首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Pockmarks are observed worldwide along the continental margins and are inferred to be indicators of fluid expulsion. In the present study, we have analysed multibeam bathymetry and 2D/3D seismic data from the south-western Barents Sea, in relation to gas hydrate stability field and sediment type, to examine pockmark genesis. Seismic attributes of the sediments at and beneath the seafloor have been analysed to study the factors related to pockmark formation. The seabed depths in the study area are just outside the methane hydrate stability field, but the presence of higher order hydrocarbon gases such as ethane and/or propane in the expelled fluids may cause localised gas hydrate formation. The selective occurrence of pockmarks in regions of specific seabed sediment types indicates that their formation is more closely related to the type of seabed sediment than the source path of fluid venting such as faults. The presence of high acoustic backscatter amplitudes at the centre of the pockmarks indicates harder/coarser sediments, likely linked to removal of soft material. The pockmarks show high seismic reflection amplitudes along their fringes indicating deposition of carbonates precipitated from upwelling fluids. High seismic amplitude gas anomalies underlying the region away from the pockmarks indicate active fluid flow from hydrocarbon source rocks beneath, which is blocked by overlying less permeable formations. In areas of consolidated sediments, the upward flow is limited to open fault locations, while soft sediment areas allow diffused flow of fluids and hence formation of pockmarks over a wider region, through removal of fine-grained material.  相似文献   

2.
Over 25,300 seabed pockmarks were mapped from the Rosetta Channel region of the Western Nile Deep Sea Fan (NDSF) using concurrent High Resolution 2D, Chirp profiler and multibeam bathymetry data which spans the Holocene–Pleistocene period. Within the region, a pockmark field containing >13,800 pockmarks was analysed using spatial statistics to determine the distribution of pockmarks within the field. Pockmarks within the field are small (∼16 m diameter), shallow (∼0.5 m deep) circular depressions which formed within the last ∼ 6500 years. The fluid source for the field is identified as an accumulation/generation of gas beneath a hemipelagic seal c. 20–40 ms beneath the seabed. The position of the pockmarks is shown to be unrelated to the depth to the fluid source and an irregular high amplitude acoustic anomaly which is tentatively interpreted as a possible carbonate precipitate of biogenic microbial activity. Statistical spatial analysis of the field confirms the distribution of pockmarks is not random. An exclusion zone surrounding each individual pockmark is identified. The exclusion zone is a unique minimum radius around each pockmark which is not penetrated by any other pockmark. The exclusion zone works in unison with Self-Organised Criticality (SOC) in determining the spatial distribution of pockmarks within the field. The exclusion zone is interpreted as a pockmark “drainage cell”. A conceptual model for a pockmark drainage cell is proposed whereby pockmark formation dissipates a radius/area of fluid and overpressure, thereby preventing the formation of another pockmark within that cell. Consequently, pockmarks are observed to separate or produce anti-clustering tendencies within the field.  相似文献   

3.
Pockmarks off Big Sur, California   总被引:1,自引:0,他引:1  
A pockmark field was discovered during EM-300 multi-beam bathymetric surveys on the lower continental slope off the Big Sur coast of California. The field contains ∼1500 pockmarks which are between 130 and 260 m in diameter, and typically are 8-12 m deep located within a 560 km2 area. To investigate the origin of these features, piston cores were collected from both the interior and the flanks of the pockmarks, and remotely operated vehicle observation (ROV) video and sampling transects were conducted which passed through 19 of the pockmarks. The water column within and above the pockmarks was sampled for methane concentration. Piston cores and ROV collected push cores show that the pockmark field is composed of monotonous fine silts and clays and the cores within the pockmarks are indistinguishable from those outside the pockmarks. No evidence for either sediment winnowing or diagenetic alteration suggestive of fluid venting was obtained. 14C measurements of the organic carbon in the sediments indicate continuous sedimentation throughout the time resolution of the radiocarbon technique (∼45?000 yr BP), with a sedimentation rate of ∼10 cm per 1000 yr both within and between the pockmarks. Concentrations of methane, dissolved inorganic carbon, sulfate, chloride, and ammonium in pore water extracted from within the cores are generally similar in composition to seawater and show little change with depth, suggesting low biogeochemical activity. These pore water chemical gradients indicate that neither significant accumulations of gas are likely to exist in the shallow subsurface (∼100 m) nor is active fluid advection occurring within the sampled sediments. Taken together the data indicate that these pockmarks are more than 45?000 yr old, are presently inactive, and contain no indications of earlier fluid or gas venting events.  相似文献   

4.
About a decade ago, a large field of pockmarks (individual features up to 30 m in diameter and <2 m deep) was discovered in water depths of 15–40 m in the Bay of Concarneau in southern Brittany along the French Atlantic coast, covering an overall area of 36 km2 and characterised by unusually high pockmark densities in places reaching 2,500 per square kilometre. As revealed by geophysical swath and subbottom profile data ground-truthed by sediment cores collected during two campaigns in 2005 and 2009, the confines of the pockmark field show a spectacular spatial association with those of a vast expanse of tube mats formed by a benthic community of the suspension-feeding amphipod Haploops nirae. The present study complements those findings with subbottom chirp profiles, seabed sonar imagery and ultrasonic backscatter data from the water column acquired in April 2011. Results show that pockmark distribution is influenced by the thickness of Holocene deposits covering an Oligocene palaeo-valley system. Two groups of pockmarks were identified: (1) a group of large (>10 m diameter), more widely scattered pockmarks deeply rooted (up to 8 ms two-way travel time, TWTT) in the Holocene palaeo-valley infills, and (2) a group of smaller, more densely spaced pockmarks shallowly rooted (up to 2 ms TWTT) in interfluve deposits. Pockmark pore water analyses revealed high methane concentrations peaking at ca. 400 μl/l at 22 and 30 cm core depth in silty sediments immediately above Haploops-bearing layers. Water column data indicate acoustic plumes above pockmarks, implying ongoing pockmark activity. Pockmark gas and/or fluid expulsion resulting in increased turbidity (resuspension of, amongst others, freshly settled phytoplankton) could at least partly account for the strong spatial association with the phytoplankton-feeding H. nirae in the Bay of Concarneau, exacerbating impacts of anthropogenically induced eutrophication and growing offshore trawling activities. Tidally driven hydraulic pumping in gas-charged pockmarks represents a good candidate as large-scale short-term triggering mechanism of pockmark activation, in addition to episodic regional seismic activity.  相似文献   

5.
Seafloor pockmarks and subsurface chimney structures are common on the Norwegian continental margin north of the Storegga Slide scar. Such features are generally inferred to be associated with fluid expulsion, and imply overpressures in the subsurface. Six long gravity and piston cores taken from the interior of three pockmarks were compared with four other cores taken from the same area but outside the pockmarks, in order to elucidate the origins and stratigraphy of these features and their possible association with the Storegga Slide event. Sulfate gradients in cores from within pockmarks are less steep than those in cores from outside the pockmarks, which indicates that the flux of methane to the seafloor is presently smaller within the pockmarks than in the adjacent undisturbed sediments. This suggests that these subsurface chimneys are not fluid flow conduits lined with gas hydrate. Methane-derived authigenic carbonates and Bathymodiolus shells obtained from a pockmark at >6.3 m below the seafloor indicate that methane was previously available to support a chemosynthetic community within the pockmark. AMS 14C measurements of planktonic Foraminifera overlying and interlayered with the shell-bearing sediment indicate that methane was present on the seafloor within the pockmark prior to 14 ka 14C years b.p., i.e., well before the last major Storegga Slide event (7.2 ka 14C years b.p., or 8.2 ka calendar years b.p.). These observations provide evidence that overpressured fluids existed within the continental margin sediments off Norway during the last major advance of Pleistocene glaciation.  相似文献   

6.
Woolsey Mound, a carbonate/hydrate complex of cold seeps, vents, and seafloor pockmarks in Mississippi Canyon Block 118, is the site of the Gulf of Mexico Hydrates Research Consortium’s (GOMHRC) multi-sensor, multi-disciplinary, permanent seafloor observatory. In preparation for installing the observatory, the site has been studied through geophysical, biological, geological, and geochemical surveys. By integrating high-resolution, swath bathymetry, acoustic imagery, seafloor video, and shallow geological samples in a morpho-bio-geological model, we have identified a complex mound structure consisting of three main crater complexes: southeast, northwest, and southwest. Each crater complex is associated with a distinct fault. The crater complexes exhibit differences in morphology, bathymetric relief, exposed hydrates, fluid venting, sediment accumulation rates, sediment diagenesis, and biological community patterns. Spatial distribution of these attributes suggests that the complexes represent three different fluid flux regimes: the southeast complex seems to be an extinct or quiescent vent; the northwest complex exhibits young, vigorous activity; and the southwest complex is a mature, fully open vent. Geochemical evidence from pore-water gradients corroborates this model suggesting that upward fluid flux waxes and wanes over time and that microbial activity is sensitive to such change. Sulfate and methane concentrations show that microbial activity is patchy in distribution and is typically higher within the northwest and southwest complexes, but is diminished significantly over the southeast complex. Biological community composition corroborates the presence of distinct conditions at the three crater complexes. The fact that three different fluid flux regimes coexist within a single mound complex confirms the dynamic nature of the plumbing system that discharges gases into bottom water. Furthermore, the spatial distribution of bio-geological processes appears to be a valid indicator of multiple fluid flux regimes that coexist at the mound.  相似文献   

7.
Water tank experiments were performed in order to investigate the behaviour of currents in pockmarks. A particle-seeded flow was visualised and quantified with the aid of the particle tracking velocimetry technique. The employed analogue pockmark is a 1:100 idealised scale model of a natural pockmark, while the highest Reynolds number in the experiments was one order of magnitude smaller than in nature. Interaction of the flow with the pockmark geometry resulted in an upwelling current downstream of the pockmark centre, along with enhanced water turbulence in the depression. Scaling-up the experimental measurements, it is found that the upwelling would be capable of preventing the settling of particles as large as very fine sand. Furthermore, the increased turbulence would support the suspended fine material, which can thus be transported away before settling. The net effect for a variable-direction near-bed current over long periods of time would be to winnow the settling sediments and reduce the sedimentation rate in pockmarks. These mechanisms may be responsible for the observed lack of sediment infill and the typical presence of relatively coarser sediments inside pockmarks compared to the surrounding bed. In contrast, sediments transported as bedload are likely to be deposited in pockmarks because of the weakening of near-bed currents as well as lateral flow convergence associated with the upwelling. Bedload, however, may not be the dominant mode of sediment transport in areas covered by cohesive sediments, where pockmarks are found.  相似文献   

8.
The deflection of oceanic or tidal currents into pockmarks has been studied by both general three-dimensional computational fluid dynamics simulations and acoustic measurements in a number of pockmarks in the Inner Oslofjord, Norway. The modeling demonstrates upstream convergence of flow lines, followed by upwelling over the pockmark. This upwelling is an effect of deflected regional currents, not of expulsion of fluids or gas from the seafloor, and is sufficiently strong to prevent the settling of fine particles. The field measurements, although noisy at low vertical velocities, are consistent with the hypothesis of upwelling. The reduction in sedimentation rate inferred over the pockmarks (relative to that of the flat surrounding seabed) can explain the maintenance, or even deepening of pockmarks in the absence of fluid or gas seepage. The current pattern may also have consequences for the marine biology of pockmarks.  相似文献   

9.
Pockmarks in the inner Oslofjord,Norway   总被引:5,自引:3,他引:2  
Multibeam bathymetric surveys of the Inner Oslofjord, Norway have revealed a high density of pockmarks in the 179-km2 inner fjord area, which contains over 500 pockmarks of varying size, typically 20–50 m in diameter and 2–10 m deep. These pockmarks have been investigated with a variety of techniques, including acoustic subbottom profiling, sedimentological and geochemical analyses of cores, remotely operated vehicle observation, and morphometry. Both the distribution and shapes of the pockmarks suggest that they are related to structures in the bedrock underlying relatively thin (<50 m) unconsolidated glacial and postglacial sediments. The data provide no direct indication of a particular mode of pockmark formation, but release of large amounts of biogenic, shallow methane seems unlikely. Several lines of evidence point to a continuous process of pockmark formation followed by inactivity, with some pockmarks recently active whereas others have been inactive for a considerable time. Some pockmarks are characterised by coarse sediment in their centres. The density, variety and easy access make this pockmark field an ideal model area for pockmark research. John S. Gray is deceased.  相似文献   

10.
Based on the analysis of the high-resolution 3D seismic data from the SW Barents Sea we study the hydrocarbon plumbing system above the Snøhvit and Albatross gas field to investigate the geo-morphological manifestation and the dynamics of leakage from the reservoir. Fluid and gas escape to the seafloor is manifested in this area as mega-pockmarks 1–2 km-wide, large pockmarks (<100 m wide) and giant pockmarks 100–300 m-wide. The size of the mega pockmarks to the south of the study area may indicate more vigorous venting, whilst the northern fluid flow regime is probably characterised by a widespread fluid and gas release. Buried mega depressions and large-to-giant pockmarks are also identified on the base Quaternary and linked to deep and shallow faults as well as to seismic pipes. A high density of buried and seafloor giant pockmarks occur above a network of faults overlying an interpreted Bottom Simulating Reflector (BSR), whose depth coincides with the estimated base of the hydrate stability zone for a thermogenically derived gas hydrate with around 90 mol% methane. Deep regional faults provide a direct route for the ascending thermogenic fluids from the reservoir, which then leaked through the shallow faults linked to seismic pipes. It is proposed that the last episodic hydrocarbon leakage from the reservoir was responsible for providing a methane source for the formation of gas hydrates. We inferred that at least two temporally and dynamically different fluid and gas venting events took place in the study area: (1) prior to late Weichselian and recorded on the Upper Regional Unconformity (URU) and (2) following the Last Glacial Maximum between ∼17 and 16 cal ka BP and recorded on the present-day seafloor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号