首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
椒江河口悬沙浓度垂向分布和泥跃层发育   总被引:14,自引:2,他引:12       下载免费PDF全文
论述了椒江河口粘性细颗粒泥沙洪、枯季及大、小潮悬沙浓度分布.椒江河口水体高度混浊,近底层悬沙浓度可达71kg/m3以上.在河口最大混浊带,小潮期水体层化现象明显,悬沙浓度垂向分布呈三层结构,即活动悬沙层、泥跃层和浮泥层.泥跃层是水体中悬沙浓度分布剧变层,梯度大.在河口咸、淡水互相作用下,悬沙浓度大于3kg/m3、盐度在4~16及水流速度中等的条件下泥跃层发育.  相似文献   

2.
鸭绿江洪季的河口最大混浊带   总被引:4,自引:0,他引:4  
对 1 994年 8月在鸭绿江河口的水文和悬浮泥沙的观测资料进行分析。结果表明 ,在洪季鸭绿江河口的最大混浊带 ,出现在第一个河口锋面内侧。它的核心处盐度小于 1 ,从上游带入河口的细颗粒泥沙多数被河口第一锋面截留 ,还有一部分上游来沙穿过该锋面 ,聚集在河口第一和第二锋面之间。垂向密度环流作用和絮凝作用在鸭绿江洪季最大混浊带的维持过程中起着主导作用  相似文献   

3.
本文根据浙江椒江、江苏灌河以及长江等河口的实测水文泥沙资料,分析河口猢主其对河口泥沙淤积的影响。文章指出,因河口锋形成机理上的差异,锋面可随潮移动,也可稳定不动,但其派生的锋区环流和锋区细颗粒泥沙絮凝沉积,能促使河泥沙汇集,发育河口最大浑浊带。  相似文献   

4.
径流量和海平面变化对河口最大浑浊带的影响   总被引:2,自引:0,他引:2  
应用改进的ECOM模式,耦合泥沙输运方程,研究径流量和海平面变化对河口最大浑浊带的影响.河口最大浑浊带位于滞流点处,底层上下游余流均向该处输运泥沙,造成该处泥沙汇合,而由流场辐合产生的上升流又使该处的泥沙不易落淤.由于盐水入侵带来的高盐水位于北岸的底层,其斜压效应使底层的横向环流由北向南流动,把底层高浓度的泥沙向南岸平流,使得最大浑浊带位于南岸.研究河口最大浑浊带现象必须使用三维泥沙输运模式.在径流量增大的情况下,与控制试验相比底层向陆的密度流减弱,滞流点下移,导致最大浑浊带也下移;因上游来沙量增加,在最大浑浊带中心和河口拦门沙处悬浮泥沙浓度趋于增加.在径流量减少的情况下,最大浑浊带的变化趋势与径流量增大情况的结果相反.在海平面上升的情况下,拦门沙区域底层向陆的密度流趋于增强,滞流点上移,最大浑浊带也相应向上游移动;最大浑浊带中心处泥沙浓度趋于增大,但口门拦门沙处泥沙浓度趋于减小.径流量和海平面变化对最大浑浊带影响明显.  相似文献   

5.
河口最大浑浊带形成的动力模式和数值试验   总被引:8,自引:0,他引:8  
应用改进的ECOM模式,耦合泥沙输运模型,研究理想河口最大浑浊带形成的动力机制。河口最大浑浊带位于滞流点处,上下游余流均向该处输运泥沙,造成该处泥沙汇合,而由流场辐合产生的上升流又使该处的泥沙不易落淤。南岸(河口东向)的泥沙浓度比北岸高,最大浑浊带位于南岸,这是由于盐水入侵带来的高盐水位于北岸的底层,其斜压效应使底层的环流由北向南流动,把底层高浓度的泥沙向南岸平流,聚集于南岸底层。除上游河流泥沙来源外,强大的涨落潮流冲刷床面,使沉降于床面的泥沙再次悬浮,成为余流输运泥沙的来源之一。  相似文献   

6.
珠江河口伶仃洋最大混浊带研究   总被引:12,自引:1,他引:12  
河口淤积常与最大混浊带的发育有关。自从Glangeaud(1938,1941)提出最大混浊带这一概念以来,世界上许多研究者开展了对这一问题的研究。我国近年来也对长江和瓯江河口最大混浊带进行了探讨。 1975年以来,先后在伶仃洋进行了两次较大规模的水文调查,不少研究还从不同角度对伶仃洋的动力地形和沉积问题进行分析,但有关伶仃洋最大混浊带的研究,到目前为止,还未有报道。本文即试图从河口最大混浊带的角度对伶仃洋东、西槽的淤积问题进行研讨。  相似文献   

7.
珠江口的黏性泥沙输运对区域海洋工程和河口海洋环境有着重要的影响。本文利用SELFE模型,针对珠江河口海域建立了一个采用非结构三角形网格的三维斜压水动力模型,可耦合模拟海流、潮流及风海流水动力环境,并在此基础上开发了包括底床模块的黏性泥沙输运模型。模拟结果与实测值验证较好,再现了丰水期珠江河口的泥沙输运特征以及最大浑浊带的变化和分布特点。研究表明,丰水期珠江口悬沙质量浓度西侧大于东侧,泥沙主要来自河口上游。河口浅滩上会形成最大浑浊带,最大质量浓度可达0.5 g/L。珠江口最大浑浊带的形成主要受潮动力、重力环流及泥沙再悬浮和沉积过程影响,其中泥沙再悬浮和沉积过程对中滩的最大浑浊带影响显著,而重力环流作用对西滩的最大浑浊带影响显著。  相似文献   

8.
中国强混合河口最大浑浊区成因研究   总被引:13,自引:2,他引:13       下载免费PDF全文
孙志林 《海洋学报》1993,15(3):63-72
最大浑浊区在潮汐河口普遍存在,并对河床冲淤演变有重大影响.本文在笔者多年研究基础上,首次系统地探讨我国强混合河口最大浑浊区的形成机理.认为此类河口形成最大浑浊区的根本原因在于床面水流切应力(或流速)有规律地先沿程增强继而递减,而潮波不对称引起的相向净输沙是导致泥沙在最大浑浊区聚集的重要因子,絮凝沉降则加强了泥沙的这种滞留富集趋势.此外,细泥沙补给是最大浑浊区发育的物质基础,并主要控制其浓度和规模.  相似文献   

9.
根据汛期黄河口多船同步水文泥沙实测资料,对黄河口最大浑浊带特征及其时空演变进行研究,得出汛期黄河口最大浑浊带在整个潮周期始终存在,其含沙量和范围形态受潮相的控制,在落急和落平时最为发育.文中还探讨了黄河口最大浑浊带的形成机制,指出其形成主要受河流携带大量泥沙、泥沙异重流、河口密度环流及湍流的作用.  相似文献   

10.
椒江河口高混浊水混合过程分析   总被引:4,自引:0,他引:4  
董礼先 《海洋与湖沼》1998,29(5):535-541
根据1991年洪季的实测资料分析了高度浑浊的椒江河口的混合过程,并探讨了水动力学和沉积动力学因素对河口混合的重要作用,调查研究表明,椒江河口最大浑浊带下的高浑浊水-浮泥层厚达1m,高浑浊水-浮泥层与上覆水之间是泥跃层,泥跃层与高混浊水-浮泥层对水体稳定的作用比同期观测到的盐跃层大17倍以上,当高浑浊水-浮泥层被侵蚀时,在高浑浊水-浮泥层中的低盐水体又增加了水体的垂向混合能力。  相似文献   

11.
Fluid mud in estuarine turbidity maximum zones (TMZ) can pose considerable navigation risks due to potentially substantial reductions in nautical depth, coupled with an inherent difficulty of detection by conventional echo-sounders. Despite intensive research efforts, however, our knowledge about the spatial and temporal dynamics of fluid mud is still not sufficient. In this study, the combined use of a side-scan sonar (Sportscan®, Imagenex) and a parametric sub-bottom profiler (SES-2000®, Innomar Technology GmbH) has proved successful for high-resolution fluid mud detection and volumetric quantification in an estuarine environment. In 2004 and 2005, repeated surveys were conducted in the navigation channel of the upper meso- to lower macrotidal Weser estuary TMZ (German North Sea coast) at different tidal stages and river discharges. Current velocity data were simultaneously collected by 1,200-kHz broadband ADCP (RDInstruments) measurements. Ground-truthing was carried out by means of grab sampling and gravity coring, adapted to fluid mud conditions. It was found that fluid mud occurrence in the Weser estuary is highly variable on time scales of a few hours and spatial scales of several metres. The riverbed is characterised by sand and mud deposits, and a complex morphology including subaqueous dunes and smooth bed deposits intermittently overlain by fluid mud. Thus, a continuous, coherent fluid mud body covering the entire TMZ riverbed was not observed. Rather, spatial distribution was patchy and highly dependent on suspended particulate matter (SPM) concentrations in the water column, as a result of which local fluid mud deposits varied in thickness from centimetres to metres. The formation of fluid mud was largely restricted to slack water, although slack-water conditions were not necessarily associated with large-scale fluid mud appearance. Advective SPM transport of resuspended fluid mud seems to be the most plausible explanation for the high spatial variability observed, even between two successive tides. The amount of fluid mud deposited and resuspended in the course of a tidal cycle can reach several 10s of tons even in small riverbed depressions.  相似文献   

12.
The propagation characteristics of fluid mud turbidity currents were investigated experimentally and theoretically. Parameterizations for propagation phase transition times from slumping to self-similar and self-similar to viscous phases are proposed. Predictive capabilities of different mathematical models that fall into three different modeling approaches (force-balance, box, shallow water) were evaluated for fluid mud turbidity current propagation using our experimental observations. For the slumping and self-similar phases, the box and force-balance models showed superior predictive capabilities than the one-layer shallow water models with deep ambient condition. Fluid mud turbidity currents have a non-Newtonian rheology and their transition and propagation characteristics in the viscous phase differ vastly from the Newtonian currents. We derived and presented a viscous force-balance expression for the propagation of a non-Newtonian power-law fluid current. We then experimentally evaluated the predictive capability of this force-balance and the viscous shallow water model by Di Federico et al. (2006). Both models' predictions are observed to be in notably good agreement with the experimental data. The results of this study are expected to be useful for preliminary swift calculations of the fluid mud turbidity current propagation characteristics as well as in deciding whether more detailed calculations at the expense of complexity are required.  相似文献   

13.
采用水槽实验和现场实测相结合的方法,在一个时均流速为零的无流水槽试验中采用振动发生器所产生脉动水流,探究不同的压力脉动对于底床泥沙悬扬的影响,分析水体的垂向浊度分布及相应的脉动水压力等,探明压力脉动对浮泥悬扬的重要性,为揭示风生波浪造成的压力脉动与浮泥悬扬间的固有响应关系奠定基础。  相似文献   

14.
In order to clarify the distribution and variation of silt and fluid mud in the Waiganmen shallow section of the 50000-ton intake channel of the Xiangshan Port, and to understand the influence of the channel excavation on the surrounding flow conditions and the strength of the backsilting, especially the impact of typhoon on the sudden silting of the channel, so as to demonstrate the feasibility and stability of the channel excavation. The fluid mud,hydraulic, sediment and topographic measurements were carried out in the study area, and the thickness of the fluid mud layers, tidal current, sediment and topographic data were obtained. Dual-frequency sounder, gamma-ray densitometer and SILAS navigational fluid mud measurement system were used to monitor the fluid mud, and the results were compared and verified. The adaptability and accuracy of the three methods were analyzed. The SILAS navigational continuous density measurement system and gamma-ray fixed-point fluid mud measurement are used to detect the density, thickness and variation of the fluid mud accurately. Based on the hydrological observation data,the process of erosion and deposition in excavation channel and its influence mechanism are analyzed, and the distribution characteristics and evolution law of siltation in engineering area are given in the form of empirical formula. The research shows that the super typhoon can produce large siltation, which results in sudden siltation of the channel. The tidal current is the main dynamic factor of the change of erosion and siltation of the excavation trench. Under the influence of reciprocating tidal current and excavation topography, the trial excavation trench is silted on the whole. There is fluid mud in the monitoring area of the trench, and the distribution of fluid mud is different in space. The thickness of the fluid mud at the bottom of the trench is generally larger than that outside the trench and the slope of the trench, and the siltation of the trench tends to be slow. The research results can provide scientific evaluation for channel excavation and maintenance, and support for the implementation of the project.  相似文献   

15.
The beam attenuation coefficient, organic carbon (POC) and organic nitrogen (PON) contents of suspended materials in Etauchi Bay, which has little inflow of river water as well as very weak tidal current (maximum speed: 6.5cm·sec−1), were measured as a function of depth for all seasons to understand a seasonal variation of bottom turbidity layer. In spring and summer, the beam attenuation coefficient in bottom layer and POC and PON contents of suspended materials in the surface water layer increased with time, which brought the occurrence of the bottom turbidity layer. From autumn to winter, however, their concentrations became low and constant over the whole depth almost independent of time. As a result, the bottom turbidity layer disappeared in winter and beam attenuation coefficient became constant over the whole depth. From these results, it may be considered that the bottom turbidity layer was produced by phytodetritus brought from surface water layer, rather than by resuspension of bottom sediment in Etauchi Bay.  相似文献   

16.
长江河口最大浑浊带含沙量垂线分布状态的分析   总被引:2,自引:0,他引:2  
计算表明,潮泵效应在长江河口最大浑浊带悬沙输移中起着重要的作用。含沙量垂线分布的潮周期变化反映悬沙与床沙之间存在双向交换。据此讨论了最大浑浊带与拦门沙的关系。  相似文献   

17.
Over a 1-year period, field and satellite measurements of surface water turbidity were combined in order to study the dynamics of the turbidity maximum zone (TM) in a macrotidal estuary (the Gironde, France). Four fixed platforms equipped with turbidity sensors calibrated to give the suspended particulate matter (SPM) concentration provided continuous information in the upper estuary. Full resolution data recorded by the moderate resolution imaging spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellite platforms provided information in the central and lower estuary twice a day (depending on cloud cover). Field data were used to validate a recently developed SPM quantification algorithm applied to the MODIS ‘surface reflectance’ product. The algorithm is based on a relationship between the SPM concentration and a reflectance ratio of MODIS bands 2 (near-infrared) and 1 (red). Based on 62 and 75 match-ups identified in 2005 with MODIS Terra and Aqua data, the relative uncertainty of the algorithm applied to these sensors was found to be 22 and 18%, respectively.Field measurements showed the tidal variations of turbidity in the upper estuary, while monthly-averaged MODIS satellite data complemented by field data allowed observing the monthly movements of the TM in the whole estuary. The trapping of fine sediments occurred in the upper estuary during the period of low river flow. This resulted in the formation of a highly concentrated TM during a 4-month period. With increasing river flow, the TM moved rapidly to the central estuary. A part of the TM detached, moved progressively in the lower estuary and was finally either massively exported to the ocean during peak floods or temporary trapped (settled) on intertidal mudflats. The massive export to the ocean was apparently the result of combined favorable environmental conditions: presence of fluid mud near the mouth, high river flow, high tides and limited wind speeds. The mean SPM concentration within surface waters of the whole estuary showed strong seasonal variations but remained almost unchanged on a 1-year-basis. These observations suggest that the masses of suspended sediments exported toward the ocean and supplied by the rivers were almost equivalent during the year investigated (2005). Results show the usefulness of information extracted from combined field and current ocean color satellite data in order to monitor the transport of suspended particles in coastal and estuarine waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号