首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Marine Geology》2005,216(4):249-263
Bottom sediments collected in the Northwest (NW) Pacific Ocean in 1997 were analysed for 90Sr, 137Cs, 239,240Pu and 241Am contents to determine their distribution patterns, inventories and sources. Enhanced inventories of 239,240Pu and 241Am were observed in the latitudinal belts of 10–20°N and 30–40°N, which correspond to major areas of local (tropospheric) and global (stratospheric) fallout (with a contribution from local fallout), respectively. The sediment inventory of 239,240Pu near the Bikini Atoll exceeded its overlying water inventory, however, in the mid-latitudes, more than 70% of 239,240Pu still remains in the water column. 241Am inventories in sediments exceeded that of the water column for the entire NW Pacific Ocean. Higher 137Cs and 90Sr sediment inventories in the latitudinal belt of 30–40°N are due to global fallout, and they account for about 10% and less than 5% of the water column inventories, respectively. The observed activity ratios of 137Cs/90Sr, 238Pu/239,240Pu and 241Am/239,240Pu in sediment were at some stations higher than the global fallout ratios due to contributions from local fallout and due to specific processes in the water column. Two end-member mixing model based on the 240Pu/239Pu atom ratios observed in global and local fallout yielded ∼60% contribution of the local fallout in the bottom sediments near the Bikini Atoll. The upward decrease in the 240Pu/239Pu atom ratios in the sediment column indicates a decrease in the contribution of local fallout to the Pu inventory with time. 241Am and 241Pu dating of sediment layers was utilized to explain a hiatus in sediment accumulation in the deep seafloor.  相似文献   

2.
241Am is a useful tracer for understanding biogeochemical processes in the marine environment. 241Am also poses a potential radiation threat to human health due to the continuous increase of its concentration in the global environment. We report a rapid analytical method for determining 241Am in marine sediments using isotope dilution sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) combined with a high-efficiency sample introduction system (APEX-Q). A selective CaF2 co-precipitation procedure followed by TRU extraction chromatography was employed to effectively remove the major sediment matrix and to pre-concentrate 241Am. We achieved an extremely low detection limit of 0.32 fg/g or 0.041 mBq/g (for 1 gram sediment), which is better than that of alpha spectrometry, and it allowed the accurate determination of 241Am in low-level marine sediment samples. The accuracy and precision of the developed analytical method was evaluated using a laboratory prepared Am isotope standard solution and Ocean Sediment reference material (IAEA-368). The results were satisfactory. For sediment samples, overall chemical recoveries varied from 60–90%. The developed method was applied to the study of 241Am depth distribution in Sagami Bay, Japan, where we observed different depth profiles between 241Am activity and 239+240Pu activity.  相似文献   

3.
Radionuclide measurements have been conducted on sediment cores collected in 1992 in the south-eastern region of the Barents Sea, known as the Pechora Sea. Cesium-137 and 239,24OPu activities in surface sediments are generally less than 30 Bq/kg, with the highest levels being measured in sediments off the southwestern coastline of the island of Novaya Zemlya. High correlations between both 137Cs and 239,24OPu and the concentration of fine (< 63 μm) particles in surface sediments indicate that much of the variance in radionuclide concentrations throughout the Pechora Sea can be explained by particle size fractionation. However, elevated activities of 137Cs (138 Bq/kg), 60Co (92 Bq/kg), 241Am (433 Bq/kg), and especially 239,24OPu (8.47 × 103 Bq/kg) were measured in one surface sediment sample from the fjord of Chernaya Bay on the southern coast of Novaya Zemlya. The source of radioactive contamination is two underwater nuclear tests conducted in Chernaya Bay in 1955 and 1957.The 238Pu/239,240Vu activity ratio of 0.0245 in Chernaya Bay is equivalent to values measured in global fallout. The 240Pu/239Pu atom ratio (0.0304), measured by mass spectrometry, is much lower than values (0.18) typical of global fallout, but is consistent with ratios measured for fallout from the early (1951–1955) series of weapons tests at the Nevada Test Site. The timing of the Chernaya Bay source term, estimated from the 241Am/241Pu ratio, is consistent with the timing of the 1955 and 1957 underwater nuclear tests. Relatively low initial yields of 241Pu (241Pu/239Pu atom RATIO = 0.00 123) in these tests have resulted in relatively low 241Am/239,240Pu activity ratios (0.05) in recent sediments in Chernaya Bay.Radionuclide tracer profiles in cores from the Pechora Sea can be simulated using a two-layer biodiffusion model with rapid, near-homogeneous mixing in the surface mixed layer and reduced mixing in the deep layer. Lead-210 profiles are consistent with a wide range of sedimentation and mixing rates in the deep sediment layer. However, the 137Cs and 239,240Pu results further constrain the model parameters and indicate that the downward transport of radionuclides in the sediments is governed primarily by sediment mixing, with sediment burial playing a secondary role.  相似文献   

4.
We report here thermal ionization mass spectrometry measurements of 239Pu, 240Pu, 241Pu, 242Pu, and 237Np isolated from oceanic, estuarine, and riverine sediments from the Arctic Ocean Basin. 238Pu/239+240Pu activity ratios are also reported for alpha spectrometric analyses undertaken on a subset of these samples. Our results indicate that the Pu in sediments on the Alaskan shelf and slope, as well as that in the deep basins (Amerasian and Eurasian) of the Arctic Ocean, has its origin in stratospheric and tropospheric fallout. Sediments from the Ob and Yenisei Rivers show isotopic Pu signatures that are distinctly different from those of northern-hemisphere stratospheric fallout and indicate the presence of weapons-grade Pu originating from nuclear fuel reprocessing wastes generated at Russian facilities within these river catchments. Consequently, sediments of the Eurasian Arctic Ocean, particularly those in the Barents and Kara Seas, probably contain a mixture of Pu from stratospheric fallout, tropospheric fallout, and fuel-reprocessing wastes of riverine origin. In particular, the 241Pu/239Pu ratios observed in these sediments are inconsistent with significant contributions of Pu to the arctic sediments studied from western European reprocessing facilities, principally Sellafield in the UK. Several other potential sources of Pu to arctic sediments can also be excluded as significant based upon the transuranic isotope ratios presented.  相似文献   

5.
黄亚楠 《海洋学报》2022,44(11):77-87
本文对东海及毗邻海域中239+240Pu比活度、240Pu/239Pu原子比值和239+240Pu累积通量或沉积通量数据进行整理,首次从大气沉降、海水中、生物体中、沉积物捕获器中以及沉积物中的239+240Pu 5个方面阐述了东海及毗邻海域中239+240Pu的地球化学行为。研究结果表明,全球大气沉降和太平洋核试验场输入的239+240Pu是东海海水和沉积物中239+240Pu的两个主要来源;在长江径流、浙闽沿岸流、台湾暖流、黑潮与上升流等水团的混合作用以及清除作用的影响下,东海近岸海水中239+240Pu浓度在时间上呈现被清除而减少的趋势,相应近岸浅水区沉积物中239+240Pu的埋藏深度高于远岸深水海域。在黑潮入侵和上升流的作用下,冲绳海槽区尤其是台湾岛东北部,沉积物中的239+240Pu比活度与沉积通量显著增大。同时,利用东海表层沉积物中239+240Pu比活度和240Pu/239Pu原子比值的相关关系证实了台湾东北部黑潮底层分支流的存在,并指示出台湾暖流与黑潮底层分支流可能交汇的海域位置。  相似文献   

6.
Results of the radiochemical determination of 239+240Pu and 238Pu in seawater, plankton, marine organisms and sediment are reported. The samples were collected in the Taranto Gulf, and the data are compared with those obtained from other stations in the Mediterranean Sea. The vertical distribution of plutonium isotopes in sediments is also presented and discussed.  相似文献   

7.
Profiles of 210Pb and 239 + 240Pu from sediment cores collected throughout Massachusetts Bay (water depths of 36–192 m) are interpreted with the aid of a numerical sediment-mixing model to infer bioturbation depths, rates and processes. The nuclide data suggest extensive bioturbation to depths of 25–35 cm. Roughly half the cores have 210Pb and 239 + 240Pu profiles that decrease monotonically from the surface and are consistent with biodiffusive mixing. Bioturbation rates are reasonably well constrained by these profiles and vary from 0.7 to 40 cm2 yr−1. As a result of this extensive reworking, however, sediment ages cannot be accurately determined from these radionuclides and only upper limits on sedimentation rates (of 0.3 cm yr−1) can be inferred. The other half of the radionuclide profiles are characterized by subsurface maxima in each nuclide, which cannot be reproduced by biodiffusive mixing models. A numerical model is used to demonstrate that mixing caused by organisms that feed at the sediment surface and defecate below the surface can cause the subsurface maxima, as suggested by previous work. The deep penetration depths of excess 210Pb and 239 + 240Pu suggest either that the organisms release material over a range of >15 cm depth or that biodiffusive mixing mediated by other organisms is occurring at depth. Additional constraints from surficial sediment 234Th data suggest that in this half of the cores, the vast majority of the present-day flux of recent, nuclide-bearing material to these core sites is transported over a timescale of a month or more to a depth of a few centimeters below the sediment surface. As a consequence of the complex mixing processes, surface sediments include material spanning a range of ages and will not accurately record recent changes in contaminant deposition.  相似文献   

8.
The results of the U.S. Mussel Watch Monitoring Program for the period 1976–1978 for trace metals and artificial radionuclides in bivalves are presented. The substances analysed included Ag, Cu, Zn, Cd, Ni, Pb, 238Pu, 239+240Pu and 241Am. The analyses of organic substances will be presented elsewhere. The concentrations of these substances in the bivalves may reflect upwelling processes, anthropogenic inputs or natural levels. Off the California coast, mussels show markedly elevated Pu and Cd concentrations in coastal areas adjacent to the most intensive upwelling zones. Elevated levels of Pb, for example, are found in organisms living adjacent to highly urbanized places. The general patterns of distribution repeat themselves year after year at a given site. Thus, it is concluded that annual monitoring activities may not be necessary and that a frequency of sampling of several or so years may be more appropriate to identify pollution problems. Finally, national or regional baselines for metal concentrations in bivalves from unpolluted waters are proposed. National baselines for Pb in the west coast mussels of 1·0 parts 10?6 and for Ag in east coast mussels of 0·05 parts 10?6 are suggested.  相似文献   

9.
To assess the significance of naturally occurring dissolved organic matter (DOM) on complexation of transuranic elements in seawater, a series of bioassay experiments was conducted in which the effect of DOM on the accumulation of 241 Am, 237Pu (III–IV), and 237Pu (V–VI) by the marine diatom Thalassiosira pseudonana was measured. EDTA at 0.3μM complexed both metals substantially, resulting in reduced radio-isotope uptake by the diatom; the greatest effect was on Pu (III–IV). In contrast, there was no apparent complexation of either element by equimolar concentrations of marine fulvic (MFA) or humic acids (MHA), naturally occurring photooxidizable DOM (uncharacterized), or diatom exudates, as none of these materials reduced isotope uptake; on the contrary, there were indications that some of this DOM enhanced transuranic bioaccumulation in the diatom slightly. Subsequent experiments showed this enhancement was probably due to complexation of transition metals by the DOM, leading to fewer ambient ions ‘competing’ for binding sites on the cells; 241 Am uptake rates were negatively correlated (r =? 0.846, P < .01) with Σ ASV-labile Cu + Zn + Cd + Pb. These experiments suggest that naturally occurring DOM may not appreciably complex Am or Pu or greatly affect their bioavailability in the sea.  相似文献   

10.
Anthropogenic 90Sr, 239,240Pu and 241Am were used as tracers of water mass circulation in the Crozet Basin of the South Indian Ocean, represented by three main water fronts—Agulhas (AF), Subtropical (STF) and Subantarctic (SAF). Higher 90Sr concentrations observed north of 43°S were due to the influence of AF and STF, which are associated with the south branch of the Subtropical gyre, which acts as a reservoir of radionuclides transported from the North to the South Indian Ocean. On the other hand, the region south of 43°S has been influenced by SAF, bringing to the Crozet Basin Antarctic waters with lower radionuclide concentrations. The 238Pu/239,240Pu activity ratios observed in water and zooplankton samples indicated that, even 35 years after the injection of 238Pu to the Indian Ocean from the burn-up of the SNAP-9A satellite, the increased levels of 238Pu in surface water and zooplankton are still well visible. The radionuclide concentrations in seawater and their availability to zooplankton are responsible for the observed 210Po, 239,240Pu and 241Am levels in zooplankton.  相似文献   

11.
239, 240Pu,137Cs and90Sr concentrations were determined in sea waters from the central and western North Pacific in 1980 and 1982. The results are consistent with those reported earlier for North Pacific waters. The profiles of90Sr and137Cs show a monotonic decrease with depth, whilst239, 240Pu shows a distinct subsurface maximum at a depth between 400 and 1,000 m. The calculated inventories of these nuclides significantly exceed the global mean fallout inputs for these latitudes. This may be due to local fallout input to the ocean at times of large-scale nuclear weapon tests in the equatorial North Pacific. The existence of measurable amounts of137Cs and239, 240Pu in deep waters suggests that these nuclides are transported by sinking particulate matter from the surface to the deep ocean.  相似文献   

12.
Arctic sea ice can incorporate sediment and associated chemical species during its formation in shallow shelf environments and can also intercept atmospherically transported material during transit. Release of this material in ice ablation areas (e.g. the Fram Strait) enhances fluxes of both sediments and associated species in such areas. We have used a suite of natural (7Be, 210Pb) and anthropogenic (137Cs, 239Pu, 240Pu) radionuclides in sea ice, sea-ice sediments (SIS), sediment trap material and bottom sediments from the Fram Strait to estimate transit times of sea ice from source to ablation areas, calculate radionuclide fluxes to the Fram Strait and investigate the role of sea-ice entrained sediments in sedimentation processes. Sea ice intercepts and transports the atmospherically supplied radionuclides 7Be and 210Pb, which are carried in the ice and are scavenged by any entrained SIS. All of the 7Be and most of the excess 210Pb measured in SIS collected in the Fram Strait are added to the ice during transit through the Arctic Ocean, and we use these radionuclides as chronometers to calculate ice transit times for individual ice floes. Transit times estimated from the 210Pb inventories in two ice cores are 1–3 years. Values estimated from the 7Be/210Pbexcess activity ratio of SIS are about 3–5 years. Finally, equilibrium values of the activity ratio of 210Pb to its granddaughter 210Po in the ice cores indicate transit times of at least 2 years. These transit times are consistent with back-trajectory analyses of the ice floes. The latter, as well as the clay-mineral assemblage of the SIS (low smectite and high illite content), suggest that the sampled sea-ice floes originated from the eastern Siberian Arctic shelf seas such as the eastern Laptev Sea and the East Siberian Sea. This result is in agreement with the relatively low activities of 239,240Pu and 137Cs and the 240Pu/239Pu atom ratios (∼0.18, equivalent to that in global fallout) in SIS, indicating that prior global atmospheric fallout, rather than nuclear fuel reprocessing facilities, forms the main source of these anthropogenic radionuclides reaching the western Fram Strait at the time of sampling (1999). Transport of radionuclides by sea ice through the Arctic Ocean, either associated with entrained SIS or dissolved in the ice, accounts for a significant flux in ablation areas such as the Fram Strait, up to several times larger than the current atmospheric flux in the area. Calculated fluxes derived from sea-ice melting compare well to fluxes obtained from sediment traps deployed in the Fram Strait and are consistent with inventories in bottom sediments. 240Pu/239Pu atomic ratios lower than 0.18 in bottom sediments from the Fram Strait provide evidence that plutonium from a source other than atmospheric fallout has reached the area. Most likely sources of this Pu include tropospheric fallout from atomic weapons testing of the former Soviet Union prior to 1963 and Pu released from nuclear reprocessing facilities, intercepted and transported by sea ice to the ablation areas. Future work is envisaged to more thoroughly understand the actual mechanisms by which radionuclides are incorporated in sea ice, focusing on the quantification of the efficiency of scavenging by SIS and the effect of melting and refreezing processes over the course of several years during transit.  相似文献   

13.
Bivalve shells offer several advantages over tissues for the monitoring of heavy metal pollutants in the marine environment. They are easier to handle and to store. The problem of whether to depurate the animals before analyses is avoided. The shells appear to be more sensitive to environmental heavy metals levels over the long term than do the soft parts. Of the substances examined (Cd, Cu, Zn, Pb, Ag, Ni, 238Pu and 239 + 240Pu) only Pb and Pu displayed a strong covariance between soft tissue and shell concentrations. There were strong correlations between metals in the shell but not in the soft tissues in general. The byssal threads, because of their enrichment of transuranic elements and of their ease in handling, may be useful in monitoring these metals. A very weak discharge of 238Pu to marine waters adjacent to a nuclear reactor was detected in the byssal threads of mussels.  相似文献   

14.
《Oceanologica Acta》1998,21(3):469-484
Presented here is the first detailed geochemical data set on the U/Th series Th, Pa, Ac, and Pb isotopes and artificial fallout radionuclides (90Sr, 137Cs, and Pu isotopes), and some trace elements (V, Zn, Cd, Cu, Mn, and Ni) in two water columns of the Japan and Bonin trenches down to the bottom depths of 7585 m and 9750 m, respectively. Hydrographic properties such as temperature, salinity, dissolved oxygen, and nutrient content within the trench valley remain constant at the same levels as those in the bottom water of the Northwest Pacific basin (typically ∼6000 m in depth). The radionuclide activities and most trace metal concentrations are also not very different from those in the overlying water at depths of around 5000–6000 m. This means that any chemical alteration which sea water undergoes during its residence within the trench was not obviously detected by the techniques used here. The suggestion follows that the trench water is rather freely communicating by isopycnal mixing with the bottom water overlying the Northwest Pacific abyssal plain. The trench waters contain high 239, 240Pu activities throughout, indicating that Pu is actively regenerating from rapidly sinking, large particles at the bottom interface, probably due to a change in the oxidation state. On the other hand, the vertical profiles of 210Pb and 231Pa show lower activities within the trench than those in the overlying deep waters, suggesting that the effect of boundary and bottom scavenging is significant in controlling their oceanic distributions. However, none of the trace metals studied here obviously follows the behaviour of the above nuclides. The 228Th data show scattering within the Bonin Trench that is largely ascribable to analytical errors. If, however we accept that the scatter of 228Th data is real and the variation is caused solely by decay of its parent 228Ra, we can set an upper limit of ∼5 years for the renewal time of the trench water.  相似文献   

15.
1993年采用α谱仪和大面积屏栅电离定对柴达木盆地盐湖水、地下水、河水以及地表和两个钻孔沉积物中的U,Pu和Am进行了测定。结果表明,各类水样中239Pu(含240Pu,下同)的平均含量高出表层海水约1000倍,其239Pu/238U的活度比在0.001-0.530之间;两钻孔沉积物中239Pu的平均值分别为49±0.8mBq/g和2.4±0.5mBq/g,239Pu/238U的活度比为0.141和0.088,由此探讨了U,Pu和Am的分布特征、239Pu/238U比值的变化规律以及沉积物和水中Pu的来源。  相似文献   

16.
The contents of plutonium isotopes (239Pu and238Pu), thorium isotopes (232Th,230Th and228Th) and protactinium-231 in sea water collected in the North Pacific, the East China Sea and the Japan Sea were determined. These nuclides were sequentially analyzed byα-ray spectrometry after separating them mainly with solvent extraction technique. The contents of239Pu in surface sea water ranged from 0.6 to 1.6 pCi/10001,238Pu/239Pu activity ratios being 0.2~0.7. The228Th/232Th activity ratios for the North Pacific waters varied between 7.6 and 30, whereas the sample from the East China Sea showed the very high value, 65. The contents of231Pa are less than 6 percent of that in equilibrium with its parent235U. Furthermore, the analysis of plutonium isotopes in recent coral from Yoron Island was carried out and it was confirmed that plutonium isotopes have concentrated in recent coral with the concentration factor of about 1~2×103.  相似文献   

17.
Interaction of 54Mn and 55(59)Fe with EDTA in seawater and NaCl solutions was investigated by high-voltage paper electrophoresis. These two radionuclides were chosen because they represent two modes of behaviour of radionuclides in seawater—EDTA systems. In seawater without EDTA or at low EDTA concentrations in the systems 54Mn behaves as a cation while 55(59)Fe gives a zone at the starting point of the electrophoretic strip. At higher EDTA concentrations, both radionuclides give only one anionic zone showing complexing with EDTA. In the intermediate range of the EDTA concentration (“transition region”) 54Mn shows continuous change of the electrophoretic mobility from cationic to anionic (fast rate of interaction with EDTA), while 55(59)Fe reacts very slowly giving two well-separated zones in the transition region of the EDTA concentration.EDTA concentrations were varied from 10?6 to 10?2M, pH being adjusted to 8.0. The behaviour of radionuclides was followed by measuring the electrophoretic mobilities of radionuclides in dependence on the EDTA concentration at different aging times from 0 to 7 days.From the experimental data effective stability constants and the number of EDTA-ligands of 54MnEDTA and 55(59)FeEDTA complexes in seawater and 0.55 M NaCl solutions were calculated.  相似文献   

18.
Community metabolism and nutrient, iron (Fe) and manganese (Mn) cycling were examined in two intertidal, marine, microbial mat communities during short (4–5 days) incubations in closed, flow-through microcosms. Sediment microcosms were incubated under either light (light–dark cycles) or dark (continuous darkness) conditions to assess the effect(s) of photosynthetic oxygen production and microalgal activity on nutrient, Fe and Mn cycling. The effects of chemical redox reactions between reduced sulphur (S), Fe and Mn cycling were examined by blocking sulphate reduction, and reduced S production, with 25 mM molybdate while incubating under dark conditions.In light-incubated microcosms, negligible fluxes of nutrients (nitrogen and phosphorus) and trace metals were observed. A substantial sediment–water flux of reduced Fe (Fe2+) and Mn (Mn2+) was observed in microcosms incubated under continuous darkness; highest fluxes were observed in molybdate-amended microcosms. At both sites, biologically-mediated redox reactions accounted for a substantial (>50%) portion of the Fe2+and Mn2+flux. Both microbial mat communities exhibited similar rates of gross photosynthetic oxygen (O2) production, but dramatically different rates of net benthic O2flux. Distinct patterns of net O2production and trace metal cycling arose from differences in either trace metal oxide availability or reactivity (mineralogy), organic carbon mineralization rates, or sediment characteristics (porosity). Variations in the microbial community responsible for trace metal cycling could have also contributed to the pattern. The present data illustrate that chemically-mediated redox reactions between metal oxides and reduced S complicate interpretation of Fe and Mn fluxes, underscoring the need to separate chemical and biological reactions when attempting to determine the role of biological trace metal reduction in organic carbon oxidation.  相似文献   

19.
1958年,Thomas等人首次测定了海洋生物中的鈈(Pu),从而开始了海洋环境中超铀元素的研究。七十年代,超铀元素的研究已成了海洋同位素化学的重要內容之一,甚至超过了对~(90)Sr,~(187)Cs等核素的研究。因为超铀元  相似文献   

20.
Experiments on the uptake of Zn and Cd by synthetic hydrous Mn oxides were carried out in an ionic medium at pH 3.5 and at pH 4. A slight preference for uptake of Cd2+ over Zn2+ was observed with both birnessite and nsutite, the Cd/Zn ratio being different for each mineral. Subsequently, the desorption of Zn and Cd from the obtained products in artificial seawater was studied. In this medium Cd is desorbed from the Mn oxides to a much higher extent than is Zn. The latter observations can be satisfactorily explained by the large difference of complex formation for the two metals in seawater, slightly counteracted by the preferential uptake of Cd2+ over Zn2+. The order of magnitude of the Zn/Cd ratio in natural manganese nodules is compatible with the ratio calculated on the basis of experimental results, taking fair estimates of the actual inorganic Zn/Cd ratio in seawater and of the pH of deep ocean water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号