首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On 7 December 2001, Jason-1 was successfully launched by a Boeing Delta II rocket from the Vandenberg Air Force Base, California. The Jason-1 satellite will maintain the high accuracy altimeter service provided since 1992 by TOPEX/Poseidon (T/P), ensuring the continuity in observing and monitoring the Ocean Dynamics (intraseasonal to interannual changes, mean sea level, tides, etc.). Despite one-fourth the mass and power, the Jason-1 system has been designed to have basically the same performance as T/P, measuring sea surface topography at a centimetric level. This new CNES/NASA mission also provides near real-time data for sea state and ocean forecast. The first two months of the Jason-1 mission have been dedicated to the assessment of the overall system. The goals of this assessment phase were:

1. To assess the behavior of the spacecraft at the platform and payload levels (Jason-1 being the first program to call on the PROTEUS versatile multimission platform for Low and Medium Earth Orbit Missions developed in partnership between Alcatel Space and CNES);

2. To verify that platform performance requirements are met with respect to Jason-1 requirements;

3. To verify that payload instruments performance requirements evaluated at instrument level are met;

4. To assess the performance of the Jason-1 Ground System.

This article will display the main outputs of the assessment of the system. It will demonstrate that all the elements of the onboard and ground systems are within the specifications. Provision of data to the Jason-1 Science Working Team started at the end of March 2002. This is the goal of a six-month phase after closure of the initial assessment phase to derive the error budget of the system in terms of altimetry user products.  相似文献   

2.
《Marine Geodesy》2013,36(3-4):131-146
On December 7, 2001, the Jason-1 satellite was successfully launched by a Boeing Delta II rocket from the Vandenberg site in California, USA. Its main mission was to maintain the high accuracy altimeter measurements, provided since 1992 by TOPEX/Poseidon (T/P), ensuring continuity in observing and monitoring the ocean for intraseasonal to interannual changes, mean sea level, tides, and so forth. Despite four times less mass and power, the Jason-1 system has been designed to have the same performances as T/P, measuring sea surface topography at the centimeter level. This new Centre National d'Etudes Spatiales/National Aeronautics and Space Administration (CNES/NASA) mission also provides near real-time data for sea state and ocean forecast. The first 10 months of the Jason mission were dedicated to the verification of the system performance and cross-calibration with T/P measurements. A complete CALVAL plan was conducted by the Science and Project Teams of the mission based on in situ and regional experiments, global statistical approaches, and multisatellite comparisons, taking advantage of the T/P-Jason overlap during the first months of the mission. CALVAL and first science results showed that the Jason-1 performances were compliant with prelaunch specifications. This was a needed preamble before starting the routine phase of the mission in July 2003 with generation and distribution of validated geophysical data records to the whole user community.  相似文献   

3.
The Jason-1 Mission   总被引:1,自引:2,他引:1  
On December 7, 2001, the Jason-1 satellite was successfully launched by a Boeing Delta II rocket from the Vandenberg site in California, USA. Its main mission was to maintain the high accuracy altimeter measurements, provided since 1992 by TOPEX/Poseidon (T/P), ensuring continuity in observing and monitoring the ocean for intraseasonal to interannual changes, mean sea level, tides, and so forth. Despite four times less mass and power, the Jason-1 system has been designed to have the same performances as T/P, measuring sea surface topography at the centimeter level. This new Centre National d'Etudes Spatiales/National Aeronautics and Space Administration (CNES/NASA) mission also provides near real-time data for sea state and ocean forecast. The first 10 months of the Jason mission were dedicated to the verification of the system performance and cross-calibration with T/P measurements. A complete CALVAL plan was conducted by the Science and Project Teams of the mission based on in situ and regional experiments, global statistical approaches, and multisatellite comparisons, taking advantage of the T/P-Jason overlap during the first months of the mission. CALVAL and first science results showed that the Jason-1 performances were compliant with prelaunch specifications. This was a needed preamble before starting the routine phase of the mission in July 2003 with generation and distribution of validated geophysical data records to the whole user community.  相似文献   

4.
The Jason-1 satellite was launched on 7 December 2001 with the primary objective of continuing the high accuracy time series of altimeter measurements that began with the TOPEX/Poseidon mission in 1992. To achieve this goal, it is necessary to validate the performance of the Jason-1 measurement system, and to verify that its error budget is at least at the same level as that of the TOPEX/Poseidon mission. The article reviews the main components of the Jason-1 altimetric error budget from instrument characterization to the geophysical use of the data. Using the Interim Geophysical Data Records (16DR) that were distributed to the Jason-1 Science Working Team during the verification phase of the mission, it is shown that the Jason-1 mission is performing well enough to continue studies of the large-scale features of the ocean, and especially to continue time series of mean sea-level variations with an accuracy comparable to TOPEX/Poseidon.  相似文献   

5.
The CNES/ISRO mission SARAL/AltiKa was successfully launched on 25 February 2013. It reached its nominal orbit on 13 March 2013. AltiKa is the first altimeter using the Ka-band frequency. This article presents the results of the calibration and validation activities perfromed on the first year of the SARAL/AltiKa mission. The main objective of the article is to assess the SARAL/AltiKa data quality and to estimate the altimeter system performance using GDR products. To achieve this goal, we present mono-mission metrics and compare them with Jason-2 over the same period. Even if these missions do not have the same ground track, precise comparisons are still possible. They allow assessing parameter discrepancies and SSH consistency between both missions in order to detect geographically correlated biases, jumps or drifts. These results show that SARAL/AltiKa data quality is excellent: ocean data coverage is greater than 99.5%, standard deviation at cross-overs is 5.4 cm. The mission therefore fulfills the requirements of high precision altimetry and can be used (in conjunction with Jason-2) to monitor the global mean sea level, ensuring the continuity of the record over ERS/Envisat historical ground track. Possible improvements and open issues are also identified, foreseeing an even better mission performance.  相似文献   

6.
Since Jason-1launch, extensive validation of Jason-1 data and cross-calibration relative to TOPEX/Poseidon (T/P) have been performed by the CLS validation team within the CNES Jason-1 project. These validation activities are routinely operated as part of the Jason-1 ground segment, and often lead to in-depth studies to understand all validation conclusions. This paper presents the main results in terms of Jason-1 data quality: verification of data availability and validity, monitoring of the most relevant altimeter and radiometer parameters, assessment of the Jason-1 altimeter system performances. From global statistical analysis of more than 2 years of Jason-1 GDR data, results for all components of the altimeter measurement are derived in terms of bias, trend and precision. This work also represents a contribution to the estimation of the Jason-1 error budget. Thorough studies have been more focused on specific issues in relation to data quality: this is the case for the analysis of the high frequency content of the Jason-1 data and its impact on the T/P to Jason-1 comparison. From the results presented in this paper, it is demonstrated that the Jason-1 mission fulfils the requirements of high precision altimetry. In particular, it allows continuing the observation of the Mean Sea Level (MSL) variations at the same accuracy as T/P, which was one of the challenges of the Jason-1 mission. Potential improvements and open issues are also identified, with the objective of still making progress in terms of altimeter data quality.  相似文献   

7.
Since Jason-1launch, extensive validation of Jason-1 data and cross-calibration relative to TOPEX/Poseidon (T/P) have been performed by the CLS validation team within the CNES Jason-1 project. These validation activities are routinely operated as part of the Jason-1 ground segment, and often lead to in-depth studies to understand all validation conclusions. This paper presents the main results in terms of Jason-1 data quality: verification of data availability and validity, monitoring of the most relevant altimeter and radiometer parameters, assessment of the Jason-1 altimeter system performances. From global statistical analysis of more than 2 years of Jason-1 GDR data, results for all components of the altimeter measurement are derived in terms of bias, trend and precision. This work also represents a contribution to the estimation of the Jason-1 error budget. Thorough studies have been more focused on specific issues in relation to data quality: this is the case for the analysis of the high frequency content of the Jason-1 data and its impact on the T/P to Jason-1 comparison. From the results presented in this paper, it is demonstrated that the Jason-1 mission fulfils the requirements of high precision altimetry. In particular, it allows continuing the observation of the Mean Sea Level (MSL) variations at the same accuracy as T/P, which was one of the challenges of the Jason-1 mission. Potential improvements and open issues are also identified, with the objective of still making progress in terms of altimeter data quality.  相似文献   

8.
刘治中  杨俊钢  张杰  崔伟 《海洋学报》2020,42(3):129-139
Jason-3卫星高度计于2016年1月17日成功发射,2016年2月12日进入预定轨道,与Jason-2高度计同轨进入编队飞行阶段,并落后Jason-2高度计约1分20秒,两者相距约560 km。2016年9月1日,Jason-2高度计变换轨道,编队飞行阶段结束,两高度计进入平行轨道,以增加卫星高度计对地观测的空间覆盖。本研究主要开展了Jason-3高度计的数据质量的评估与检验,包括Jason-3高度计数据可用性和有效性的验证,以及Jason-3高度计和校正辐射计各参数的数据质量监测。重点开展了Jason-2与Jason-3高度计各项参数的综合比较,利用Jason-2与Jason-3高度计编队飞行阶段的数据精确评估了两高度计参数的一致性,并从全球数据角度分析了Jason-3高度计获取各参数的能力以及稳定性;通过与Jason-2互交叉点比较分析评估Jason-3高度计海面高度数据质量情况,验证Jason-3高度计数据精度。结果表明,Jason-3高度计的数据质量满足高度计测高的要求,具有与Jason-1、Jason-2、T/P等高度计相同或更高的测高精度以监测全球海平面变化,此外,Jason-3有效波高参数数据质量明显优于Jason-2高度计。  相似文献   

9.
The Jason-1 verification phase has proven to be a unique and successful calibration experiment to quantify the agreement with its predecessor TOPEX/Poseidon. Although both missions have met prescribed error budgets, comparison of the mean and time-varying sea surface height profiles from near simultaneous observations derived from the missions' Geophysical Data Records exhibit significant basin scale differences. Several suspected sources causing this disagreement are identified and improved upon, including (a) replacement of TOPEX and Jason project POE with enhanced orbits computed at GSFC within a consistent ITRF2000 terrestrial reference frame, (b) application of waveform retracking corrections to TOPEX significant wave height and sea surface heights, (c) resultant improved efficacy of the TOPEX sea state bias estimation from the value added sea surface height, and (d) estimation of Jason-1 sea state bias employing dual TOPEX/Jason crossover and collinear sea surface height residuals unique to the validation mission. The resultant mean sea surface height comparison shows improved agreement at better than 60 percent level of variance reduction with a standard deviation less then 0.5 cm.  相似文献   

10.
The Jason-1 verification phase has proven to be a unique and successful calibration experiment to quantify the agreement with its predecessor TOPEX/Poseidon. Although both missions have met prescribed error budgets, comparison of the mean and time-varying sea surface height profiles from near simultaneous observations derived from the missions' Geophysical Data Records exhibit significant basin scale differences. Several suspected sources causing this disagreement are identified and improved upon, including (a) replacement of TOPEX and Jason project POE with enhanced orbits computed at GSFC within a consistent ITRF2000 terrestrial reference frame, (b) application of waveform retracking corrections to TOPEX significant wave height and sea surface heights, (c) resultant improved efficacy of the TOPEX sea state bias estimation from the value added sea surface height, and (d) estimation of Jason-1 sea state bias employing dual TOPEX/Jason crossover and collinear sea surface height residuals unique to the validation mission. The resultant mean sea surface height comparison shows improved agreement at better than 60 percent level of variance reduction with a standard deviation less then 0.5 cm.  相似文献   

11.
An absolute calibration of the TOPEX/Poseidon (T/P) and Jason-1 altimeters has been undertaken during the dedicated calibration phase of the Jason-1 mission, in Bass Strait, Australia. The present study incorporates several improvements to the earlier calibration methodology used for Bass Strait, namely the use of GPS buoys and the determination of absolute bias in a purely geometrical sense, without the necessity of estimating a marine geoid. This article focuses on technical issues surrounding the GPS buoy methodology for use in altimeter calibration studies. We present absolute bias estimates computed solely from the GPS buoy deployments and derive formal uncertainty estimates for bias calculation from a single overflight at the 40-45 mm level. Estimates of the absolute bias derived from the GPS buoys is -10 ± 19 mm for T/P and +147 ± 21 mm for Jason-1 (MOE orbit) and +131 ± 21 mm for Jason-1 (GPS orbit). Considering the estimated error budget, our bias values are equivalent to other determinations from the dedicated NASA and CNES calibration sites.  相似文献   

12.
The focus of this study is the validation of significant wave height (SWH) and sea surface height anomaly (SSHA) obtained from the first Ka-band altimeter AltiKa onboard SARAL (Satellite for ARGOS and Altimeters). It is a collaborative mission of the Indian Space Research Organization and Centre National d'Etudes Spatiales (CNES). This is done using in-situ observations from buoy and Jason-2 measurements. Validation using buoy observations are at particular locations while that using Jason-2 altimeter is an attempt towards global validation of Altika products. The results clearly indicate that the SARAL/AltiKa provide high-quality data and the errors are within a predefined range of accuracy. A parallel validation of SWH from other altimeters, which monitored ocean since last decade, like EnviSAT and Jason-2 was also performed with buoy observations. The results clearly show that the accuracy of AltiKa SWH is much better than EnviSAT and comparable to reference mission Jason-2. The accuracy is quite good for the calm sea while in the rough seas the accuracy degrades some. The inter-comparison of SARAL/AltiKa SSHA with Jason-2 indicates a fair match between them. These validation exercises demonstrate the high quality of AltiKa products, usable for practical applications.  相似文献   

13.
TOPEX/Poseidon and Jason-1: Absolute Calibration in Bass Strait, Australia   总被引:2,自引:0,他引:2  
Updated absolute calibration results from Bass Strait, Australia, are presented for the TOPEX/Poseidon (T/P) and Jason-1 altimeter missions. Data from an oceanographic mooring array and coastal tide gauge have been used in addition to the previously described episodic GPS buoy deployments. The results represent a significant improvement in absolute bias estimates for the Bass Strait site. The extended methodology has allowed comparison between the altimeter and in situ data on a cycle-by-cycle basis over the duration of the dedicated calibration phase (formation flight period) of the Jason-1 mission. In addition, it has allowed absolute bias results to be extended to include all cycles since the T/P launch, and all Jason-1 data up to cycle 60. Updated estimates and formal 1-sigma uncertainties of the absolute bias computed throughout the formation flight period are 0 ± 14 mm for T/P and +152 + 13 mm for Jason-1 (for the GDR POE orbits). When JPL GPS orbits are used for cycles 1 to 60, the Jason-1 bias estimate is 131 mm, virtually identical to the NASA estimate from the Harvest Platform off California calculated with the GPS orbits and not significantly different to the CNES estimate from Corsica. The inference of geographically correlated errors in the GDR POE orbits (estimated to be approximately 17 mm at Bass Strait) highlights the importance of maintaining globally distributed verification sites and makes it clear that further work is required to improve our understanding of the Jason-1 instrument and algorithm behavior.  相似文献   

14.
《Marine Geodesy》2013,36(3-4):355-366
Sea surface slope computed from along-track Jason-1 and TOPEX/POSEIDON (T/P) altimeter data at ocean mesoscale wavelengths are compared to determine the equivalent 1 Hz instrument height noise of the Poseidon-2 and TOPEX altimeters. This geophysical evaluation shows that the Ku-band 1-Hz range noise for both instruments is better than 1.7 cm at 2 m significant wave heights (H1/3), exceeding error budget requirements for both missions. Furthermore, we show that the quality of these instruments allows optimal filtering of the 1-Hz along-track sea surface height data for sea surface slopes that can be used to calculate cross track geostrophic velocity anomalies at the baroclinic Rossby radius of deformation to better than 5 cm/sec precision along 87.5% of the satellite ground track between 2 and 60 degrees absolute latitude over the deep abyssal ocean (depths greater than 1000 m). This level of precision will facilitate scientific studies of surface geostrophic velocity variability using data from the Jason-1 and T/P Tandem Mission.  相似文献   

15.
After two years of verification and validation activities of the Jason-1 altimeter data, it appears that all the mission specifications are completely fulfilled. Performances of all instruments embarked onboard the platform meet all the requirements of the mission. However, the star tracker system has shown some occasional abnormal behavior leading to mispointing angles out of the range of Jason-1 system specification which states that the altimeter antenna shall be pointed to the nadir direction with an accuracy below 0.2 degree (3 sigma). This article discusses the platform attitude angle and its consequences on the altimetric estimates. We propose improvements of the Jason-1 retracking process to better account for attitude effects.

The first star tracker anomalies for the Jason-1 mission were detected in April 2002. The Poseidon-2 algorithms were specified assuming an antenna off-nadir angle smaller than 0.3 degree. For higher values, the current method to estimate the ocean parameters is known to be inaccurate. Thus, the algorithm has to be reviewed, and more specifically, the present altimeter echo model has to be modified to meet the desired instrument performance.

Therefore, we derive a second order analytical model of the altimeter echo to take into account attitude angles up to 0.8 degree, and consequently, we adapt the retracking algorithm. This new model is tested on theoretical simulated data using a maximum likelihood estimation. Biases and noise performance characteristics are computed for the different estimated parameters. They are compared to the ones obtained with the current algorithm. This new method provides highly improved estimations for high attitude angles. It is statistically validated on real data by applying it on several cycles of Poseidon-2 raw measurements. The results are found to be consistent with those obtained from simulations. They also fully agree with the TOPEX estimates when flying along the same ground track. Finally, the estimates are also in agreement with the ones available in the current I/GDR (Intermediate Geophysical Data Record) products when mispointing lies in the mission specifications.  相似文献   

16.
One-Centimeter Orbit Determination for Jason-1: New GPS-Based Strategies   总被引:2,自引:0,他引:2  
The U.S./French Jason-1 satellite is carrying a state-of-the-art GPS receiver to support precise orbit determination (POD) requirements. The performance of the Jason-1 “BlackJack” GPS receiver was strongly reflected in early POD results from the mission, enabling radial accuracies of 1-2 cm soon after the satellite's 2001 launch. We have made further advances in the GPS-based POD for Jason-1, most notably in describing the phase center variations of the on-board GPS antenna. We have also adopted new geopotential models from the Gravity Recovery and Climate Experiment (GRACE). The new strategies have enabled us to better exploit the unique contributions of the BlackJack GPS tracking data in the POD process. Results of both internal and external (e.g., laser ranging) comparisons indicate that orbit accuracies of 1 cm (radial RMS) are being achieved for Jason-1 using GPS data alone.  相似文献   

17.
Poseidon-2 is the dual frequency radar altimeter embarked on the CNES/NASA oceanographic satellite Jason-1 that was launched on 7 December 2001. The primary objective of the Jason-1 mission is to continue the high accuracy time series of altimeter measurements that began with TOPEX in 1992. To achieve this goal, it is necessary to improve each component of the ground processing continually. Among these components are the look-up correction tables that are used to correct the estimations (range, significant waveheight, and sigma naught) issued from the retracking algorithms (on-board and ground). Look-up tables were first computed taking into account the prelaunch characteristics of the altimeter. They have to be updated to take into account better all the in-flight characteristics of the altimeter and all the updated ground algorithms that can impact the estimation process. The aim of this article is to describe the radar altimeter simulator of performances that has been used to compute look-up tables, to display the freshly computed look-up tables, and to discuss the consequences of these new corrections on the products provided to the users. The updated look-up correction tables allow improvement of SWH estimation, in particular with respect to TOPEX SWH data. It is also shown that no range dependency on SWH has to be looked for in these tables, and that the on-board TOPEX and Poseidon-2 tracking systems may contain the differences explaining the relative sea state bias between both altimeters.  相似文献   

18.
The U.S./French Jason-1 satellite is carrying a state-of-the-art GPS receiver to support precise orbit determination (POD) requirements. The performance of the Jason-1 “BlackJack” GPS receiver was strongly reflected in early POD results from the mission, enabling radial accuracies of 1–2 cm soon after the satellite's 2001 launch. We have made further advances in the GPS-based POD for Jason-1, most notably in describing the phase center variations of the on-board GPS antenna. We have also adopted new geopotential models from the Gravity Recovery and Climate Experiment (GRACE). The new strategies have enabled us to better exploit the unique contributions of the BlackJack GPS tracking data in the POD process. Results of both internal and external (e.g., laser ranging) comparisons indicate that orbit accuracies of 1 cm (radial RMS) are being achieved for Jason-1 using GPS data alone.  相似文献   

19.
Jason-1 Altimeter Ground Processing Look-Up Correction Tables   总被引:1,自引:0,他引:1  
Poseidon-2 is the dual frequency radar altimeter embarked on the CNES/NASA oceanographic satellite Jason-1 that was launched on 7 December 2001. The primary objective of the Jason-1 mission is to continue the high accuracy time series of altimeter measurements that began with TOPEX in 1992. To achieve this goal, it is necessary to improve each component of the ground processing continually. Among these components are the look-up correction tables that are used to correct the estimations (range, significant waveheight, and sigma naught) issued from the retracking algorithms (on-board and ground). Look-up tables were first computed taking into account the prelaunch characteristics of the altimeter. They have to be updated to take into account better all the in-flight characteristics of the altimeter and all the updated ground algorithms that can impact the estimation process. The aim of this article is to describe the radar altimeter simulator of performances that has been used to compute look-up tables, to display the freshly computed look-up tables, and to discuss the consequences of these new corrections on the products provided to the users. The updated look-up correction tables allow improvement of SWH estimation, in particular with respect to TOPEX SWH data. It is also shown that no range dependency on SWH has to be looked for in these tables, and that the on-board TOPEX and Poseidon-2 tracking systems may contain the differences explaining the relative sea state bias between both altimeters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号