient-enhanced total phytoplankton growth rates averaged 0.53 d−1 across all experimental stations. Average growth rates for >10 μm and <10 μm cells were nearly equal, while microzooplankton grazing varied among stations and size fractions. Grazing on phytoplankton cells >10 μm ranged from 0.19 to 1.14 d−1. Grazing on cells <10 μm ranged from 0.02 to 1.07 d−1, and was significantly higher at non-bloom (avg. 0.71 d−1) than at bloom (avg. 0.14 d−1) stations. Averaged across all stations, grazing by microzooplankton accounted for 110% and 81% of phytoplankton growth for >10 and <10 μm cells, respectively. These findings contradict the paradigm that microzooplankton are constrained to diets of nanophytoplankton and strongly suggests that their grazing capability extends beyond boundaries assumed by size-based models. Dinoflagellates and oligotrich ciliates dominated the microzooplankton community. Estimates of abundance and biomass for microzooplankton >10 μm were higher than previously reported for the region, ranging from 22,000 to 227,430 cells l−1 and 18 to 164 μg C l−1. Highest abundance and biomass occurred in the bloom and corresponded with increased abundance of the large ciliate Laboea, and the heterotrophic dinoflagellates Protoperidinium and Gyrodinium spp. Despite low grazing rates on phytoplankton <10 μm within the bloom, the abundance and biomass of small microzooplankton (<20 μm) capable of grazing E. huxleyi was relatively high at bloom stations. This body of evidence, coupled with observed high grazing rates on large phytoplankton cells, suggests the phytoplankton community composition was strongly regulated by herbivorous activity of microzooplankton. Because grazing behavior deviated from size-based model predictions and was not proportional to microzooplankton biomass, alternate mechanisms that dictate levels of grazing activity were in effect in the southeastern Bering Sea. We hypothesize that these mechanisms included morphological or chemical signaling between phytoplankton and micrograzers, which led to selective grazing pressure.  相似文献   

6.
The spatial and temporal dynamics of dissolved inorganic nitrogen, dissolved phosphate, dissolved silica and chlorophyll a were measured seasonally at eight stations in the Ria de Aveiro. Between December 2000 and September 2001, the seasonal succession of phytoplankton assemblages, inferred after the spatial and seasonal variation of silica and of chlorophyll a concentrations, showed that diatoms (μmol Si L−1) dominated from late autumn until early spring, while chlorophytes (μg Chl a L−1) bloomed during late spring and summer. The Si:N:P ratios and Si concentrations indicated no seasonal depletion in dissolved silica, as in other temperate systems, possibly because of abnormal precipitation and flood events prolonging the supply of dissolved Si to the system. The Si:N:P ratios suggested P limitation at the system level. Despite the relative proportions of available nutrients, the mean phosphorus concentration (5.3 μmol L−1) was above the reported half-saturation constants for P uptake by phytoplankton. Thus, in Ria de Aveiro, the seasonal succession of phytoplankton assemblages may also be dependent on the grazing capacity of the pelagic community through top-down regulation.  相似文献   

7.
Concentrations and sinking rates of particulate biogenic silica (BSi), chlorophyll a (chl a) and phaeopigments (phae) (< 3 μm, 3–10 μm, > 10 μm and total), as well as the abundances of the major phytoplankton species, were studied during September 1991 in the Eastern Laptev Sea and the lower Lena River (Siberian Arctic). The highest chl a concentrations were found in two major “new” production regimes of the study area: (1) a deep chl a maximum (5.8 mg chl a m−3) (formed by the diatom Chaetoceros socialis) at 30 m depth on the outer shelf of the northern Laptev Sea, and (2) in the Lena River, where the phytoplankton community was dominated by fresh water diatoms (1.5 to 4.5 mg chl a m−3). Elevated chl a concentrations were also found in the river plume phytoplankton community (dominated by brackish water diatoms), NE of the Lena delta. In the Laptev Sea, the low chl a (0.1 to 3 mg chl a m−3) and high phae concentrations (0.5 to 14 mg phae m−3) indicated that the phytoplankton community (dominated by picoplanktic algae and nanoflagellates) was already senescent and affected by grazing losses. Biogenic silica values were highest in the Lena River (4 to 17 μM) as compared to the low values found in the Laptev Sea (0.3 to 4 μM). The large chl a size fraction, phae and BSi in the Lena River samples revealed the highest measured sinking rates (1.4, 2.3, and 1.5 m d−1, respectively). The formation of a strong halocline, decreasing turbulence, and possible nutrient deficiency resulted in death, disintegration and rapid sedimentation of fresh water diatoms. This was accompanied by a decrease in the BSi concentration and growth of the picoplanktic size fraction (< 3 μm) in the estuarine mixing zone (Gulf of Buorkhaya). Only a minor part of BSi was bound to intact diatom cells (< 3%) in the surface layer, most of which being apparently associated with detrital particles. In the Lena River, approximately 12% of the total silica was bound to BSi fraction, yet elsewhere in the Laptev Sea and in the estuarine mixing zone the BSi:total silica ratio was ≤ 5%. Thus, the results reflected the successional stage of a late summer phytoplankton community, characterized by dominance of small autotrophs and patchy distribution of senescent diatoms no longer able to affect the relative high levels of dissolved silica supplied by the Lena River.  相似文献   

8.
Phytoplankton pigments and size-fractionated biomass in the Chukchi and Beaufort Seas showed spatial and temporal variation during the spring and summer of 2002. Cluster analysis of pigment ratios revealed different assemblages over the shelf, slope and basin regions. In spring, phytoplankton with particle sizes greater than 5 μm, identified as diatoms and/or haptophytes, dominated over the shelf. Smaller (<5 μm) phytoplankton containing chlorophyll b, most likely prasinophytes, were more abundant over the slope and basin. Due to extensive ice cover at this time, phytoplankton experienced low irradiance, but nutrients were near maximal for the year. By summer, small prasinophytes and larger haptophytes and diatoms co-dominated in near-surface assemblages in largely ice-free waters when nitrate was mostly depleted. Deeper in the water column at 1–15% of the surface irradiance larger sized diatoms were still abundant in the upper nutricline. Phytoplankton from the shelf appeared to be advected through Barrow Canyon to the adjacent basin, explaining similar composition between the two areas in spring and summer. Off-shelf advection was much less pronounced for other slope and basin areas, which are influenced by the low-nutrient Beaufort gyre circulation, leading to a dominance of smaller prasinophytes and chlorophytes. The correlation of large-sized fucoxanthin containing phytoplankton with the higher primary production measurements shows promise for trophic status to be estimated using accessory pigment ratios.  相似文献   

9.
Physical forcing plays a major role in determining biological processes in the ocean across the full spectrum of spatial and temporal scales. Variability of biological production in the Bay of Bengal (BoB) based on basin-scale and mesoscale physical processes is presented using hydrographic data collected during the peak summer monsoon in July–August, 2003. Three different and spatially varying physical processes were identified in the upper 300 m: (I) anticyclonic warm gyre offshore in the southern Bay; (II) a cyclonic eddy in the northern Bay; and (III) an upwelling region adjacent to the southern coast. In the warm gyre (>28.8 °C), the low salinity (33.5) surface waters contained low concentrations of nutrients. These warm surface waters extended below the euphotic zone, which resulted in an oligotrophic environment with low surface chlorophyll a (0.12 mg m−3), low surface primary production (2.55 mg C m−3 day−1) and low zooplankton biovolume (0.14 ml m−3). In the cyclonic eddy, the elevated isopycnals raised the nutricline upto the surface (NO3–N > 8.2 μM, PO4–P > 0.8 μM, SiO4–Si > 3.5 μM). Despite the system being highly eutrophic, response in the biological activity was low. In the upwelling zone, although the nutrient concentrations were lower compared to the cyclonic eddy, the surface phytoplankton biomass and production were high (Chl a – 0.25 mg m−3, PP – 9.23 mg C m−3 day−1), and mesozooplankton biovolume (1.12 ml m−3) was rich. Normally in oligotrophic, open ocean ecosystems, primary production is based on ‘regenerated’ nutrients, but during episodic events like eddies the ‘production’ switches over to ‘new production’. The switching over from ‘regenerated production’ to ‘new production’ in the open ocean (cyclonic eddy) and establishment of a new phytoplankton community will take longer than in the coastal system (upwelling). Despite the functioning of a cyclonic eddy and upwelling being divergent (transporting of nutrients from deeper waters to surface), the utilization of nutrients leading to enhanced biological production and its transfer to upper trophic levels in the upwelling region imply that the energy transfer from primary production to secondary production (mesozooplankton) is more efficient than in the cyclonic eddy of the open ocean. The results suggest that basin-scale and mesoscale processes influence the abundance and spatial heterogeneity of plankton populations across a wide spatial scale in the BoB. The multifaceted effects of these physical processes on primary productivity thus play a prominent role in structuring of zooplankton communities and could consecutively affect the recruitment of pelagic fisheries.  相似文献   

10.
Phytoplankton communities, production rates and chlorophyll levels, together with zooplankton communities and biomass, were studied in relation to the hydrological properties in the euphotic zone (upper 100 m) in the Cretan Sea and the Straits of the Cretan Arc. The data were collected during four seasonal cruises undertaken from March 1994 to January 1995.The area studied is characterised by low nutrient concentrations, low 14C fixation rates, and impoverished phytoplankton and zooplankton standing stocks. Seasonal fluctuations in phytoplankton densities, chlorophyll standing stock and phytoplankton production are significant; maxima occur in spring and winter and minima in summer and autumn. Zooplankton also shows a clear seasonal pattern, with highest abundances occurring in autumn–winter, and smallest populations in spring–summer. During summer and early autumn, the phytoplankton distribution is determined by the vertical structure of the water column.Concentrations of all nutrients are very low in the surface waters, but increase at the deep chlorophyll maximum (DCM) layer, which ranges in depth from about 75–100 m. Chlorophyll-a concentrations in the DCM vary from 0.22–0.49 mg m−3, whilst the surface values range from 0.03–0.06 mg m−3. Maxima of phytoplankton, in terms of cell populations, are also encountered at average depths of 50–75 m, and do not always coincide with chlorophyll maxima. Primary production peaks usually occur within the upper layers of the euphotic zone.There is a seasonal succession of phytoplankton and zooplankton species. Diatoms and ‘others’ (comprising mainly cryptophytes and rhodophytes) dominate in winter and spring and are replaced by dinoflagellates in summer and coccolithophores in autumn. Copepods always dominate the mesozooplankton assemblages, contributing approximately 70% of total mesozooplankton abundance, and chaetognaths are the second most abundant group.  相似文献   

11.
To verify the hypothesis that the growth of phytoplankton in the Western Subarctic Gyre (WSG), which is located in the northwest subarctic Pacific, is suppressed by low iron (Fe) availability, an in situ Fe fertilization experiment was carried out in the summer of 2001. Changes over time in the abundance and community structure of phytoplankton were examined inside and outside an Fe patch using phytoplankton pigment markers analyzed by high-performance liquid chromatography (HPLC) and flow cytometry (FCM). In addition, the abundance of heterotrophic bacteria was also investigated by FCM. The chlorophyll a concentration was initially ca. 0.9 μg l−1 in the surface mixed layer where diatoms and chlorophyll b-containing green algae (prasinophytes and chlorophytes) were predominant in the chlorophyll biomass. After the iron enrichment, the chlorophyll a concentration increased up to 9.1 μg l−1 in the upper 10 m inside the Fe patch on Day 13. At the same time, the concentration of fucoxanthin (a diatom marker) increased 45-fold in the Fe patch, and diatoms accounted for a maximum 69% of the chlorophyll biomass. This result was consistent with a microscopic observation showing that the diatom Chaetoceros debilis had bloomed inside the Fe patch. However, chlorophyllide a concentrations also increased in the Fe patch with time, and reached a maximum of 2.2 μg l−1 at 5 m depth on Day 13, suggesting that a marked abundance of senescent algal cells existed at the end of the experiment. The concentration of peridinin (a dinoflagellate marker) also reached a maximum 24-fold, and dinoflagellates had contributed significantly (>15%) to the chlorophyll biomass inside the Fe patch by the end of the experiment. Concentrations of 19′-hexanoyloxyfucoxanthin (a prymnesiophyte marker), 19′-butanoyloxyfucoxanthin (a pelagophyte marker), and alloxanthin (a cryptophyte marker) were only incremented a few-fold increment inside the Fe patch. On the contrary, chlorophyll b concentration reduced to almost half of the initial level in the upper 10 m water column inside the Fe patch at the end of the experiment. A decrease with time in the abundance of eukaryotic ultraphytoplankton (<ca. 5 μm in size), in which chlorophyll b-containing green algae were possibly included was also observed by FCM. Overall, our results indicate that Fe supply can dramatically alter the abundance and community structure of phytoplankton in the WSG. On the other hand, cell density of heterotrophic bacteria inside the Fe patch was maximum at only ca. 1.5-fold higher than that outside the Fe patch. This indicates that heterotrophic bacteria abundance was little respondent to the Fe enrichment.  相似文献   

12.
The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 μM nitrate, 17 μM silicate and 2 μM phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m− 2 d− 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after  30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 μg L− 1. During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom–flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m− 2 d− 1 and/or silicate reaching potentially limiting concentrations (< 1 μM). Post spring bloom, diatom dominance of the lower continuous summer phytoplankton biomass occurred despite the low silicate concentrations (Av. 0.7 μM from June–August). Summer diatom dominance, generally due to Guinardia delicatula, was expected to be as a result of microzooplankton grazing, dominated by the heterotrophic dinoflagellate Noctiluca scintillans, controlling 0.7–5.0 μm ‘flagellate’ fraction of the phytoplankton community with grazing rates up to 178% of ‘flagellate’ growth rate. The Thames plume region was therefore shown to be an active region of nutrient and phytoplankton processing and transport to the southern North Sea. The use of a combination of moorings and ship-based sampling was essential in understanding the factors influencing nutrient transport, phytoplankton biomass and species composition in this shelf sea plume region.  相似文献   

13.
The first oceanographic research (hydrography, nutrient salts, chlorophyll, primary production and phytoplankton assemblages) in a Middle Galician Ria was carried out in Corme-Laxe during 2001, just a year before the Prestige oil spill, being the only reference to evaluate eventual changes in the phytoplankton community. Due to the small size of this ria (6.5 km2), oceanographic processes were driven by the continental water supplied by Anllons River during the wet season (20–30 m3 s−1 in winter), and the strong oceanic influence from the nearby shelf during the dry season. The annual cycle showed a spring bloom with high levels of chlorophyll (up to 14 μg Chl-a L−1) and primary production (3 g C m−2 d−1) and a summer upwelling bloom (up to 8 μg Chl-a L−1 and 10 g C m−2 d−1) where the proximity of the Galician upwelling core (<13.5 °C at sea surface) favors the input of upwelled seawater (up to 9 μM of nitrate and silicate) to the bottom ria layer, even during summer stratification events (primary production around 2 g C m−2 d−1). Thus, phytoplankton assemblages form a “continuum” from spring to autumn with a predominance of diatoms and overlapping species between consecutive periods; only in autumn dinoflagellates and flagellates characterized the phytoplankton community. In the Middle Rias as Corme-Laxe, the nutrient values, Chl-a, primary production and phytoplankton abundance for productive periods were higher than those reported for the Northern (Ria of A Coruña) and Southern Rias (Ria of Arousa) for year 2001; this suggests the importance of the hydrographic events occurring in the zone of maximum upwelling intensity of the Western Iberian Shelf, where a lack of annual cycles studies exists.  相似文献   

14.
We report here dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) levels as a function of plankton communities and abiotic factors over a 12-month cycle in the Mediterranean oligotrophic coastal and shallow ecosystem of Niel Bay (N.W. Mediterranean Sea, France). Total particulate DMSP (DMSPp) and DMS concentrations were highly seasonal, peaking during a spring (April) bloom at 8.9 nM and 73.9 nM, respectively. Significant positive correlations were found between total DMSPp concentration and the abundance or biomass of the dinoflagellate Prorocentrum compressum (Spearman's rank correlation test: r = 0.704; p = 0.011). Similarly, DMS concentrations peaked during the development of blooms of P. compressum and Gymnodinium sp. There seemed to be a positive relationship between the chlorophyll a to pheopigment ratio and DMS concentrations, suggesting that DMS was released during phytoplankton growth. High DMS levels recorded in the shallow Niel Bay may also result from the activity of benthic macroalgae, and/or macrophytes such as Posidonia spp., or the resuspension of sulfur species accumulating in sediments. The fractionation of particulate DMSP into three size classes (>90 μm, 5–90 μm and 0.2–5 μm) revealed that 5–90 μm DMSP-containing particles made the greatest contribution to the total DMSPp pool (annual mean contribution = 62%), with a maximal contribution in April (96%). This size class consisted mainly of dinoflagellates (annual mean contribution = 68%), with P. compressum and Gymnodinium sp. the predominant species, together accounting for up to 44% of the phytoplankton present. The positive correlation between DMSP concentration in the 5–90 μm size class and the abundance of P. compressum (Spearman's rank correlation test: r = 0.648; p = 0.023) suggests that this phytoplankton species would be the major DMSP producer in Niel Bay. The DMSP collected in the >90 μm fraction was principally associated with zooplankton organisms, dominated by copepods (nauplii and copepodites). DMSP>90, not due to a specific zooplankton production, resulted from the phytoplankton cells ingested during grazing. The concomitant peaks of DMS concentration and zooplankton abundance suggest that zooplankton may play a role in releasing DMSP and/or DMS through sloppy feeding.  相似文献   

15.
The seasonal dynamics of inorganic nutrients and phytoplankton biomass (chlorophyll a), and its relation with hydrological features, was studied in the NW Alboran Sea during four cruises conducted in February, April, July and October 2002. In the upper layers, the seasonal pattern of nutrient concentrations and their molar ratios (N:Si:P) was greatly influenced by hydrological conditions. The higher nutrient concentrations were observed during the spring cruise (2.54 μM NO3, 0.21 μM PO43− and 1.55 μM Si(OH)4, on average), coinciding with the increase of salinity due to upwelling induced by westerlies. The lowest nutrient concentrations were observed during summer (<0.54 μM NO3, 0.13 μM PO43− and 0.75 μM Si(OH)4, on average), when the lower salinities were detected. Nutrient molar ratios (N:Si:P) followed the same seasonal pattern as nutrient distribution. During all the cruises, the ratio N:P in the top 20 m was lower than 16:1, indicating a NO3 deficiency relative to PO43−. The N:P ratio increased with depth, reaching values higher than 16:1 in the deeper layers (200–300 m). The N:Si ratio in the top 20 m was lower than 1:1, excepting during spring when N:Si ratios higher than 1:1 were observed in some stations due to the upwelling event. The N:Si ratio increased with depth, showing a maximum at 50–100 m (>1.5:1), which indicates a shift towards Si-deficiency in these layers. The Si:P ratio was much lower than 16:1 throughout the water column during the four cruises. In general, the spatial and seasonal variation of phytoplankton biomass showed a strong coupling with hydrological and chemical fields. The higher chlorophyll a concentrations at the depth of the chlorophyll maximum were found in April (2.57 mg m−3 on average), while the lowest phytoplankton biomass corresponded to the winter cruise (0.74 mg m−3 on average). The low nitrate concentrations together with the low N:P ratios found in the upper layers (top 20 m) during the winter, summer and autumn cruises suggest that N-limitation could occur in these layers during great part of the year. However, N-limitation during the spring cruise was temporally overcome by nutrient enrichment caused by an intense wind-driven upwelling event.  相似文献   

16.
Brood sizes of 1259 adult female Euphausia pacifica and Thysanoessa spinifera were measured during 48 h incubations (10 °C, ±0.5 °C) on 27 oceanographic cruises between July 1999 and September 2004. The data set includes measurements from several stations off Newport, Oregon (Newport Hydrographic line, 44°39′N) made over a 5-year period and measurements from 14 more extensive cruises at stations representative of continental shelf, slope, and oceanic waters off Oregon and California, USA. E. pacifica had similar brood sizes at inshore (<200 m) and offshore (>200 m) stations with an average of 151 and 139 eggs brood−1 fem−1, respectively. T. spinifera brood sizes were considerably higher at inshore stations—particularly at Heceta Bank (44°N) and south of Cape Blanco (42°50′N)—than at offshore stations, 155 and 107 eggs brood−1 fem−1, respectively. Average brood sizes of E. pacifica increased during the study period, from 125 (in 2000) to 171 eggs brood−1 fem−1 (in 2003). Average percentage of carbon weight invested in spawning (reproductive effort) was higher in E. pacifica (14%) than in T. spinifera (6%), because both species have similar brood size but T. spinifera females are larger than E. pacifica females and produce smaller eggs. Reproductive effort for both species was higher during summer 2002, probably associated with anomalous cool subarctic waters and high chl-a concentration observed during that summer. Brood sizes and chl-a values remained relatively high in 2003–2004 compared to the 1999–2001 period. Geographical and temporal variability in brood sizes for both species were significantly correlated with in situ measurements of chl-a concentration but not with sea surface temperature. No gravid females were collected during late autumn and winter cruises, thus the spawning season along the Oregon coast appears to extend from March through September for both species. However, T. spinifera usually starts reproductive activity earlier in the spring (March) than E. pacifica. Both species had their highest brood sizes in summer during the period of most intense upwelling, which is associated with an increase in regional phytoplankton standing stock.  相似文献   

17.
Mesoscale eddies are important suppliers of nutrients to the surface waters of oligotrophic gyres, but little is known about the biological response, particularly that of higher trophic levels, to these physical perturbations. During the summers of 2004 and 2005, we followed the development of a cyclonic eddy and an anti-cyclonic mode-water eddy in the Sargasso Sea. Zooplankton (>150 μm) were collected across both eddies in 9 discrete depth intervals between 0 and 700 m. Comparison of the abundance of major taxa of mesozooplankton in the upper 150 m at eddy center and outside the eddies (day and night) indicated that the cyclone and mode-water eddy supported similar mesozooplankton communities, with several taxa significantly higher in abundance inside than outside the eddies, when compared with the Bermuda Atlantic Time-series Study site as representative of mean conditions. In both eddies copepod peak abundance occurred in the 50-100 m depth interval, coincident with the chlorophyll a maximum, suggesting elevated food concentration in the eddies may have influenced zooplankton vertical distribution. The two eddies differed in the strength of diel vertical migration of zooplankton, as indicated by the ratio of night:day abundance in the epipelagic zone, which was higher at the center of the mode-water eddy for most taxa. Over the sampling interval of 1-2 months, abundance of the three most common taxa (copepods, chaetognaths, and ostracods) decreased in the cyclone and increased in the mode-water eddy. This further supports previous findings that over the sampling period the cyclone was in a decay phase, while the mode-water eddy was sustaining nutrient fluxes and high phytoplankton concentrations. A more detailed analysis of community structure in the mode-water eddy indicated the 0-700 m integrated abundance of doliolids was significantly higher inside the mode-water eddy than outside. The presence of a mesopelagic (200-700 m) layer of lepadid barnacle cyprids in this eddy highlights the potential of eddies to transport and disperse biota. We conclude that when compared with average ambient conditions (as measured at BATS), mesoscale eddies can influence zooplankton behavior and alter zooplankton community structure which can affect food-web interactions and biogeochemical cycling in the open ocean.  相似文献   

18.
Seasonal changes in nano/micro-zooplankton grazing on pico-, nano- and micro-size phytoplankton and heterotrophic nano-flagellates (HNF) feeding on heterotrophic bacteria were quantified by the dilution technique in the surface layer off Cape Esan, southwestern Hokkaido, Japan. Pico- and nano-size phytoplankton were major components throughout the year except in spring when a diatom bloom was observed. Although there was little seasonal variation in bacteria and HNF biomass throughout the year, the micro-zooplankton biomass varied appreciably with a peak in spring. Nano/micro-zooplankton grazing or feeding on pico-size chl-a and bacteria were well balanced throughout the year. However, nano-size and micro-size chl-a growth were much greater than grazing in summer. Nano/micro-zooplankton ingestion of phytoplankton was greater than their ingestion of bacteria almost throughout the year, which suggests phytoplankton are more important as food sources of nano/micro-zooplankton in microbial food webs off Cape Esan than bacteria off Cape Esan. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Weekly variations in total dimethylsulfoniopropionate (DMSPt) and dimethylsulfide (DMS) were investigated in relation to the phytoplankton assemblage from spring to fall 1994 at a coastal fixed station in the St. Lawrence Estuary. DMSPt and DMS concentrations showed a strong seasonality and were tightly coupled in time. Maximum concentrations of DMSPt and DMS were observed in July and August, during a period of warm water and low nutrient concentrations. Seasonal maxima of 365.4 nmol l−1 for DMSPt and 14.2 nmol l−1 for DMS in early August coincided with the presence of many phytoplankton species, such as Alexandrium tamarense, Dinophysis acuminata, Gymnodinium sp., Heterocapsa rotundata, Protoperidinium ovatum, Scrippsiella trochoidea, Chrysochromulina sp. (6 μm), Cryptomonas sp. (6 μm), a group of microflagellates smaller than 5 μm (mf < 5), many tintinnids, and Mesodinium rubrum. The abundance of mf < 5 followed the general trend of DMS concentrations. The temporal occurrence of high P. ovatum abundance and DMSPt concentrations suggests that this heterotrophic dinoflagellate can either synthesize DMSP or acquire it from DMSP-rich prey. The calculated sea-to-air DMS flux reached a maximum of 8.36 μmol −2 d−1 on August 1. The estimated annual emission from the St. Lawrence Estuary is 77.2 tons of biogenic sulfur to the atmosphere.  相似文献   

20.
Results of trace metal analyses performed on two species of Euphausiacea, Meganyctiphanes norvegica and Stylocheiron longicorne, and one species of Decapoda, Sergestes arcticus, collected off the east coast of Corsica, are reported. Analyses were carried out by atomic absorption spectrophotometry and by differential pulse anodic stripping voltammetry.S. arcticus contained lower concentrations of phosphorus (which was also analysed as a biological indicator), cadmium (0.33 μg g−1), copper (17.7 μg g−1), lead (2.13 μg g−1) and zinc (51 μg g−1) than the two Euphausiacea (0.50 μg Cd g−1, 25.4 μg Cu g−1, 4.03 μg Pb g−1 and 59 μg Zn g−1). Moreover, manganese concentrations were low in all the samples.When the results presented here are compared with previous results on phytoplankton and mesozooplankton, there appears to be no trend of trace metal enrichment from phytoplankton to the Decapoda.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号