首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
30株海洋绿藻的总脂含量和脂肪酸组成   总被引:9,自引:2,他引:7  
对 11属 (小球藻属、绿囊藻属、微绿球藻属、海绿球藻属、卵胞藻属、原球藻属、咸胞藻属、杜氏藻属、裂丝藻属、塔胞藻属和衣藻属 )的 30株海洋绿藻进行特定条件下的一次性培养 ,在指数生长末期收获 ,进行了总脂含量和脂肪酸组成的分析。 2 1株海洋绿藻的总脂含量超过干重的10 % ,达 11.6 1%~ 34.4 9% ,其它 9株在 4 .2 5%~ 9.4 8%之间 ,绿藻的 16碳和 18碳脂肪酸最为丰富 ,有着含量较高的 16∶ 0、16∶ (n- 3)、18∶ 2 (n- 6 )和 18∶ 3(n- 3)脂肪酸。两株小球藻 (C95,C97)的2 0∶ 5(n- 3)脂肪酸含量较高 ,分别为 2 0 .8%和 2 6 .1%。另一株小球藻 (C10 2 )和两株裂丝藻 (C19和C2 0 ) EPA含量居中 ,分别为 8.0 % ,6 .0 %和 8.1%。其它藻株一般只含有少量的 2 0∶ 5(n- 3)和 2 2∶ 6 (n- 3)或不含 2 2∶ 6 (n- 3)  相似文献   

2.
30种海洋绿藻的脂肪酸分类与评价   总被引:3,自引:0,他引:3  
许河峰 《海洋科学》2003,27(8):77-80
以平方欧氏距离为相似性测度,类间距用离差平方和法,对11属30株海洋绿藻所含脂肪酸进行聚类分析,结果分为5类。类I含EPA和DHA最高;类Ⅳ含总(n-3)PUFAs最高。混合培养小球藻C95,C97与杜氏藻C33,C42,可能得到EPA,DHA和其它(n-3)PUFAs含量最丰的绿藻种群。系统聚类分析为海洋绿藻分类与量化评价提供了一种好方法。  相似文献   

3.
本文研究了不同浓度柠檬酸(0(对照组)、0.05、0.1、0.2和0.4g/L)对海绿球藻(Halochlorococcum sarcotum)和微绿球藻(Nannochloris oculata)生长、叶绿素荧光参数(PSII最大光能转化效率F_v/F_m、光化学淬灭qP、非光化学淬灭NPQ、最大光合作用效率P_m、快速光曲线的初始斜率α、最小饱和光照强度I_k)、总脂含量和脂肪酸组成的影响。研究表明,2株绿藻对照及低浓度处理组(0~0.1g/L)的F_v/F_m、P_m、I_k、细胞密度、叶绿素含量、总脂产率均显著高于高浓度处理组(0.2~0.4g/L)。其中,海绿球藻0.1g/L处理组的细胞密度最高,比对照组增加了21.26%;0.4g/L处理组的总脂含量最高(35.20%),比对照组增加了17.77%;0.1g/L处理组的总脂产率最大(0.018g/(L·d)),比对照组增加了14.19%。微绿球藻的细胞密度在柠檬酸浓度为0.1g/L时达到最大值,比对照组增加了15.34%;总脂含量随柠檬酸浓度的增加而升高,在0.4g/L时达到最大值(40.42%),比对照组增加了36.97%;总脂产率在柠檬酸浓度为0.1g/L时达到最大值(0.025g/(L·d)),比对照组增加了12.84%。与对照组相比,0.05~0.4g/L的柠檬酸能够显著促进2株绿藻的18:1n-9和MUFA(单不饱和脂肪酸总和)合成,而高浓度柠檬酸(0.2~0.4g/L)能够显著抑制16:3n-3和PUFA(多不饱和脂肪酸总和)的积累。研究结果显示,适合2株绿藻生长及产脂的最佳柠檬酸浓度均为0.1g/L,该研究为2株绿藻的开发利用提供了理论依据。  相似文献   

4.
以三角褐指藻(Phaeodactylum tricornutum)为研究材料,比较了Na NO3、NH4HCO3和CO(NH2)2为氮源的两种培养基(m L1和ASW培养基)对其生长和生物活性成分(岩藻黄素、金藻昆布糖和二十碳五烯酸(C20:5,EPA))时相积累的影响,同时分析了脂肪酸组成和总脂含量的变化。结果表明:以m L1培养基培养时,三角褐指藻的生物质质量浓度明显高于ASW培养基培养时的生物质质量质量浓度,尿素优于其他两种氮源,最大生物质质量质量浓度为3.7 g/L。不同培养条件下岩藻黄素含量的时相变化规律一致,均随着培养时间的延长呈现先增加后减少的趋势,其最高积累量分别为:13.27 mg/g(Na NO3)、13.23 mg/g(CO(NH2)2)和13.89 mg/g(NH4HCO3)(m L1);13.2 mg/g(Na NO3)、14.92 mg/g(CO(NH2)2)和13.6 mg/g(NH4HCO3)(ASW),由此可知氮源对岩藻黄素积累量影响不大。金藻昆布糖含量随着培养时间延长逐渐增加,其最大积累量分别为9.82 mg/g(NH4HCO3)(m L1)和8.59 mg/g(Na NO3)(ASW)。不同培养条件下其总脂含量变化不显著,均在培养末期达到最大值,分别为24.18%(NH4HCO3)(m L1)和23.79%(Na NO3)(ASW);其主要脂肪酸组成为:豆蔻酸(C14:0)、棕榈酸(C16:0)、棕榈油酸(C16:1)、硬脂酸(C18:0)、油酸(C18:1)、亚油酸(C18:2)、花生一烯酸(C20:1)、木焦油酸(C24:0)和EPA,其中,EPA含量随着培养时间延长逐渐下降,尿素最有利于EPA的积累。  相似文献   

5.
迦得拟微球藻(Nannochloropsisgaditana)具有较高的开发价值,但对于其活性物质定向积累的研究相对较少。本文以迦得拟微球藻为研究对象,设置3.0、5.0、7.5和14.9mmol/L (对照组,ASW培养基的硝酸钾浓度)四种硝酸钾组,探究氮素水平调控迦得拟微球藻总脂、多糖、可溶性蛋白和多不饱和脂肪酸等物质定向积累的可行性,以及此过程藻细胞的光合生理响应规律。结果表明:与对照组相比,硝酸钾浓度降低,迦得拟微球藻的生物量降低、总脂含量增加、可溶性蛋白质含量和多糖含量降低,然而其总脂、多糖与可溶性蛋白产率的最大值却在对照组条件下获得,分别为0.150、0.170和0.053g/(L·d);与对照组相比,3.0、5.0和7.5mmol/L处理组的C20:5相对含量分别降低73.1%、49.1%和23.9%;迦得拟微球藻的主要色素(堇菜黄素、无隔藻黄素、β-胡萝卜素、叶绿素a)随氮浓度降低呈减少趋势;PSⅡ最大光量子产量(Fv/Fm)、相对电子传递效率(rETR)和光合放氧速率随氮浓度降低而显著降低。综上所述,调控氮浓度可以实现迦得拟微球藻总脂、可溶性蛋白、多糖和C20:5的定向积累,但上述物质的产率却受到生物质浓度的影响,14.9mmol/L氮浓度条件下高光合效率是迦得拟微球藻获得较高活性物质产率的主要原因。  相似文献   

6.
优质产油藻种是实现微藻油脂产业化生产的基础,蹄形藻可以积累高含量的储藏性三酰甘油,但其是否具有微藻油脂开发潜力,目前仍然缺少系统的评价。利用形态学和分子技术对分离自暨南大学南湖的一株微藻进行鉴定,通过设置4种硝酸钠浓度(3.6、9.0、18.0和36.0 mmol/L),测定生物质浓度、总脂含量、脂肪酸组成、光合效率等指标,评价该藻株的产油能力,并利用现有模型,计算生物柴油的质量参数。经鉴定该藻株为蹄形藻JNU-3201 (Kirchneriella sp. JNU-3201),在整个培养周期内,其碳水化合物含量(干重)均低于20%,蛋白质含量呈降低趋势,总脂含量逐渐增加,说明脂类是该藻的主要储能物质;主要脂肪酸包括油酸(C18︰1)、棕榈酸(C16︰0)和亚油酸(C18︰2);该藻株的生长和油脂含量明显受氮素水平影响,在最低氮浓度条件下(3.6mmol/L),获得最高总脂含量(46.92%±1.52%,干重),在最高氮浓度条件下(36.0mmol/L),获得最高生物质浓度[(6.53±0.11)g/L],在18.0 mmol/L条件下,获得最高总脂产量[(2.43±0.06) g/L...  相似文献   

7.
通过对南极水样中分离出来的 4种南极冰藻 (2种硅藻和 2种绿藻 )在不同温度下的总脂含量和脂肪酸组成的研究 ,发现 2种硅藻 (H1和 H2 )通过增加胞内脂肪含量和不饱和脂肪酸的组成来提高其低温适应性 ,而且单不饱和脂肪酸含量远高于多不饱和脂肪酸 ,发挥主要的作用 ;绿藻 L1的总脂含量变化不大 ,但在低温条件下 ,其不饱和脂肪酸的含量亦相应提高 ;绿藻 L4的总脂含量和脂肪酸组成变化与 2种硅藻相似 ,但 2种绿藻的多不饱和脂肪酸含量远高于单不饱和脂肪酸 ,发挥主要的作用。研究结果还显示 ,低温有利于短链脂肪酸的合成。同时作为膜磷脂重要组成成分的 C2 2∶ 6脂肪酸在 4种冰藻中均保持稳定 ,含量相对较高 ,这也是对南极低温环境条件的适应  相似文献   

8.
本文研究碳氮(C/N)比变化对移动床生物膜反应器(MBBR)处理海水养殖废水性能的影响。结果表明,当C/N比从7∶1降至3∶1,出水COD浓度无明显变化,平均去除率保持在90%以上。C/N比的变化对脱氮过程有较大影响,当C/N比从7∶1降低至3∶1,NH+4-N去除率由89.51%±1.24%增至92.70%±1.08%,NO-2-N浓度由(4.84±0.50)mg/L降至0 mg/L,NO-3-N浓度由(0.47±0.29)mg/L升至(8.12±0.25)mg/L。C/N比的降低提高了比氨氧化速率、比亚硝酸盐氧化速率和与硝化相关的微生物酶活性,但降低了比耗氧速率、比硝酸盐还原速率、比亚硝酸盐还原速率、脱氢酶活性和与反硝化相关的微生物酶活性。松散型胞外聚合物和紧密型胞外聚合物的多糖含量随C/N比的降低而降低,说明在低COD条件下,多糖能够被微生物利用。微生物群落的丰富度和多样性随C/N比的降低而降低,硝化菌属(Nitrosomonas和Nitrospira)和反硝化菌属(Azoarcus、Comamonas、Hyphomicrobium、Paracoccus、Thauera、Devosia、Pseudomonas和Rhodanobacter)的相对丰度发生改变,从而影响MBBR脱氮性能。  相似文献   

9.
通过气相色谱方法对南极冰藻的脂肪酸进行了分析,发现环境因素对2种绿藻总脂含量有一定的影响:(1)温度对Pymmixtomonas sp,总脂含量影响不大,一般为8.3%~8.9%,Chlorophyceae L-4在2℃时的总脂含量最高为10.33%;(2)光强显著地影响这2种绿藻脂肪在细胞内的积累。随着光强由限制生长的39 lx增加到3900 lx,2种绿藻的脂肪酸含量降低:(3)盐度的提高有利于2种绿藻脂肪的积累;(4)营养盐的限制也利于2种绿藻脂肪的积累。在氮源缺乏条件下,Pyramidomonas sp,和Chlorophyceae L-4细胞内脂肪大量积累,含量分别是以NH4Cl为氮源的2.2和3.2倍。环境因素对2种绿藻脂肪酸组成和含量的影响不同,其脂肪含量的改变反映了南极冰藻生长的改变。环境因子能够影响这2种绿藻的脂肪含量,同样也影响到它们的生长。在适合南极冰藻生长的条件下,脂肪酸积累降低;反之,在南极冰藻生长受到限制的条件下,脂肪合成增加。这表明2种绿藻的脂肪含量随生存环境的变化而变化。环境因子同样影响到2种绿藻的脂肪酸组成,尤其是不饱和脂肪酸的组成和含量,但组成和其生长不存在相关性。环境因子(温度、光强、盐度和营养盐)对2种绿藻脂肪酸的测定结果表明,在2种绿藻中,多不饱和脂肪酸的含量高于单不饱和脂肪酸和饱和脂肪酸。因此。这2种绿藻可望为多不饱和脂肪酸的开发利用提供藻种资源。  相似文献   

10.
7种(13株)杜氏藻的总脂含量和脂肪酸组成   总被引:2,自引:0,他引:2  
陈昱  刘广发  周韬 《台湾海峡》2007,26(4):516-521
在实验室条件下培养7种(13株)杜氏藻(Dunaliella),在生长的平衡期收获.分别采用索氏提取法和气相色谱法进行了总脂含量和脂肪酸组成的测定.它们的总脂含量在6.64%~16.18%(m/m,干重,下同)之间,其中7株的总脂含量超过10%.杜氏藻的16碳和18碳脂肪酸含量丰富,有着较高的C16∶0、C18∶1(n-12)、C18∶2(n-6)和C18∶3(n-3)脂肪酸,其中8株的不饱和脂肪酸含量超过总脂肪酸的50%.杜氏藻的EPA和DHA的含量较低,但是有5株超过总脂肪酸的10%.  相似文献   

11.
二十碳五烯酸(EPA)是n-3系列高度不饱和脂酸,具有降血脂、抑制血小板聚集、降血压、抗动脉粥样硬化等作用(刘玉军,1987;Clemons, et al.,1985)。人和动物体几乎不能合成EPA,只能从食物中获取,而海藻是不饱和脂防酸的(原始)初级生产者。 在以往研究的基础上,我们选择了EPA含量较高,且易于养殖的小球藻 Chlorella sp-2 (李荷芳等,1999)为原料,用不同的营养液对其进行培养,分析藻体中的脂肪和EPA的含量变化,以便选择能使小球藻生长好、脂肪含量及EPA含量均高的营养条件,为开辟EPA的新来源提供依据。  相似文献   

12.
微藻在不同培养条件下,藻体中脂类和高度不饱和脂肪酸(PUFA)的含量及种类可发生很大变化。因此,研究不同培养条件对其含量的影响,以期寻找既能促进藻类较快生长,又能使其体内PUFA含量较高的培养条件,对于促进水产养殖的发展,乃至使其成为生产EPA和DHA的工业原料,无疑都具有重要的意义。 在系列研究I中我们报告了我国沿海水产养殖中常用的7种微藻的脂类和脂肪酸组成,在其基础上,我们选择了脂肪和DHA含量比较高的球等鞭金藻3011(Isochrysis galbana),用不同的营养液、并在不同的生长期、温度、盐度等条件下,对其进行培养,分析藻体中PUFA含量的变化,以便更好地提高其营养价值和利用率,同时探讨用其作为生产PUFA的工业原料的可能性。  相似文献   

13.
均匀设计在后棘藻培养基中的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
将均匀设计的方法应用于一种海洋微藻:后棘藻(Ellipsoidion)培养基的优化。设计了硝氮、氨氮、磷酸盐三因素各五个浓度水平的试验,根据均匀设计表设计了10种培养基,检测细胞浓度、脂肪酸含量和产量。结果表明:在硝氮、氨氮浓度均为1.92mmol/L,磷酸盐浓度为0.082mmol/L,细胞浓度达到最大值167.23mg/L。在硝氮浓度为0.84mmol/L,氨氮浓度为3.38mmol/L,磷酸盐浓度为0.07mmol/L时,EPA含量达到最大值7.748%。在硝氮浓度为0.915mmol/L,氨氮浓度为1.92mmol/L,磷酸盐浓度为0.072mmol/L时,EPA产量达到最大值9.999mg/L。  相似文献   

14.
除草剂San9785在高EPA后棘藻品系筛选中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
邹立红  张学成 《海洋学报》2003,25(3):98-103
后棘藻(Ellipsoidion sp.)是一种高脂海洋微藻,采用微生物筛选平板的方法,利用多不饱和脂肪酸EPA合成的阻断剂——除草剂San9785对紫外线诱变的后棘藻细胞进行了高EPA个体的筛选,气相分析结果显示,在检测的8株筛选品系中,5株EPA含量高于出发藻种,平均提高了121.6%,另3株EPA含量低于出发藻种,平均降低的量为12.6%,EPA含量最高的品系达到总脂肪酸的26.22%,比出发藻种提高了212%.提示除草剂San9785可以作为一种高效筛选压力,选育多不饱和脂肪酸含量丰富的微藻品系.  相似文献   

15.
南极冰藻生化组成及其与低温适应性关系的研究   总被引:4,自引:2,他引:4  
对4种南极冰藻(2种单细胞绿藻——Pyramimonas sp.和绿藻L4,以及2种硅藻——硅藻Hl和H2)的蛋白质、脂肪、糖、无机元素含量和组成,灰分含量,以及氨基酸和脂肪酸的组成等的基本生化组成进行测定。结果表明,4种冰藻的蛋白质含量均高于常温藻,蛋白质含量以绿藻L4的含量最高,为45.18%;Pyramimonas sp.的蛋白质含量最低为27.70%。4种冰藻的脂肪含量均高于常温藻,为14.02%~l9.89%;总糖含量为4.7%~l6.3%,与常温藻含量接近。Mg的含量在冰藻和常温藻的无机元素中都为最高,为13600~l24000mg/kg,但4种冰藻的含量均低于2种常温藻;4种冰藻的灰分含量均低于常温藻,表明冰藻含有更高的有机成分。冰藻的氨基酸含量与常温藻的含量没有明显不同,但绿藻L4含有较高含量的羟脯氨酸,占总氨基酸含量的2.48%。4种冰藻的脂肪酸组成,主要以多不饱和脂肪酸为主。冰藻的基本生化组成在一定程度上反映了冰藻对生存环境的适应性,并且完全符合作为水产养殖饵料的营养要求。  相似文献   

16.
以实验室中已有的反硝化菌株作为出发菌株, 对这株自然菌株进行氯化锂和紫外线照射诱变,得到2 株硝酸盐还原率高且亚硝酸盐积累量低的突变体L02 与Z06。在培养基中硝酸盐起始含量为1 mmol/L, 静置培养的条件下, 这2 株突变株对硝酸盐的还原率均能达到95%以上; 摇床条件下培养,其还原率也能达到94%以上, 且对...  相似文献   

17.
盐藻生长过程中氮磷利用与色素积累   总被引:17,自引:0,他引:17       下载免费PDF全文
考察了盐藻在氮浓度3mmol/L和0.59mmol/L两种条件下的生长、氮磷的利用以及色素积累的情况。结果表明氮浓度3mmol/L培养基有利于藻细胞的增值,最终藻体浓度大,稳定期可维持数日;0.59mmol/L培养基有利于细胞胡萝卜素积累,单位细胞胡萝卜素与叶绿素的比值达到12.3,是氮浓度3mmol/L培养基的两倍左右。盐藻细胞在生长初期快速利用氮源,之后即使培养基中仍有较高浓度的氮源,藻细胞也不再利用。两种条件下藻细胞对磷的利用情况相同。两种培养基中盐藻单位细胞叶绿素含量均先增加后减少,胡萝卜素含量均先降低后增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号