首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
Sea floor morphology plays an important role in many scientific disciplines such as ecology, hydrology and sedimentology since geomorphic features can act as physical controls for e.g. species distribution, oceanographically flow-path estimations or sedimentation processes. In this study, we provide a terrain analysis of the Weddell Sea based on the 500 m × 500 m resolution bathymetry data provided by the mapping project IBCSO. Seventeen seabed classes are recognized at the sea floor based on a fine and broad scale Benthic Positioning Index calculation highlighting the diversity of the glacially carved shelf. Beside the morphology, slope, aspect, terrain rugosity and hillshade were calculated and supplied to the data archive PANGAEA. Applying zonal statistics to the geomorphic features identified unambiguously the shelf edge of the Weddell Sea with a width of 45–70 km and a mean depth of about 1200 m ranging from 270 m to 4300 m. A complex morphology of troughs, flat ridges, pinnacles, steep slopes, seamounts, outcrops, and narrow ridges, structures with approx. 5–7 km width, build an approx. 40–70 km long swath along the shelf edge. The study shows where scarps and depressions control the connection between shelf and abyssal and where high and low declination within the scarps e.g. occur. For evaluation purpose, 428 grain size samples were added to the seabed class map. The mean values of mud, sand and gravel of those samples falling into a single seabed class was calculated, respectively, and assigned to a sediment texture class according to a common sediment classification scheme.  相似文献   

2.
Recent habitat suitability models used to predict the occurrence of vulnerable marine species, particularly framework building cold-water corals, have identified terrain attributes such as slope and bathymetric position index as important predictive parameters. Due to their scale-dependent nature, a realistic representation of terrain attributes is crucial for the development of reliable habitat suitability models. In this paper, three known coral areas and a noncoral control area off the west coast of Ireland were chosen to assess quantitative and distributional differences between terrain attributes derived from bathymetry grids of varying resolution and information content. Correlation analysis identified consistent changes of terrain attributes as grain size was altered. Response characteristics and dimensions depended on terrain attribute types and the dominant morphological length-scales within the study areas. The subsequent effect on habitat suitability maps was demonstrated by preliminary models generated at different grain sizes. This study demonstrates that high resolution habitat suitability models based on terrain parameters derived from multibeam generated bathymetry are required to detect many of the topographical features found in Irish waters that are associated with coral. This has implications for marine spatial planning in the deep sea. Supplemental materials are available for this article. Go to the publisher's online edition of Marine Geodesy to view the free supplemental file.  相似文献   

3.
The aim of this study was to evaluate the erodibility of submarine coastal sediments for the purpose of modelling sediment dynamics in Mecklenburg Bay, south-western Baltic Sea. Erosion thresholds derived from experiments with a device microcosm on cores of fine sand (n=5, mean grain size=132 µm) and mud (n=5, medium silt size, mean=21 µm), collected at different times of the year, were compared to theoretical critical shear stress velocities based on grain-size measurements. For this purpose, a sedimentological map of natural surface sediments was constructed for the study area. Calculated values for critical shear stress velocities (u* cr-Hjulström ) are 1.2 cm s?1 for fine sand, and 3.75 cm s?1 for cohesive mud. At the mud station, erosion experiments showed an initial transport of the fluffy surface layer (u* cr-initial ) at a mean critical shear stress velocity of 0.39 cm s?1. Initial rolling transport at the fine sand station for single sand grains was recorded at values of 0.5 cm s?1. At higher shear stress velocities, the two sediment types showed diverging erosion behaviour. Measurable erosion (ε>5.0×10?6 kg m?2 s?1) of fine sand starts at a mean critical shear stress velocity (u* cr-erosion ) of 1.15 cm s?1 whereas fluffy surface material on mud cores was eroded at mean u* cr-erosion of 0.62 cm s?1. This indicates that measured erosion thresholds at the fine sand site fit well to calculated critical shear stress velocities whereas calculated erosion thresholds for cohesive mud are roughly 6 times higher than measured values. As erosion behaviour at the mud station was dominated by fluffy surface material, the comparability of measured and calculated threshold values may be reduced. The underlying silt-sized sediment itself was stable due to cohesive effects. This behaviour has to be taken into consideration by using sediment types instead of mean grain sizes for mapping and modelling sediment dynamics. A comparison of the near-bottom hydrodynamic conditions in the study area and experimentally derived critical shear stress velocities suggests that particle transport is controlled by storm events whereas under calm conditions shear stress velocities do not exceed the critical values.  相似文献   

4.
As well as range, the AltiKa altimeter provides estimates of wave height, Hs and normalized backscatter, σ0, that need to be assessed prior to statistics based on them being included in climate databases. An analysis of crossovers with the Jason-2 altimeter shows AltiKa Hs values to be biased high by only ?0.05m, with a standard deviation (s.d.) of ?0.1m for seven-point averages. AltiKa's σ0 values are 2.5–3 dB less than those from Jason-2, with a s.d. of ?0.3 dB, with these relatively large mismatches to be expected as AltiKa measures a different part of the spectrum of sea surface roughness. A new wind speed algorithm is developed through matching a histogram of σ0 values to that for Jason-2 wind speeds. The algorithm is robust to the use of short durations of data, with a consistency at roughly the 0.1 m/s level. Incorporation of Hs as a secondary input reduces the assessed error at crossovers from 0.82 m/s to 0.71 m/s. A comparison across all altimeter frequencies used to date demonstrates that the lowest wind speeds preferentially develop the shortest scales of roughness.  相似文献   

5.
Based on new multibeam bathymetric data, seismic-reflection profiles and side-scan sonar images, a great number of submarine failures of various types and sizes was identified along the northern margin of the Ligurian Basin and characterized with 3 distinct end-members concerning their location on the margin, sedimentary processes and possible triggering mechanisms. They include superficial landslides mainly located in the vicinity of the main mountain-supplied rivers and on the inner walls of canyons (typically smaller that 108 m3 in volume: Type 1), deep scars 100?C500 m high along the base of the continental slope (Type 2), and large-scale scars and Mass Transport Deposits (MTDs) affecting the upper part of the slope (Type 3 failures). The MTDs are located in different environmental contexts of the margin, including the deep Var Sedimentary Ridge (VSR) and the upper part of the continental slope in the Gulf of Genova (Finale Slide and Portofino Slide), with volumes of missing sediment reaching up to 1.5 × 109 m3. High sedimentation rates related to hyperpycnal flows, faults and earthquake activity, together with sea-level fluctuations are the main factors invoked to explain the distribution and sizes of these different failure types.  相似文献   

6.
It is essential to maximize the information that can be gathered in deep-sea studies by thoroughly assessing sample processing methods. Nematodes are commonly used for the study and monitoring of deep-sea floor habitats, but the potential effects of different methods on the quantification of community attributes remain to be quantified. Here, we consider key methodological elements by comparing the effect of sediment depth and mesh size (63, 45, and 32 μm) on: (1) estimates of nematode community attributes, and (2) the sampling effort required to detect changes in these attributes at a bathyal site on the Chatham Rise, south-west Pacific Ocean. The 63 μm mesh retained most (95%) of the nematode biomass but a lower proportion (53–71%) of the nematode abundance. Retention efficiency of common species on this mesh ranged from 12 (Hapalomus sp.) to >88% (Comesomatidae spp.). The 63 μm mesh yielded significantly lower diversity estimates than the finer meshes, and failed to detect differences in community structure observed using the 45 and 32 μm mesh sizes. Sediment depth had a substantial effect on all measured community attributes, highlighting the importance of sufficient core penetration into the sediment (≥5 cm) for adequately characterizing nematode distribution. Power analysis showed that using a 32 μm mesh and deepest core penetration led to relatively few (3–8) samples being required to detect significant changes in nematode diversity indices relative to coarser mesh sizes. Characterization of nematode diversity and community structure using appropriate and robust methods of sampling is suggested as a sensitive and efficient tool for the assessment of anthropogenic impacts on deep-sea ecosystems.  相似文献   

7.
The basic functionality and performance of a new Schlumberger active wireline heave compensation system on the JOIDES Resolution was evaluated during the sea trial and a 3-year period of the IODP Phase II operations. A suite of software programs was developed to enable real-time monitoring of the dynamics of logging tools, and assess the efficiency of wireline heave compensation during downhole operations. The evaluation of the system effectiveness was performed under normal logging conditions as well as during stationary tests. Logging data were analyzed for their overall quality and repeatability, and to assess the reliability of high-resolution data such as formation microscanner (FMS) electrical images. This revealed that the system reduces 65–80 % of displacement or 88–98 % variance of downhole tool motion in stationary mode under heave conditions of ±0.2–1.5 m and water depths of 300–4,500 m in open holes. Under similar water/heave conditions, the compensator system reduces tool displacement by 50–60 %, or 75–84 % variance in downhole tool motion during normal logging operations. Such compensation efficiency (CE) is comparable to previous compensation systems, but using advanced and upgradeable technologies, and provides 50–85 % heave motion and heave variance attenuation. Moreover, logging down/up at low speeds (300–600 m/h) reduces the system’s CE values by 15–20 %, and logging down at higher speeds (1,000–1,200 m/h) eliminates CE values by 55–65 %. Considering the high quality of the logging data collected, it is concluded that the new system can provide an improved level of compensation over previous systems. Also, if practically feasible, future integration of downhole cable dynamics as an input feedback into the current system could further improve its compensation efficiency during logging operations.  相似文献   

8.
A spectacular hummocky topography was discovered offshore of the south-eastern slope of the Nisyros island volcano in the eastern sector of the Aegean volcanic arc in 2000–2001, using multibeam bathymetric mapping and seismic profiling, and interpreted as part of a volcanic debris avalanche originating onland. During E/V Nautilus cruise NA011 in 2010, a detailed side-scan sonar and ROV exploration aimed at evaluating the surface morphology of this avalanche field. Combining the new data with selected older datasets reveals that the debris avalanche is characterized by numerous (at least 78) variously sized and shaped hummocks. Some of these are distinctly round, either scattered or aligned in groups, whereas others are elongated in the form of ridges. This is consistent with existing models accounting for variations in the longitudinal and lateral velocity ratio of landslides. Maximum dimensions reach 60 m in height above the sea bottom, 220 m in length and 230 m in width. The structures outline a large tongue-shaped, submarine hummock field of about 22.2 km2, approx. 4.8 km wide and 4.6 km long and with an estimated volume of 0.277 km3. Due to its characteristic shape, the collapsed volcanic flank is interpreted to represent a singular failing event, involving a rapid and virtually instantaneous downslope movement of the slide mass into the sea. Indeed, the H/L (height of 280 m vs. run-out of 7 km) ratio for the Nisyros slide is 0.04; plotted against volume, this falls within the theoretical bounds as well as measured values typical of submarine landslides. The timing of the event is probably related to the extrusion of Nikia lavas and their subsequent failure and formation of a main scarp observed at about 120 m depth on an 8-km-long seismic profile and a map of slope angle distribution, at the depth where the palaeo-coastline was located 40 ka ago. An inferred age of ca. 40 ka for the avalanche awaits confirmation based on dating of core material.  相似文献   

9.
光谱信息数据库系统设计与开发   总被引:1,自引:0,他引:1  
尽管我国已建立了地物波谱数据库系统,但针对地形图测制与更新中地形要素属性信息分类提取的实用化波谱数据库系统还未见报道。以地形信息波谱数据的知识化、定量化和实用化为目标,利用ORACLE数据库和VC++编程技术,研制开发了集地物光谱数据采集、数据转换、检索查询、可视化分析及包络线消除等功能于一体的实用化数据库系统,为地形要素属性信息自动分类提供了技术支撑和实验环境。  相似文献   

10.
万山群岛海域生态环境日益恶化、渔业资源持续衰退,因此建设万山群岛海洋牧场,修复海域生态环境、实现渔业资源可持续利用迫在眉睫。针对现阶段基于海洋生物资源的海洋牧场适宜性评估的研究较少,本研究利用渔业资源调查和全球物种数据库记录数据及13个环境因素数据,采用物种分布模型MaxEnt对选择的白姑鱼、日本金线鱼、红星梭子蟹和浅缝骨螺潜在分布区进行预测,探讨海洋生物地理分布与海洋环境因素之间的关系进而进行万山海洋牧场生境适宜性评估,结果表明:(1)各模型AUC值均大于0.9,说明构建的模型对这些物种潜在分布的模拟效果较好,后续可采用MaxEnt模型对4种生物的栖息地分布区进行预测;(2)海底浮游植物密度、海底温度以及海底硅酸盐浓度是影响这4种海洋生物栖息地分布的关键环境因子;(3)基于该4种海洋物种MaxEnt模型的HSI分布区所存在重叠区域来看,海洋牧场拟建设区域应为纬度21.85°N~22.15°N,经度113.6°E~114.2°E。研究结果可为万山海洋牧场规划和建设提供科学依据。  相似文献   

11.
Near-bottom magnetic prospecting, which provides useful information to study shallow geological structures, is an efficient method for investigating active and inactive hydrothermal fields and researching the structure of hydrothermal systems. We collected near-bottom magnetic data in the Longqi hydrothermal area on the Southwest Indian Ridge using the Autonomous Benthic Explorer in 2007 and set up a processing system for magnetic data calibration. By removing the influence of terrain on magnetic anomalies and using the intensity of the spatial differential vector (ISDV) method, we inferred the presence of an N–S-trending fault and estimated its crush zone to be about 120 m wide and >2 km long along the known hydrothermal vents. This inferred fault is consistent with the precise topography mapped during the ABE 201 dive. The fault may be connected to a known detachment fault and form part of a hydrothermal channel. We delineated the hydrothermal alteration zone using the ISDV method and conclude that demagnetization was induced by hydrothermal alteration.  相似文献   

12.
We have developed a new system for real-time observation of tsunamis and crustal deformation using a seafloor pressure sensor, an array of seafloor transponders and a Precise Point Positioning (PPP ) system on a buoy. The seafloor pressure sensor and the PPP system detect tsunamis, and the pressure sensor and the transponder array measure crustal deformation. The system is designed to be capable of detecting tsunami and vertical crustal deformation of ±8 m with a resolution of less than 5 mm. A noteworthy innovation in our system is its resistance to disturbance by strong ocean currents. Seismogenic zones near Japan lie in areas of strong currents like the Kuroshio, which reaches speeds of approximately 5.5 kt (2.8 m/s) around the Nankai Trough. Our techniques include slack mooring and new acoustic transmission methods using double pulses for sending tsunami data. The slack ratio can be specified for the environment of the deployment location. We can adjust slack ratios, rope lengths, anchor weights and buoy sizes to control the ability of the buoy system to maintain freeboard. The measured pressure data is converted to time difference of a double pulse and this simple method is effective to save battery to transmit data. The time difference of the double pulse has error due to move of the buoy and fluctuation of the seawater environment. We set a wire-end station 1,000 m beneath the buoy to minimize the error. The crustal deformation data is measured by acoustic ranging between the buoy and six transponders on the seafloor. All pressure and crustal deformation data are sent to land station in real-time using iridium communication.  相似文献   

13.
In this work, the vertical structure and variability along the western boundary of the Philippines are investigated using direct observations from acoustic Doppler current profiler (ADCP), Doppler volume sampler (DVS) and Aanderaa Seaguard instruments, which are mounted on a subsurface mooring deployed at 8°N, 127°3′E. In climatology, the southward Mindanao Current (MC) and northward Mindanao Undercurrent (MUC) play a dominant role in the upper layer. The mean currents at 1200 and 3500 m flow northward, whereas those at 2500 and 5600 m flow equatorward. The power spectral density (PSD) shows that an intraseasonal signal of 60–80 days is common from the sea surface to the bottom. The semiannual signals are strongest in the MUC layer, and the amplitude then decreases with depth to 3500 m. The seasonal variability at 2500 and 5600 m is similar between the two depths, suggesting a southward current in winter and northward flow in autumn. The current at 3500 m exhibits a northward direction in spring and southward flow in winter. In addition, the linear correlations between mooring data and altimetry products indicate that the variations in surface meridional currents along the western boundary of the Pacific Ocean can reach the bottom via low-frequency processes. The vertical-mode decomposition for observations indicates that the first four modes can effectively capture the original data. The relative contributions of different modes exhibit seasonal variability. The first baroclinic mode plays a dominant role in spring and autumn. In winter and summer, its contribution decreases and becomes comparable to that of the other modes.  相似文献   

14.
Geographical patterning of fish diversity across coral reef seascapes is driven by many interacting environmental variables operating at multiple spatial scales. Identifying suites of variables that explain spatial patterns of fish diversity is central to ecology and informs prioritization in marine conservation, particularly where protection of the highest biodiversity coral reefs is a primary goal. However, the relative importance of conventional within‐patch variables versus the spatial patterning of the surrounding seascape is still unclear in the ecology of fishes on coral reefs. A multi‐scale seascape approach derived from landscape ecology was applied to quantify and examine the explanatory roles of a wide range of variables at different spatial scales including: (i) within‐patch structural attributes from field data (5 × 1 m2 sample unit area); (ii) geometry of the seascape from sea‐floor maps (10–50 m radius seascape units); and wave exposure from a hydrodynamic model (240 m resolution) for 251 coral reef survey sites in the US Virgin Islands. Non‐parametric statistical learning techniques using single classification and regression trees (CART) and ensembles of boosted regression trees (TreeNet) were used to: (i) model interactions; and (ii) identify the most influential environmental predictors from multiple data types (diver surveys, terrain models, habitat maps) across multiple spatial scales (1–196,350 m2). Classifying the continuous response variables into a binary category and instead predicting the presence and absence of fish species richness hotspots (top 10% richness) increased the predictive performance of the models. The best CART model predicted fish richness hotspots with 80% accuracy. The statistical interaction between abundance of living scleractinian corals measured by SCUBA divers within 1 m2 quadrats and the topographical complexity of the surrounding sea‐floor terrain (150 m radius seascape unit) measured from a high‐resolution terrain model best explained geographical patterns in fish richness hotspots. The comparatively poor performance of models predicting continuous variability in fish diversity across the seascape could be a result of a decoupling of the diversity‐environment relationship owing to structural degradation leading to a widespread homogenization of coral reef structure.  相似文献   

15.
Modeling of long-wavelength gravity anomaly is crucial for bathymetry inversion with a gravity-geologic method. We propose a new method, named as iGGM, to approximate the long-wavelength gravity anomalies by using a finite element method based on an adaptive triangular mesh which is constructed by uneven control points. The mesh size is suitably controlled to ensure that there are several control points in each grid. By using iGGM, the bathymetry in the South China Sea (Test Area #1: 112°E–119°E, 12°N–20°N) and East China Sea (Test Area #2: 125°E–130°E, 25°N–30°N) is estimated. The performance of the method was evaluated by comparing the predictions with Earth topographical database 1 (ETOPO1) model and shipborne depths in the test points. Results show that the depths derived by iGGM have a strong correlation with the shipborne depths. In the test points, the mean values of their differences are smaller than 10 m. The standard deviations of their differences are smaller than 120 m and their correlation is stronger than 0.98. Meanwhile, the results provided by the iGGM model are comparable with that obtained by the ETOPO1 model, e.g., the differences between iGGM and ETOPO1 models in test points for Test Areas 1 and 2 are 116 and 70 m in standard deviation, respectively.  相似文献   

16.
17.
The east coast of the Indian Peninsula experiences the effects of a devastating cyclone at least annually. The Thane cyclone of 29–30 December 2011 has been once such event that resulted in significant damages along the coastline of Tamil Nadu on the southeast coast of India (13° 9′ 10′ N and 80° 21′E). Waves as high as 8–12 m in a water depth of 20 m have been measured. Such huge waves, combined with a storm surge of 0.5 m, lead to severe damages to coastal structures during the passage of the cyclone. As a part of an exercise in assessing the sediment transport rates through measurements of the hydrodynamic driving parameters along the coast of major port of Chennai instruments were deployed for the measurement of waves and flow field. The measurement campaign was carried out at a location of about 120 km north of the cyclone made landfall. The ENCEP wind data formed the input for executing the WAM model for the simulation of wave characteristics, which are compared with the measured wave data. The agreement between them is found to be good. The details of the analysis of the results are presented and discussed in this paper.  相似文献   

18.
Scaling of fault attributes: A review   总被引:3,自引:0,他引:3  
The present paper reviews our current understanding of fault dimensions and their scaling laws, with special focus on faults in siliciclastic rocks. The aim is to provide a comprehensive overview of recent research in order to identify strengths and challenges related to the way this topic is being addressed. We here investigate the statistical distributions of different fault attributes, e.g. fault length, displacement, damage zone width, core thickness at different scales and tectonic regimes. Biases related to sampling (resolution effect) and statistical visualization of data are discussed. The interrelationship between different faults attributes is addressed, e.g. fault displacement versus length, and fault core thickness and fault damage zone width. The results of this study show that global statistical relationships for fault attribute populations may not be valid, since the fault attributes at different scales behave differently and the compiled data on fault displacement-length exhibit breaks in the transition between faults at different scales, i.e. from small to medium scale faults at ∼1 m displacement and from medium to large scale faults at ∼1000 m displacement. This may also be the case for fault displacement-core thickness and fault displacement-damage zone width, as slight variation in the relationship can be observed between attribute populations derived from small- and medium-size faults at ∼1 m displacement. These differences may indicate the existence of characteristic length scales in fault populations, which could imply a hierarchical ordering of fault systems. The majority of data in our compiled database show no clear distinction between rocks from different lithologies and tectonic settings. Finally, the mechanical aspects of the processes of faulting with respect to the scaling relationships are discussed. Conceptual diagrams for the evolutionary processes of faulting at different scales based on the observed relationships on the plotted datasets of faults’ main attributes (fault displacement, length, core thickness and damage zone width) are proposed.  相似文献   

19.
A long-term mean turbulent mixing in the depth range of 200–1000 m produced by breaking of internal waves across the middle and low latitudes (40°S–40°N) of the Pacific between 160°W and 140°W is examined by applying fine-scale parameterization depending on strain variance to 8-year (2005–2012) Argo float data. Results show that elevated turbulent dissipation rate (ε) is related to significant topographic regions, along the equator, and on the northern side of 20°N spanning to 24°N throughout the depth range. Two patterns of latitudinal variations of ε and the corresponding diffusivity (Kρ) for different depth ranges are confirmed: One is for 200–450 m with significant larger ε and Kρ, and the maximum values are obtained between 4°N and 6°N, where eddy kinetic energy also reaches its maximum; The other is for 350–1000 m with smaller ε and Kρ, and the maximum values are obtained near the equator, and between 18°S and 12°S in the southern hemisphere, 20°N and 22°N in the northern hemisphere. Most elevated turbulent dissipation in the depth range of 350–1000 m relates to rough bottom roughness (correlation coefficient?=?0.63), excluding the equatorial area. In the temporal mean field, energy flux from surface wind stress to inertial motions is not significant enough to account for the relatively intensified turbulent mixing in the upper layer.  相似文献   

20.
A centrifugal model test was performed for an embankment backfilled with lime-stabilized soil on an undisturbed marine clay foundation. During the test, in-flight photographs were captured, settlements were measured by displacement sensors, and displacement contours were obtained from the markers installed on the front face of the model foundation. These test data were analyzed and discussed in this paper. The test results show that the embankment was stable at 2 m height but ruptured during the loading from 2 to 4 m height. The ratio of the maximum horizontal displacement increment to the ground settlement increment at the embankment centerline suddenly increased during the loading from 4 to 6 m height, indicating the failure of the foundation. This result is in agreement with the observation of the centrifugal test and the calculated Terzaghi ultimate bearing capacity under an undrained condition. Considering the brittle behavior and low tensile strength of the lime-stabilized soil, it is recommended that the lime-stabilized soil should only be used for a low embankment with a height less than 2 meters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号