首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From January 9 to 17, 1981, detailed physical, chemical and biological measurements were made through the historical surface signature (Berstein, Breaker and Whritner, 1977; Burkov and Pavlova, 1980; Simpson, 1982) of a warm-core eddy in the California Current System. The data show a three-layer system: surface layer to 75 m, intermediate cold-core region to about 200 m, and the physically dominant subsurface warm-core eddy to about 1400 m. The chemical structure simultaneously possesses characteristics of both warm- and cold-core eddies. This structure results from a complex interplay among non-local eddy generation processes at the time the three-layer system was formed and a continuous set of interactions within the three-layer system, both inshore (cold) and offshore (warm) waters of the California Current and coastal and local biological processes (e.g. this California Current System eddy is not an isolated structure like some Gulf Stream rings). The dominant biological/chemical process in the euphotic zone is phytoplankton photosynthesis; photosynthetic alteration of the chemical structure below 100 m is much reduced. The effects of heterotrophic activity on the deeper-lying chemical structure, however are not as significant as those of autotrophs on the chemical structure of the euphotic zone. Hence, below 100 m, the distribution and structure of chemical properties is controlled primarily by physical processes. The continuous set of interactions of the three-layer system with coastal and oceanic waters of the California Current make this offshore eddy in the California Current System fundamentally different chemically and biologically from cold-core Gulf Stream rings and rather similar to some of the warm-core eddies found in the East Australian Current.  相似文献   

2.
In general, a mesoscale cyclonic (anticyclonic) eddy has a colder (warmer) core, and it is considered as a cold (warm) eddy. However, recently research found that there are a number of “abnormal” mesoscale cyclonic (anticyclonic) eddies associated with warm (cold) cores in the South China Sea (SCS). These “abnormal” eddies pose a challenge to previous works on eddy detection, characteristic analysis, eddy-induced heat and salt transports, and even on mesoscale eddy dynamics. Based on a 9-year (2000–2008) numerical modelling data, the cyclonic warm-core eddies (CWEs) and anticyclonic cold-core eddies (ACEs) in the SCS are analyzed. This study found that the highest incidence area of the “abnormal” eddies is the northwest of Luzon Strait. In terms of the eddy snapshot counting method, 8 620 CWEs and 9 879 ACEs are detected, accounting for 14.6% and 15.8% of the total eddy number, respectively. The size of the “abnormal” eddies is usually smaller than that of the “normal” eddies, with the radius only around 50 km. In the generation time aspect, they usually appear within the 0.1–0.3 interval in the normalized eddy lifespan. The survival time of CWEs (ACEs) occupies 16.3% (17.1%) of the total eddy lifespan. Based on two case studies, the intrusion of Kuroshio warm water is considered as a key mechanism for the generation of these “abnormal” eddies near the northeastern SCS.  相似文献   

3.
Data on East Australian Current (EAC) warm-core eddies were obtained over the period 1976–1978 by the Department of Defence and the Commonwealth Scientific and Industrial Research Organization (CSIRO). In that time we have learned that warm eddies form by pinch-off of poleward EAC meanders, can coalesce with the EAC and appear generally similar to Gulf Stream, Kuroshio and other current system eddies. Two eddies were tracked over 1977–1978 with satellite buoys and one (eddy B) was repeatedly studied over eleven months. A deep winter core formed by winter convective cooling and the following summer a new surface mixed layer formed on top of the core. The seasonal changes have been analysed for heat content and changes in dynamic relief. The eddy decayed with a time constant of 650 ± 150 days, due to upwelling below the seasonal thermocline. Surface cooling had little effect on eddy lifetime. The eddy contracted horizontally, possibly after some interaction with the EAC, giving rise to eddy spin-up with increasing age. Surface currents increased after eleven months to 2.0 m s?1. The dynamic relief during summer was also apparently boosted by contact with the EAC. Eddy B was observed to coalesce with a new meander of the EAC rather than drift away to the south. It is proposed that the formation of these eddies is governed by the westward propagation of the baroclinic Rossby wave known as the Tasman Front. Pinch-off of eddies adjacent to the coast and the variable flow of the EAC may be caused by the baroclinic wave ‘breaking’ on the coast. The eddy formation rate is about two per year and most eddies coalesce with the EAC and do not escape to the south. Eddies coalesce and re-separate, creating many subsurface isothermal layers from old cores south of 34°S.  相似文献   

4.
The distribution of plankton across a warm-core eddy system in the California Current 400 km off Point Conception, California was studied in January 1981. The eddy system, about 150 km in diameter at the 7°C isotherm, was made up of a 75 m thick surface layer, a cold-core region extending from 75 m to about 200 m, and a warm-core eddy below 200 m extending to at least 1450 m. Casts for the vertical distribution of chlorophyll/phaeophytin and integrating zooplankton net tows were taken at 37 stations located about 20 km apart on two orthogonal transects across the eddy system. Vertical distributions of microplankton were determined on one section from the eddy center to beyond the eastern edge. Integrated chlorophyll/phaeophytin values were highest to the north and east of the eddy system; across the system itself, there was only a small increase of values near the center. Asymmetrical distributions of maximum concen Current water was being entrained into the center of the eddy system from the northeast. Dinoflagellates were numerically the most important member of the microplankton, especially in the deep chlorophyll maximum. Zooplankton distributions indicated the intermingling of warm and cool water species throughout at least the upper 200 m of the eddy system. Some cold water species were as abundant inside the system as outside to the north and east; their numbers were much reduced in a band surrounding the system where warm water species were most abundant. The presence of species characteristic of different water types throughout the region of the eddy system provides an indication of the mixing that had occurred since the system originally formed. The biological data, together with the physical and chemical results, indicate the importance of frontal boundary processes and lateral entrainment of surrounding water into the eddy system in determining the character and productivity of such systems.  相似文献   

5.
I~IOXSatellite infrared measurements are now accepted as an effeCtive way of mapping sea surfacetemperature (SST) distributions on global and regional scales. While regional SST maps are widely uest as background data for oceanographic experiments, they tend to be considered by oceanographers as at best qualitative tools. There is SCOPe for developing the use of satellite SST imagesac extensively for the study of mesoscale d~ical processes, as this paper seeks to demonstrate. As Part O…  相似文献   

6.
The south-flowing waters of the Kamchatka and Oyashio Currents and west-flowing waters of the Alaskan Stream are key components of the western sub-Arctic Pacific circulation. We use CTD data, Argo buoys, WOCE surface drifters, and satellite-derived sea-level observations to investigate the structure and interannual changes in this system that arise from interactions among anticyclonic eddies and the mean flow. Variability in the temperature of the upstream Oyashio and Kamchatka Currents is evident by warming in mesothermal layer in 1994–2005 compared to 1990–1991. A major fraction of the water in these currents is derived directly from the Alaskan Stream. The stream also sheds large anticyclonic (Aleutian) eddies, averaging approximately 300 km in diameter with a volume transport significant in comparison with that of the Kamchatka Current itself. These eddies enclose pools of relatively warm and saline water whose temperature is typically 4 °C warmer and salinity is 0.4 greater than that of cold-core Kamchatka eddies in the same density range. Aleutian eddies drift at approximately 1.2 km d−1 and retain their distinctive warm and salty characteristics for at least 2 years. Selected westward pathways during 1990–2004 are identified. If the shorter northern route is followed, Aleutian eddies remain close to the stream and persist sufficiently long to carry warm and saline water directly to the Kamchatka Current. This was observed during 1994–1997 with substantial warming of the waters in the Kamchatka Current and upstream Oyashio. If the eddies take a more southern route they detach from the stream but can still contribute significant quantities of warm and saline water to the upstream Oyashio, as in 2004–2005. However, the eddies following this southern route may dissipate before reaching the western boundary current region.  相似文献   

7.
通过对2014年8月31日-9月26日国家自然科学基金委南海西部综合航次的调查结果分析,发现在中南半岛沿岸海域存在具有低温高盐的冷涡和位于其东南部海域具有高温低盐的暖涡。相对于暖涡和其他海域,冷涡水团含有更高的营养盐,并在50 m、75 m和100 m层增加明显,DIP分别高0.21 μmol/L、0.39 μmol/L和0.23 μmol/L,DIN分别高4.94 μmol/L、7.56 μmol/L和3.76 μmol/L,DSi分别高2.55 μmol/L、5.25 μmol/L和3.46 μmol/L,说明冷涡对提高初级生产力具有明显的营养优势条件和巨大潜力;叶绿素a最大值均出现在50 m层,其中以海南岛近岸海域最大,冷涡在25 m层提高初级生产力明显,主要是受营养盐影响显著;而在75 m、100 m层可能受到冷涡带来的低温环境而导致叶绿素a含量不高。  相似文献   

8.
针对海洋中尺度涡对水声传播的影响,利用中尺度涡区的历史水文实测数据提取涡旋强度,空间尺度等中尺度涡特征参数,建立了海洋中尺度涡理论计算模型。运用MMPE水下声场模型仿真试验研究了涡旋性质、强度和位置、声源频率和置放深度对声传播特性的影响。结果表明:暖涡使得会聚区的位置“后退”,会聚区宽度增加;冷涡使得会聚区的位置“前移”,会聚区宽度减小。涡旋的强度越大,“前移”或“回退”的效应越显著。  相似文献   

9.
Ship and satellite observations taken over the last thirty years show that mesoscale patterns of sea surface temperature (SST) in the California Current System are consistently found throughout the year and usually occur in approximately the same geographical locations. Typically, these patterns are more pronounced in fall/winter than in spring/summer. The temporal and spatial characteristics of these persistent feature were examined with satellite infrared (IR) measurements during winter 1980–1981. In January 1981, a ship surveyed the vertical structure of several physical, chemical, and biological parameters beneath one of these SST features centered near 32°N, 124°W. The surface IR pattern had a length scale of 200 km and a time scale of about 100 days. It disintegrated following the first two storms of the winter season. Motion studies of the pattern in late October indicated an anticyclonic rotation with maximum velocities of 50 cm s?1 at 50 km from the axis of rotation. As a unit, the pattern advected southward with an average speed of 1 cm s?1. Thermal fronts, determined from the satellite imagery, were strongest (0.4°C km?1) along the rim of the pattern and were advected anticyclonically with the pattern; their length scales were 20–30 km in the along-front direction and less than 10 km wide. The hydrographic data revealed a three-layer structure beneath the surface pattern; a 75 m deep surface layer, a cold-core region from 75 to 200 m depth, and a warm-core eddy extending from 250 to 1450 m. The anticyclonic motion of the surface layer was caused by a geostrophic adjustment to the surface dynamic height anomaly produced by the subsurface warm-core eddy. The IR pattern observed from space reflects the horizontal structure of the surface layer and is consistent with a theoretical model of a mean horizontal SST gradient perturbed by a subsurface density anomaly. Ship of opportunity SST observations collected by the National Marine Fisheries are shown to resolve mesoscale patterns. For December 1980, the SST pattern near 32°N, 124°W represented a 2°C warm anomaly compared with the 20-year mean monthly SST pattern.  相似文献   

10.
A Large-Scale Seasonal Modeling Study of the California Current System   总被引:1,自引:0,他引:1  
A high-resolution, multi-level, primitive equation ocean model has been used to investigate the combined role of seasonal wind forcing, seasonal thermohaline gradients, and coastline irregularities on the formation of currents, meanders, eddies, and filaments in the entire California Current System (CCS) region, from Baja to the Washington-Canada border. Additional objectives are to further characterize the meandering jet south of Cape Blanco and the seasonal variability off Baja. Model results show the following: All of the major currents of the CCS (i.e., the California Current, the California Undercurrent, the Davidson Current, the Southern California Countercurrent, and the Southern California Eddy) as well as filaments, meanders and eddies are generated. The results are consistent with the generation of eddies from instabilities of the southward current and northward undercurrent via barotropic and baroclinic instability processes. The meandering southward jet, which divides coastally-influenced water from water of offshore origin, is a continuous feature in the CCS, and covers an alongshore distance of over 2000 km from south of Cape Blanco to Baja. Off Baja, the southward jet strengthens (weakens) during spring and summer (fall and winter). The area off southern Baja is a highly dynamic environment for meanders, filaments, and eddies, while the region off Point Eugenia, which represents the largest coastline perturbation along the Baja peninsula, is shown to be a persistent cyclonic eddy generation region. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
吕宋海峡两侧中尺度涡统计   总被引:4,自引:0,他引:4  
利用1993-2000年间的T/P卫星高度计轨道资料的时间序列和MODAS同化产品中的卫星高度计最优插值资料对南海东北部海区中尺度涡旋进行动态追踪。按照给定的标准从2种资料中提取了涡旋信息并对其特征量进行统计分析。结果表明,南海东北部海区中尺度涡旋十分活跃,平均每年6个,其中暖涡4个,尺度一般为200~250 km,平均地转流速为44 cm/s;冷涡每年平均2个,尺度一般为150~200 km,平均地转流速为-37 cm/s。吕宋海峡两侧涡旋的比较分析表明,南海东北部海区仍属于西北太平洋副热带海区的涡旋带,冷、暖涡旋处于不断的形成—西移—消散过程中。南海东北部中尺度冷涡大多是南海内部产生的,而暖涡与吕宋海峡外侧暖涡有一定的联系又具有相对的独立性。分析认为西北太平洋的西行暖涡在到达吕宋海峡时,受到黑潮东翼东向下倾的等密度面的抑制和岛链的阻碍,涡旋停滞于吕宋海峡外侧并逐渐消弱,被阻挡于吕宋海峡东侧涡旋释放的能量,形成一支横穿吕宋海峡(同时横穿过黑潮)的高速急流,把能量传递给吕宋海峡西侧的涡旋,使其得到强化,这是吕宋海峡两侧涡旋联系的一种重要机制。  相似文献   

12.
Eddies in the Gulf of Alaska are important sources of coastal water and associated nutrients, iron, and biota to the high-nutrient, low-chlorophyll central Gulf of Alaska. Three primary eddy formation regions along the eastern boundary of the gulf have been identified, (from south to north, Haida, Sitka, and Yakutat). In the spring of 2005, three eddies (one of each type) were sampled soon after their formation. The subsurface eddy core water in all three eddies was defined by high iron concentrations and low dissolved oxygen compared with surrounding basin water. The Sitka and Yakutat core waters also exhibited a subsurface temperature maximum (mesothermal water) coincident in depth with the iron maximum, suggesting that eddies may play a role in the formation of temperature inversions observed throughout the Gulf of Alaska. The data suggest different formation regions, with the Yakutat eddy forming in shallow shelf water with riverine input, while the Sitka and Haida eddies appear to form in deeper water.  相似文献   

13.
在南大洋印度洋扇区中部海域,除了地形控制(凯尔盖朗高台),南极绕极流和厄加勒斯回流的汇合流进一步加强了下游的斜压剪切强度,导致涡旋能量显著增强,因此,对该海域涡旋的研究有助于了解该海域的涡旋特征以及地形与涡旋的分布关系。基于2005~2019年卫星遥感数据,对该海域涡旋特征进行统计,并对涡旋产生地分布、跨锋面涡旋的移动状况进行分析,同时结合Argo剖面数据,进一步剖析涡旋内部水文分布特征。结果表明:该海域涡旋生命周期多在20 d以内(64.25%),平均半径多在30~100 km(96.13%);平均半径与平均振幅呈正相关关系(相关系数R=0.55);生命周期越大的涡旋平均传播距离也越大。2014年开始涡旋数量明显增加,主要由短寿命涡旋(<30 d)数量增加所贡献。反之, 21世纪10年代后期年平均涡动能异常呈减小趋势。涡旋产生地随着寿命增长,逐渐从亚南极锋与南极绕极流南部边界之间的锋面区域向亚南极锋以北移动。跨锋面涡旋中,暖涡向高纬,冷涡向低纬移动,大部分具有携带水团移动的能力。由涡旋内部水文特征分析结果可知,不同极性的涡旋能够实现完全不同来源水团的远距离输送,对同一来源水团,气旋涡具有抬升作用,而反气旋涡具有压沉作用。该研究工作有助于提升对南大洋涡旋特征及变动的认识,为进一步的涡旋动力研究提供支撑。  相似文献   

14.
Two anticyclonic subsurface eddies (SSEs) are detected from the in-situ hydrography data of the southern South China Sea (SCS) during 15–25 October 2011. Both SSEs have the lens-shaped water bodies below the thermocline. Their maximum swirl speed appears at the depth of lens׳ core, which is also characterized by a dump in the TS diagram. These eddies do not have an enclosed saline-water or warm-water body in its lens׳ core, which is different from those SSEs reported in other seas. These SSEs should be locally generated by the horizontal shear of the Southeast Vietnam Offshore Current. In the SSE generation site of the southern SCS, there is an upper-layer anticyclonic eddy (AE2) that is right above the SSE (SE2). After leaving its generation site, the eddy loses its energy source and starts to weaken. In this case, the eddy will decay quickly in the upper layer due to the restraint of the thermocline, and finally evolves into a pure subsurface eddy (i.e. SE4).  相似文献   

15.
Closed loop mesoscale eddies were identified and tracked in the Ulleung Basin of the southwestern Japan/East Sea (JES) using the winding-angle (WA) methodology, for mapping the absolute geostrophic currents into surface streamlines of flow. The geostrophic velocity used here was the sum of the Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO), time variable velocity and the 1992–2007 mean geostrophic velocity. Local sampling bias was removed using the drifter observations. This WA methodology of deriving the Lagrangian path lines that drifters followed over a 7-day period was validated by individual drifter tracks and it demonstrated closed looping eddy motions. The WA method demonstrated that less than 6% of the closed streamlines appeared when drifters did not show a closed loop in their vicinity, compared to 30% of the excess detection rate by the Okubo–Weiss method of locating closed loop structures. Three groups of eddies were identified: (1) Coastal Cold and Warm Eddies, which appeared in the area between the coast of southern Korea and the East Korean Warm Current (EKWC), when a southward coastal current was present, (2) Frontal Cold and Warm Eddies, which were formed in the region of the seaward extension of the meandering EKWC, north of Ulleung Island and (3) Ulleung Warm Eddies (UWE) and Dok Cold Eddies (DCE), which appeared during meanders of the EKWC, in the Ulleung Basin. No seasonal concentration for eddy generation and eddy population was found. The average radius of eddies was about 38–60 km. These were born, moved in an erratic pattern and then died in the vicinity where the EKWC separated from the coast and formed a large meander. The time-mean large meander formed meridionally concentrated bands of positive and negative relative vorticity. The cyclonic (cold) eddies tend to reside within the band of positive time-mean relative vorticity, and the anticyclonic (warm) eddies reside within the bands of negative relative vorticity. Six UWE and four warm eddies, in the Yamato Basin (about 10% of warm eddies), were sustained longer than a year. Because the large meander of the EKWC appeared to be controlled by topography, and the JES is a nearly enclosed basin with rapid flow-out to the east through the narrow Tsugaru Strait, there was little eddy energy propagation to the west. The warm eddies in the southwestern part of the JES appeared to be interacting very locally with the mean flow.  相似文献   

16.
The three-dimensional structure and associated dynamics of the prominent cold (cyclonic) West Luzon Eddy (WLE) were investigated by a high-resolution regional ocean model. The WLE was horizontally and vertically heterogeneous, exhibiting asymmetric structures in the circulation, vorticity, vertical motion and energy distributions within the eddy. The asymmetry was mainly attributed to the existence of an eddy dipole formed by a coexisting warm (anti-cyclonic) eddy to the south of the WLE. Analysis of the momentum balance revealed that the coexistence of two eddies intensified barotropic pressure gradients in the southern WLE to locally enhance the eastward jet. The positive (negative) vorticity of the jet strengthened (weakened) the eddy in the southern sector (periphery), which, together with the formation of a subsurface density front, intensified (suppressed) the corresponding upward motion and cooling. The baroclinic pressure gradients opposed the dominant barotropic components and spun down the eddy at greater depths with stronger weakening in the southern sector near the front. Asymmetric energy distributions showed that larger mean kinetic energy (MKE) and eddy available potential energy (EAPE) were stored in the southern sector of the WLE. While the larger MKE was directly linked with the stronger barotropic currents, the larger EAPE in the southern WLE was formed by baroclinic energy conversions due to a strong density gradient at the front.  相似文献   

17.
This study describes the association between transient, mesoscale hydrographic features along the axis of the Brazil–Malvinas Confluence, in the SW Atlantic, and the foraging behavior of 2–3-year-old (focal) juvenile southern elephant seals, Mirounga leonina, from Península Valdés, Argentina. Departing from the dominant pattern of foraging on predictable bathymetric fronts on the Patagonian shelf and slope, three females out of 12 satellite-tracked juveniles remained at the edge of young warm-core eddies and near the outer core of cold-core eddies, coinciding with the most productive areas of these temperature fronts. Seal trajectories along high-temperature gradients were always consistent with the speed and direction of surface currents inferred from the temperature distribution and confirmed by surface drifters. Movements of foraging seals were compared with those of surface drifters, coinciding in time and space and yielding independent and consistent data on regional water circulation parameters. The diving pattern recorded for one focal seal yielded shallower dives and a loose diel pattern in the eddy, and a marked diurnal cycle compatible with foraging on vertically migrating prey in the cold waters of the Malvinas Current. Pre-reproductive females that use the mesoscale fronts of the Argentine Basin as an alternative foraging area would benefit from lower competition with more experienced seals and with other top predators that reproduce along the coast of Patagonia.  相似文献   

18.
Nonlinear axisymmetric oscillations of a warm baroclinic eddy are considered within the framework of an reduced-gravity model of the dynamics of a multilayer ocean. A class of exact analytical solutions describing pure inertial oscillations of an eddy formation is found. The thicknesses of layers in the eddy vary according to a quadratic law, and the horizontal projections of the velocity in the layers depend linearly on the radial coordinate. Owing to a complicated structure of the eddy, weak limitations on the vertical distribution of density, and an explicit form of the solution, the latter can be treated as a generalization of the exact analytical solutions of this form that were previously obtained for homogeneous and baroclinic eddies in the ocean.  相似文献   

19.
基于观测的南海越南沿岸次表层涡旋   总被引:1,自引:0,他引:1  
In this study, subsurface eddies near the Vietnam coast of the South China Sea were observed with in situ observations, including Argo, CTD, XBT and some processed and quality controlled data. Based on temperature profiles from four Argo floats near the coast of Vietnam, a subsurface warm eddy was identified in spring and summer. The multi-year Argo and Global Temperature and Salinity Profile Programme(GTSPP) data were merged on a seasonal basis based on the data interpolating variational analysis(DIVA) method to reconstruct the three-dimensional temperature structure. There is a warm eddy in the central subsurface at 12.5°N, 111°E below300 m depth in spring, which does not exist in autumn and is weak in winter and summer. From CSIRO Atlas of Regional Seas(CARS) and Generalized Digital Environment Model(GDEM) reanalysis data, this subsurface warm eddy is also verified in spring.  相似文献   

20.
台湾岛西南部是暖涡产生的源地之一, 以往的研究集中于讨论暖涡本身的运动特征和规律, 如暖涡的半径、产生位置、寿命、移动路径等, 暖涡生成机制也引发了深入的研究和探讨, 但关于该地区暖涡导致的物质输运, 仅有少量的观测且结果较为离散。文章通过AVISO(Archiving Validation and Interpretation of Satellite Oceanographic Data)卫星高度计的地转流场、海表高度异常数据以及区域海洋环流模式(ROMS)结果, 得到一个暖涡从2003年秋季至2004年春季的生消过程, 并在涡旋内10m、50m、100m层各放入10000个示踪粒子, 追踪它们的运动轨迹, 从而讨论暖涡的跨海盆粒子输运特征。该暖涡的寿命为121d, 平均半径50.4km, 移动路程1437.5km, 平均移动速度 13.5cm·s-1。研究表明, 该暖涡具有较好的物质保守性, 可以将大部分的粒子裹挟在涡旋内部并携带着沿1000~2000m等深线向西南方向运动, 在该暖涡的消亡阶段, 由于地形的阻隔以及与流的相互作用, 涡的不稳定性和形变增加, 大量的粒子被甩出涡旋, 最后仅有18.6%~35.6%粒子随暖涡运动至海南岛南部。尽管这个比例并不大, 但涡致输运的积累作用不容小觑。示踪粒子的数目与位涡具有较好的相关性, 相关系数为0.63, 暖涡内的物质被位涡线裹挟着前行。示踪粒子在暖涡内呈螺旋状下沉, 大部分粒子在释放后的5d内基本在起始的深度上下浮沉, 仅有3.9%的粒子沉降至15m以下。在10m、50m和100m层释放的粒子平均深度最大值分别为48.7m、88.7m和130.6m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号