首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface water samples were collected daily in June 2000 at a site in the Sargasso Sea to observe variability of Δ14C values in dissolved inorganic carbon (DIC). Temperature, salinity, DIC concentration, alkalinity, and δ13C and Δ14C values of DIC were measured in the samples. Ten Δ14C measurements averaged 81 ± 8‰ and had a range of 24‰ over the sixteen-day cruise. Δ14C values were more variable during the latter half of the cruise. Salinity and temperature measurements in the mixed layer throughout the cruise indicate that there were changes in water mass that occurred at our site. We conclude that the daily range of DIC Δ14C values in the surface ocean at our site is several times greater than the annual change in surface waters in the Sargasso Sea during the last two decades of the 20th century. This points to the importance of obtaining multiple measurements of the surface ocean to adequately define the true variability of DIC Δ14C measurements.  相似文献   

2.
We report radiocarbon measurements of dissolved inorganic carbon (DIC) in surface water samples collected daily during cruises to the central North Pacific, the Sargasso Sea and the Southern Ocean. The ranges of Δ14C measurements for each cruise (11–30‰) were larger than the total uncertainty (7.8‰, 2-sigma) of the measurements. The variability is attributed to changes in the upper water mass that took place at each site over a two to four week period. These results indicate that variability of surface Δ14C values is larger than the analytical precision, because of patchiness that exists in the DIC Δ14C signature of the surface ocean. This additional variability can affect estimates of geochemical parameters such as the air–sea CO2 exchange rate using radiocarbon.  相似文献   

3.
Dissolved organic carbon (DOC) concentrations in surface waters of the Pacific Ocean during October–November, 1995, were determined using a high-temperature combustion method. The DOC in the surface mixed-layer was approximately homogeneous with a concentration between 55 and 89 μmol C l−1. This homogeneity indicates that there is a strong control of the vertical distribution of DOC by mixing processes. The DOC concentrations in the mixed-layer in the subtropical region were up to 27 μmol C l−1 higher than in the tropical region. This difference reflects the subtropical accumulation and the tropical export of DOC. There is a significant positive correlation between DOC and chlorophyll a concentrations in the mixed-layer of the North Pacific subtropical region, suggesting that phytoplankton is the primary source of DOC accumulated in this region. Calculations using simple box models suggest that DOC export in the tropical region (0–50 m depth, 10°N-10°S, along 160°W) occurs primarily by poleward advection at a rate of 0.5–3 mmol C m−2day−1. A comparison with estimates of the export rate of particulate organic carbon published in previous studies leads us to conclude that DOC export may contribute less to the carbon budget in the tropical region than has recently been supposed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
This study extends the 1991-1995 records of marine dissolved organic carbon (DOC) concentrations and Δ14C values at hydrographic Station M (34°50′N, 123°00′W) with new measurements from a frozen (-20 °C) archive of samples collected between April 1998 and October 2004. The magnitudes and synchronicity of major Δ14C anomalies throughout the time-series imply transport of DOC from the surface ocean to depths of at least 450 m on the timescale of months. Keeling plots of all measurements at Station M predict a continuum of possible background DOC compositions containing at least 21 μM of -1000‰ (i.e., ≥57,000 14C years) DOC, but are more consistent with mean deep DOC (38 μM, -549‰; i.e., 6,400 14C years). These results and coral records of surface dissolved inorganic carbon (DIC) Δ14C were used to estimate pre-bomb DOC Δ14C depth profiles. The combined results indicate that bomb-14C has penetrated the DOC pool to depths of ≥450 m, though the signal at that depth is obscured by short-term variability.  相似文献   

5.
Potential biogenic sources of ultrafiltered dissolved and suspended particulate organic matter (UDOM and POM, respectively) from the Sargasso Sea (SS) and North Central Pacific (NCP) Ocean were investigated using lipid biomarker compounds. Organic carbon (OC) concentrations were ~ 20–40 times greater in UDOM than POM and decreased with depth. However, total OC-normalized lipid concentrations were 2–3 orders of magnitude higher in POM than in UDOM. Particulate total lipids decreased 3–10-fold with depth, compared to 10–20% for dissolved total lipids. Total fatty acids (FA), the most abundant lipids, showed similar patterns as total lipids, comprising ~ 62–88% of the total lipids analyzed in UDOM and ~ 57–84% in POM.FA were dominated by straight-chain saturated compounds followed by monounsaturated, polyunsaturated, and branched FA. Polyunsaturated FA were enriched in POM vs. UDOM and in surface vs. deep waters for both UDOM and POM, likely reflecting the algal origins and greater reactivity of surface-derived materials. In both UDOM and POM, sterols of planktonic origin dominated, including cholest-5-en-3β-ol (C27Δ5), 24-methylcholesta-5,24(28)E-dien-3β-ol (C28Δ5,24(28)) and 24-ethylcholest-5-3β-ol (C29Δ5), with varying contributions from cholesta-5,22E-3β-ol (C27Δ5,22), 24-methylcholesta-5,22E-3β-ol (C28Δ5,22) and 24-ethylcholesta-5,22E-3β-ol (C29Δ5,22).Factor analysis of lipid biomarkers showed major differences between the UDOM and POM pools and for each pool as a function of depth, but not between the SS and NCP. While UDOM and POM biomarkers were both dominated by autochthonous sources, differences between the two pools suggest potential effects from some combination of source and diagenetic factors. The lipid biomarker data are further evaluated relative to previous studies of radiocarbon (14C) and elemental (C:N:P) characteristics of UDOM and POM in the SS and NCP.  相似文献   

6.
In this study, we use existing observational datasets to evaluate 20th century climate simulations of the tropical Pacific. The emphasis of our work is decadal variability of the shallow meridional overturning circulation, which links the tropical and subtropical Pacific Ocean. In observations, this circulation is characterized by equatorward geostrophic volume transport convergence in the interior ocean pycnocline across 9°N and 9°S. Historical hydrographic data indicate that there has been a decreasing trend in this convergence over the period 1953–2001 of about 11 Sverdrup (1 Sv = 106 m3 s−1), with maximum decade-to-decade variations of 7–11 Sv. The transport time series is highly anti-correlated with sea surface temperature (SST) anomalies in the central and eastern tropical Pacific, implying that variations in meridional overturning circulation are directly linked to decadal variability and trends in tropical SST. These relationships are explored in 18 model simulations of 20th century climate from 14 state-of-the-art coupled climate models. Significant correlation exists between meridional volume transport convergence and tropical SST in the majority of the models over the last half century. However, the magnitude of transport variability on decadal time scales in the models is underestimated while at the same time modeled SST variations are more sensitive to that transport variability than in the observations. The effects of the meridional overturning circulation on SST trends in most the models is less clear. Most models show no trend in meridional transport convergence and underestimate the trend in eastern tropical Pacific SST. The eddy permitting MIROCH model is the only model that reasonably reproduces the observed trends in transport convergence, tropical Pacific SST, and SST gradient along the equator over the last half century. If the observed trends and those simulated in the MIROCH model are ultimately related to greenhouse gas forcing, these results suggest that the Bjerknes feedback, by affecting pycnocline transport convergences, may enhance warming that arises from anthropogenic forcing in the eastern tropical Pacific.  相似文献   

7.
A simple advection-diffusion model is applied to the deep water of the North Pacific Ocean. The physical mixing parameter, i.e., the ratio of vertical advection velocity (W) to vertical eddy diffusivity (D), is obtained from the vertical distribution of a conservative property such as salinity. The rate of decomposition of organic matter is estimated from the oxygen consumption rate which is obtained from dissolved oxygen content. The calcium carbonate flux in the deep water is obtained from alkalinity. Using these values and the vertical distribution of a radioisotope,14C or226Ra, the vertical eddy diffusivity and the upwelling velocity are found to be 1.2 cm2/sec and 1.4 ×10–5 cm/sec, respectively, at the Geosecs 1969 station. The oxygen consumption rate at 3 km depth of the station is found to be 1.4×10–3ml/l/yr.  相似文献   

8.
Several species of migratory, warm-water, oceanic fishes invaded Oregon waters during the summer of 1997. Also, the jumbo squid (Dosidicus gigas), common in the eastern tropical Pacific, was reported for the first time in 1997 and was caught in large numbers. The occurrence of these oceanic nekton was associated with inshore advection of anomalously warm water. During 1998, after arrival of the main El Niño signal, some warm-water coastal fishes appeared off Oregon. However, unlike observations off California, fewer species of warm-water coastal fishes were noted during the 1997–98 El Niño than during the 1982–83 El Niño.  相似文献   

9.
Primary production in the eastern tropical Pacific: A review   总被引:2,自引:12,他引:2  
The eastern tropical Pacific includes 28 million km2 of ocean between 23.5°N and S and Central/South America and 140°W, and contains the eastern and equatorial branches of the north and South Pacific subtropical gyres plus two equatorial and two coastal countercurrents. Spatial patterns of primary production are in general determined by supply of macronutrients (nitrate, phosphate) from below the thermocline. Where the thermocline is shallow and intersects the lighted euphotic zone, biological production is enhanced. In the eastern tropical Pacific thermocline depth is controlled by three interrelated processes: a basin-scale east/west thermocline tilt, a basin-scale thermocline shoaling at the gyre margins, and local wind-driven upwelling. These processes regulate supply of nutrient-rich subsurface waters to the euphotic zone, and on their basis we have divided the eastern tropical Pacific into seven main regions. Primary production and its physical and chemical controls are described for each.Enhanced rates of macronutrient supply maintains levels of primary production in the eastern tropical Pacific above those of the oligotrophic subtropical gyres to the north and south. On the other hand lack of the micronutrient iron limits phytoplankton growth (and nitrogen fixation) over large portions of the open-ocean eastern tropical Pacific, depressing rates of primary production and resulting in the so-called high nitrate-low chlorophyll condition. Very high rates of primary production can occur in those coastal areas where both macronutrients and iron are supplied in abundance to surface waters. In these eutrophic coastal areas large phytoplankton cells dominate; conversely, in the open-ocean small cells are dominant. In a ‘shadow zone’ between the subtropical gyres with limited subsurface ventilation, enough production sinks and decays to produce anoxic and denitrified waters which spread beneath very large parts of the eastern tropical Pacific.Seasonal cycles are weak over much of the open-ocean eastern tropical Pacific, although several eutrophic coastal areas do exhibit substantial seasonality. The ENSO fluctuation, however, is an exceedingly important source of interannual variability in this region. El Niño in general results in a depressed thermocline and thus reduced rates of macronutrient supply and primary production. The multi-decadal PDO is likely also an important source of variability, with the ‘El Viejo’ phase of the PDO resulting in warmer and lower nutrient and productivity conditions similar to El Niño.On average the eastern tropical Pacific is moderately productive and, relative to Pacific and global means, its productivity and area are roughly equivalent. For example, it occupies about 18% of the Pacific Ocean by area and accounts for 22–23% of its productivity. Similarly, it occupies about 9% of the global ocean and accounts for 10% of its productivity. While representative, these average values obscure very substantial spatial and temporal variability that characterizes the dynamics of this tropical ocean.  相似文献   

10.
The concentration of dissolved glycolate in sea water was measured by high performance liquid chromatography in the eastern tropical Atlantic Ocean during the Eumeli 4 oceanographic cruise in June 1992. Diurnal concentrations of glycolate reached 74 kg 1−1 1−1 in mesotrophic waters and 17 μg 1−1 1 in oligotrophic waters. At midday total dissolved glycolate exceeded 1 g of carbon per m2 of ocean, decreasing strongly during the night (less than 0.1 g of carbon per m2). At the three stations studied, glycolate carbon difference between night and day in the water column was of the same order as the daily primary production estimated by incorporation of 14C02. Disappearance of this compound at night suggested a rapid consumption by heterotrophic organisms. These data suggest that glycolate excretion by phytoplankton may be important, and possibly influenced by ambient nutrient concentrations. Further, with glycolate representing up to 50% of daily productivity, our estimates of the total biological reduction of C02 need to be re-examined.  相似文献   

11.
Using manganese-impregnated fiber extraction and high-efficiency gamma counting techniques, we measured the distribution of 228Ra and 226Ra in surface waters near the coast of Japan and in the western North Pacific. There is no evidence in our data that any significant amount of 228Ra is added to open ocean surface waters from the coastal waters around Tokyo Bay. High 228Ra concentrations (> 10 dpm/103 kg), were observed along the Kuroshio Current as compared to < 2.5 dpm/103 kg between 10° and 30°N of the central gyre, and hence the major source of 228Ra in the surface water is likely to be the East Asian continental shelf zones. A simple one-dimensional eddy diffusion and advection model is used to explain the observed decrease of 228Ra from coast to the open ocean. The model results indicate two mixing regimes across the Kuroshio Current System with apparent eddy diffusion coefficients of Ky = 4 × 105 cm2 s−1 at distance y < 200 km from the coast, and Ky = 4 × 107 cm2 s−1 at y > 200 km. Along 40°N where an eastward flow of the ‘Kuroshio Extension’ prevails, an advective flow of > 0.1 knot is consistent with the observation of nearly constant 228Ra along the track.The geographical distribution pattern of 228Ra is clearly different from that of atmospherically derived 210Pb. Thus the 228Ra in surface water serves as a useful tracer that accompanies fluvially and coastally derived elements during their subsequent lateral transport toward the central gyre.  相似文献   

12.
We found a simple function of pH that relates to sea surface temperature (SST, K) and chlorophyll-a (Chl, µg l−1) using measured surface seawater pH, SST and Chl data sets over the North Pacific: pH (total hydrogen scale at 2°C) = 0.01325 SST − 0.0253 Chl + 4.150 (R2 = 0.95, p < 0.0001, n = 483). Moreover, evaluating the seasonal variation of pH based on this algorithm, we compared the measured pH with the predicted pH at the observational time series stations in subpolar and subtropical regions. The average of ΔpH (measured - predicted, n = 52) was 0.006 ± 0.022 pH. Therefore, the combination of SST and Chl can allow us to determine the spatiotemporal distribution of pH over the North Pacific. Using the climatological data sets of SST and Chl with our pH algorithms, we have described the seasonal distributions of pH at 25°C (pH(25)) and pH in situ temperature (pH(T)) over the North Pacific surface water.  相似文献   

13.
Chromium(VI) concentrations ranging between 3.0 and 6.1 nmol l−1 and 3.1 and 7.3 nmol l−1 were found in the Arctic and Atlantic Oceans, respectively. The vertical profiles show modest depletion of chromium(VI) in surface waters, but poor overall correlations between Cr(VI) and nutrient profiles. Given that Cr(VI) is the dominant oxidation state of chromium in open-ocean waters, these data are combined with literature data to reassess the distribution of Cr in oceanic waters. It is concluded that while Cr shows some characteristics of both “recycled” and “accumulated” vertical profiles, it does not fall clearly within either group.  相似文献   

14.
Measurements of the concentration of thallium in seawater collected from numerous ocean locations ranged from 12 to 16 ng kg−1. Variations between the Atlantic and Pacific Oceans, between the northern and southern hemispheres of the Pacific Ocean, and between surface and deep waters of both the Pacific and Atlantic oceans were comparable with the precision of the analyses. This relatively constant distribution indicates that the element's cycle in seawater may be similar to those of the alkali metals which are its principal biogeochemical analogues.  相似文献   

15.
In this paper SIT and Pitzer models are used for the first time to describe the interactions of natural and synthetic polyelectrolytes in natural waters. Measurements were made potentiometrically at 25 °C in single electrolyte media, such as Et4NI and NaCl (for fulvic acid 0.1 < I /mol L− 1 < 0.75), and in a multi-component medium simulating the composition of natural waters at a wide range of salinities (for fulvic and alginic acids: 5 < S < 45) with particular reference to sea water [Synthetic Sea Water for Equilibrium studies, SSWE]. In order to simplify calculations, SSWE was considered to be a “single salt” BA, with cation B and anion A representing all the major cations (Na+, K+, Mg2+, Ca2+) and anions (Cl, SO42−) in natural sea water, respectively. The ion pair formation model was also applied to fulvate and alginate in artificial sea water by examining the interaction of polyanions with the single sea water cation. Results were compared with those obtained from previous speciation studies of synthetic polyelectrolytes (polyacrylic and polymethacrylic acids of different molecular weights). Results indicate that the SIT, Pitzer and Ion Pairing formation models used in studies of low molecular weight electrolytes may also be applied to polyelctrolytes with a few simple adjustments.  相似文献   

16.
The isotopic composition (δ15N) of dissolved nitrate was measured at five stations within the oxygen-deficient region of the eastern tropical North Pacific Ocean (ETNP) and at one station 900 km northeast of Hawaii, which was considered to be representative of all major water masses of the Pacific. At this last station, the δ15N composition of dissolved nitrate decreased systematically from about +6‰ at 400 m to approximately +5‰ at 5,000 m; these results are consistent with other estimates from the western Pacific.In contrast, vertical profiles of δ15N of dissolved nitrate from the ETNP showed marked departure from the above observed trend and correlated with losses of nitrate arising from denitrification. Instantaneous fractionation factors (α) were estimated, using the one dimensional vertical diffusion-advection model. These results suggest that 14NO3 is consumed 3–4% faster than 15NO3, significantly larger than fractionations (2%) observed under laboratory conditions.Maximum rates of denitrification at 100 m were also evaluated and ranged from 0.6 to 8 μg-at 1−1 yr−1 for the stations investigated. The above upper limit is probably excessive, but the average maximum for the four stations analyzed is estimated to be 3.5 μg-at NO3 1−1 yr−1. These results compare favorably with suitably corrected oxygen utilization rates derived from electron transport activity measurements.  相似文献   

17.
Joan D. Willey   《Marine Chemistry》1974,2(4):239-250
The solubility of amorphous silica in seawater at 0°C and from 1 to 1,220 atm. was found to be a linear function of pressure above 270 atm., but to deviate from linearity below that pressure. Using a quadratic derivation of Planck's equation, ΔV for the dissolution was found to be −16.5 cm3mole−1, and Δk was found to be −4.4 · 10−2 cm3 mole−1 atm−1∂Δk/P was found to be 27.2 · 10−5 cm3 mole−1 atm−2 which is too significant a factor to allow the commonly made assumption that ∂Δk/P =0. North's (1973) model of hydration suggests that this non-zero ∂Δk/P may indicate that the silicic acid molecule is more extensively hydrated at lower pressures.If the pressure in an experiment is suddenly lowered to atmospheric pressure after equilibrium solubility had been attained at the higher pressure, the precipitation that occurs to reduce the resulting supersaturation is complete within one hour in the experimental system used in this study.  相似文献   

18.
The variability of the sound speed vertical distribution in high-salinity and freshened tropical waters has been computed using the intense convection model. It is shown that the most complicated transformation of theC(z) profile is induced by haline convection in freshened oceanic waters. Computation results are collated with observed data.Translated by Mikhail M. Trufanov.  相似文献   

19.
The existing high-resolution hydrographic data in the western tropical Pacilit; Ocean are used to explore the spatial distribution and primary characteristics of thermohaline intrusions in the thermocline. Statistics show that the vertical scales of intrusions are 20-40 m in the upper thermocline (22.0-26.0δ0) and 40-80 m in the lower thermocline (26.0-27.2δ0). In the upper thermocline, the most intensive intrusions exist at the equatorial front (EF) where north/sonth Pacilic water masses converge, anti Ihe westward spreading of the north Pacilic tropical waler (NPTW) in the Philippines Sea also produces patches of intrusions surrounding its high-salinity tongue. In the lower thermocline, intrusions are also strong at the tropical front (TF) which is the boundary between the north Pacilic subtropical/tropical waters. At the bottom of the thermocline (at about 27.0δ0), intrusions mainly exist near the western boundary, which are produced by intermediate water convergence through the advection of subthermocline western boundary Ilows. Most strikingly a "C"-shape distribution of intrusions at around 26.4δ0 is revealed, covering the vicinity of the EF the TE and the Mindanao Current (MC), i.e., tile western boundary pathway ol the norlh Pacilic subtrnpical cell (STC). Synoptic section analysis reveals that intrusions are more prominent on the warm/sally flank ot the fronts, implying more cross-front tongues of cold/fresh water. Among the intrusions, those at the EF are of best lateral coherence which implies a unique driving mechanism involving near-inertial velocity perturbations near the equator.  相似文献   

20.
Keeling plots of dissolved organic carbon (DOC) concentration and Δ14C depth profiles imply rapid, diapycnal transport of DOC to the meso- and bathypelagic zones, but do not constrain the mechanism of redistribution. We review the 2-component Keeling plot model, and present an alternative formulation explicitly based on homogenization of water parcels. Applying this new model to DOC and dissolved inorganic carbon (DIC) depth profiles suggests that the dominant controls on DOC redistribution differ throughout the water column. DOC concentration and Δ14C gradients were consistent with biogeochemical processing in the epipelagic and advection in the mesopelagic. Vertical gradients in DOC concentration and Δ14C were insufficient for further interpretation in the bathypelagic. Ultimately, additional concurrent measurements of DOC and DIC concentrations and Δ14C values throughout the water column at more locations are needed to constrain the applicability of two-component mixing models to marine DOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号