首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
On the basis of Argo data and historic temperature/salinity data from the World Ocean Database 2001 ( WOD01 ), origins and spreading pathways of the subsurface and intermediate water masses in the Indonesian Throughflow (ITF) region were discussed by analyzing distributions of salinity on representative isopyenal layers. Results were shown that, subsurface water mostly comes from the North Pacific Ocean while the intermediate water originates from both the North and South Pacific Ocean, even possibly from the Indian Ocean. Spreading through the Sulawesi Sea, the Makassar Strait, and file Flores Sea, the North Pacific subsurface water and the North Pacific Intermediate water dominate the western part of the Indonesian Archipelago. Furthermore as the depth increases, the features of the North Pacific sourced water masses become more obvious. In the eastern part of the waters, high sa- linity South Pacific subsurface water is blocked by a strong salinity front between Halmahera and New Guinea. Intermediate water in the eastern interior region owns salinity higher than the North Pacific intermediate water and the antarctic intermediate water ( AAIW), possibly coming from the vertical mixing between subsurface water and the AAIW from the Pacific Ocean, and possibly coming from the northward extending of the AAIW from the Indian Ocean as well.  相似文献   

2.
东海西部陆架海域水团的季节特征分析   总被引:3,自引:1,他引:2  
On the basis of the CTD data and the modeling results in the winter and summer of 2009, the seasonal characteristics of the water masses in the western East China Sea shelf area were analyzed using a cluster analysis method. The results show that the distributions and temperature-salinity characteristics of the water masses in the study area are of distinct seasonal difference. In the western East China Sea shelf area, there are three water masses during winter, i.e., continental coastal water(CCW), Taiwan Warm Current surface water(TWCSW) and Yellow Sea mixing water(YSMW), but four ones during summer, i.e., the CCW, the TWCSW, Taiwan Warm Current deep water(TWCDW) and the YSMW. Of all, the CCW, the TWCSW and the TWCDW are all dominant water masses. The CCW, primarily characterized by a low salinity, has lower temperature, higher salinity and smaller spatial extent in winter than in summer. The TWCSW is warmer, fresher and smaller in summer than in winter, and it originates mostly from the Kuroshio surface water(KSW) northeast of Taiwan, China and less from the Taiwan Strait water during winter, but it consists of the strait water and the KSW during summer. The TWCDW is characterized by a low temperature and a high salinity, and originates completely in the Kuroshio subsurface water northeast of Taiwan.  相似文献   

3.
The seasonal circulation in the southeastern Huanghai Sea has been studied with hydrographic data,which were observed in February and June 1994 and bimonthly during 1970-1990,and numerical model results.Horiwntal distributions of temperature and salinity in 1994 are quite different due to strong tidal mixing so that we need a analysis to see the real distributions of water masses.The mixing ratio analysis with the data of 1970-1990 shows the connection of the waters in the west coasts of Kotea Peninsula with warm and saline waters from the south in summer,which means northward inflows along the west coasts of Korea Peninsula in summer.With this flow,the seasonal circulations,which are deduced from the seasonal change of water mass distributions in the lower layer,are warm inflows in winter and mld outflows in summer in the central Huanghai Sea,and cold outflows in winter and warm inflows in summer along the west coasts of Korea Peninsula.The seasonally changed inflows might be the Huanghai Sea Warm Current.The monsoon winds can drive such circulations.However,summer monsoon winds are weak and irregular.As one of other possible dynamics,the variation of Kuroshio transport is numerically studied with allowing sea level fluctuations.Although it should be studied more,it possibly drives the summer circulations.The real circulations seem to be driven by both of them.  相似文献   

4.
According to historical mean ocean current data through the field observations of the Taiwan Ocean Research Institute during 1991–2005 and survey data of nutrients on the continental shelf of the East China Sea(ECS) in the summer of 2006, nutrient fluxes from the Taiwan Strait and Kuroshio subsurface waters are estimated using a grid interpolation method, which both are the sources of the Taiwan Warm Current. The nutrient fluxes of the two water masses are also compared. The results show that phosphate(PO4-P), silicate(SiO3-Si) and nitrate(NO3-N) fluxes to the ECS continental shelf from the Kuroshio upwelling water are slightly higher than those from the Taiwan Strait water in the summer of 2006. In contrast, owing to its lower velocity, the nutrient flux density(i.e., nutrient fluxes divided by the area of the specific section) of the Kuroshio subsurface water is lower than that of the Taiwan Strait water. In addition, the Taiwan Warm Current deep water, which is mainly constituted by the Kuroshio subsurface water, might directly reach the areas of high-frequency harmful alga blooms in the ECS.  相似文献   

5.
Deep water in the Nordic seas is the major source of Atlantic deep water and its formation and transport play an important role in the heat and mass exchange between polar and the North Atlantic. A monthly hydrological climatology—Hydrobase II—is used to estimate the deep ocean circulation pattern and the deep water distribution in the Nordic seas. An improved P-vector method is applied in the geostrophic current calculation which introduces sea surface height gradient to solve the issue that a residual barotropic flow cannot be recognized by traditional method in regions where motionless level does not exist. The volume proportions, spatial distributions and seasonal variations of major water masses are examined and a comparison with other hydrological dataset is carried out. The variations and transports of deep water are investigated based on estimated circulation and water mass distributions. The seasonal variation of deep water volume in the Greenland Basin is around 22×103 km3 whereas significantly weaker in the Lofoten and Norwegian Basins. Annual downstream transports of about 1.54×103 and 0.64×103 km3 are reported between the Greenland/Lofoten and Lofoten/Norwegian Basins. The deep water transport among major basins is generally in the Greenland-Lofoten-Norwegian direction.  相似文献   

6.
1972-2013年北欧海深层水增暖   总被引:2,自引:1,他引:1  
The warming of deep waters in the Nordic seas is identified based on observations during Chinese 5th Arctic Expedition in 2012 and historical hydrographic data. The most obvious and earliest warming occurrs in the Greenland Basin(GB) and shows a coincident accelerated trend between depths 2 000 and 3 500 m. The observations at a depth of 3 000 m in the GB reveal that the potential temperature had increased from-1.30°C in the early 1970 s to-0.93°C in 2013, with an increase of about 0.37°C(the maximum spatial deviation is 0.06°C) in the past more than 40 years. This remarkable change results in that deep waters in the center of the Lofton Basin(LB) has been colder than that in the GB since the year 2007. As for the Norwegian Basin(NB), only a slight trend of warming have been shown at a depth around 2 000 m since the early 1980 s, and the warming amplitude at deeper waters is just slightly above the maximum spatial deviation, implying no obvious trend of warming near the bottom. The water exchange rate of the Greenland Basin is estimated to be 86% for the period from 1982 to 2013, meaning that the residence time of the Greenland Sea deep water(GSDW) is about 35 years. As the weakening of deep-reaching convection is going on, the abyssal Nordic seas are playing a role of heat reservoir in the subarctic region and this may cause a positive feedback on the deep-sea warming in both the Arctic Ocean and the Nordic seas.  相似文献   

7.
Surface distribution and seasonal variation of alkalinity and specific alkalinity in Kuroshio area of the East ChinaSea and their application to the water mass tracing are discussed in this paper. Results show a distinct seasonal variation of the alkalinity, which is concerned with the process of vertical mixing. Different specific alkalinity in various water masses has been found. On the basis of the difference of the specific alkalinity and the distribution of alkalinity, two water fronts in summer season, located at 27°-30°N and 124°-1 27°E, (Ⅰ), and at the northern waters about one latitude from the Taiwan Island, (Ⅱ); one in winter season at about one longitude from coast of mainland of China and 26°-30°N were found. In summer season, about 1-2 longitudes eastward shift of front (Ⅰ) is found by comparison of data in May and August. And the high alkalinity of the northern East China Sea in summer season may be caused by the Huanghe River runoff flowing southward along with the Huanghai Sea  相似文献   

8.
The three-dimensional structure of precipitation on a seasonal scale in the Asian-Pacific's three monsoon regions is investigated based on the tropical rainfall measurement mission (TRMM) data. The results show that: (1) The maximum seasonal variation of the relative proportional difference of convective precipitation and stratiform rain occurs in the East Asian monsoon region, the second occurs in the Indian monsoon region, and the minimum is in the northwest Pacific monsoon region. In both the northwest Pacific mon soon region and the Indian monsoon region, the convective rain is proportionately larger than stratiform rain in all four seasons. (2) Cloud ice reaches its maximum at around 9 km. Cloud water's maximum range is between 3 and 4 km. The large value area of precipitation ice is mainly between 4 and 9 km. The precipi tation water particle is concentrated mostly below 4 km. The largest content is from the ground to 2 km. (3) The most remarkable variance of the content of cloud ice in the Indian monsoon region occurs from spring to winter, and the content of cloud water in the northwest Pacific is always higher than that in the other two regions. (4) The latent heat profile has a similar double-peak structure. The first peak is at 4 km and the second peak is at 2 km. In autumn and winter, the latent heat is higher in the northwest Pacific than in other two regions. In all three regions, the release of the latent heat is higher in summer and autumn than in spring and winter.  相似文献   

9.
A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of t  相似文献   

10.
With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and after summer monsoon onset. It is discovered that, after summer monsoon onset, there are considerable changes in air-sea fluxes, especially in latent heat fluxes and net oceanic heat budget. Furthermore, the analyzed results of five synoptic stages are compared. And the characteristics of the flux transfer during different stages around onset of South China Sea monsoon are discussed. The flux change shows that there is an oceanic heat accumulating process during the pre-onset and the break period, as same as oceanic heat losing process during the onset period. Moreover, latent fluxes, the water vapor moving to the continent, even the rainfall appearance in Chinese Mainland also can be influenced by southwester. Comparing Xisha fluxes with those obtained from the Indian Ocean and the western Pacific Ocean, their differences may be obeerved. It is the reason why SSTs can keep stableover the South China Sea while they decrease quickly over the Arabian Sea and the Bay of Bengal aftermonsoon onset.  相似文献   

11.
本文利用World Ocean Atlas 2013(WOA2013)气候态的温盐资料和the Simple Ocean Data Assimilation (SODA v3.3.1)流场数据,分析印尼贯穿流东部源区马鲁古海和哈马黑拉海的水团垂向分布特征及其来源,特别是次表层、中层及深层水的来源和路径。结果表明,气候态下,马鲁古海次表层的高温高盐水来自于北太平洋,与北太平洋热带水性质接近,哈马黑拉海次表层主要是来自南太平洋热带水;中层水以低温低盐为特征,马鲁古海的中层水来自南太平洋,受南极中层水控制,哈马黑拉海的中层水可能是从马鲁古海而来的南太平洋水;对于次表层和中层之间的过渡层,马鲁古海与哈马黑拉海的水源为南、北太平洋的混合水,且两个海域之间也存在着水团交换;在深层,马鲁古海的水源更倾向于班达海北部及塞兰海,而与太平洋水无关,哈马黑拉海由于地形阻挡也难以与太平洋直接发生水团交换。  相似文献   

12.
The South China Sea(SCS) is the largest semi-enclosed marginal sea in the North Pacific. Salinity changes in the SCS play an important role in regional and global ocean circulation and the hydrological cycle. However, there are few studies on salinity changes over the SCS due to lack of high-quality and long-term observations. In the past decade, the deployment of floats from the Argo program in the SCS and their accumulated temperature and salinity profiles have made it possible for us to examine salinity changes over the entire basin. In this study,salinity changes were investigated with Argo and underwater glider temperature and salinity observations and gridded temperature–salinity objective analyses(UK Met Office Hadley Centre EN4.2.1 objective analysis and China Argo Real-time Data Center BOA_Argo). The results indicated that the subsurface water in the entire SCS became significantly saltier during 2016–2017. The most significant salinity increase was found during 2016 in the northeastern SCS. The subsurface water in the northeastern SCS exhibited a salinity maximum above 35, which was recorded by three Argo floats during 2015–2016. Such high salinity water was rarely observed and reported prior to the Argo era. Average salinity of 2016–2017 along the 25.5σ_θ–23.5σ_θ isopycnal surfaces in the whole SCS is 0.014-0.130 higher than the climatology. Increases in subsurface salinity started from the northeastern SCS and extended southwestward gradually. Moreover, the subsurface salinity changes, especially in the northern SCS,exhibited a semiannual lead behind the subsurface Luzon Strait transport. Further analysis indicated that the predominance of advection, driven by subsurface Luzon Strait transport, led to salinification along the western boundary of the SCS. In other parts of the SCS, negative wind stress curl trends tended to preserve the high salinity characteristics of the subsurface water.  相似文献   

13.
本文利用World Ocean Atlas 2013 (WOA13)和Simple Ocean Data Assimilation version 3.1.1 (SODA v3.3.1)温盐资料,分析印尼贯穿流(ITF)路径及所经印度尼西亚海及周边西太平洋、南海和东印度洋海域的层结强度(N2)和跃层特征的三维时空变化特征。结果表明,气候态下ITF 3条路径上跃层平均N2差异较小,其中中部路径平均值最大,为10?3.68 s?2,东部路径平均值最小,为10?3.71 s?2;各路径跃层深度和厚度存在明显差异,东部路径跃层深度和厚度最大,分别为124 m和192 m,中部次之,西部最小为99 m和143 m,并且印尼海的跃层深度和厚度平均值均小于其他海域。印尼海N2存在显著的季节变化和4~7 a的多年周期变化,其中年际变化可能主要受厄尔尼诺?南方涛动事件影响。季节上,在印尼海域内,ITF 3条路径夏季层结强度均小于冬季(北半球夏冬季),夏、冬两季N2差值最大可达到两个量级。1993?2015年的长期变化趋势显示,印尼海及周边大部分海域的层结强度呈现增强趋势,其中印度洋中部和哈马黑拉海23 a内最大层结增强近0.1个量级。  相似文献   

14.
利用Argo资料和《世界海洋数据集2001版》(WOD01)温盐历史资料,通过对代表性等位势面上盐度分布的分析,探讨了次表层和中层等不同层次上印尼贯通流(ITF)的起源与路径问题.分析结果表明,ITF的次表层水源主要来自北太平洋,中层水源地既包括北太平洋、南太平洋,同时也不能排除有印度洋的可能性.在印度尼西亚海域西部,ITF的次表层和中层水源分别为北太平洋热带水(NPTW)和中层水(NPIW),经苏拉威西海、望加锡海峡到达弗洛勒斯海,层次越深特征越明显.在印度尼西亚海域东部,发现哈马黑拉-新几内亚水道附近存在次表层强盐度锋面,阻隔了南太平洋热带水(SPTW)由此进入ITF海域;中层水具有高于NPIW和来自南太平洋的南极中层水(AAIW)的盐度值,既可能是AAIW和SPTW在当地发生剧烈垂直混合而形成,也可能是来自印度洋的AAIW向北延伸进入ITF的结果.  相似文献   

15.
The temperature minimum layer, called “dichothermal water”, is a characteristic feature of the North Pacific subarctic gyre. In particular, dichothermal water having a density of approximately 26.6 sigma-theta (σθ), which corresponds to the densest water outcropping in winter in the North Pacific, is seen in the Bering Sea. In order to clarify the water properties, and the area in which and the process by which the dichothermal water is formed, a new seasonal mean gridded climatological dataset with a fine resolution for the Bering Sea and adjacent seas has been prepared using historically accumulated hydrographic data. Although the waters of the Alaskan Stream have temperature minimum layers, their temperature inversions are very weak in climatologies and the core densities of the temperature minimum layers are much lighter than 26.6σθ. On the other hand, in the Bering Sea one can see the robust structure of temperature minimum layers, the core density of the dichothermal water being around 26.6σθ. In addition, it has been found that the properties of the dichothermal water observed in the warming season are almost the same as those in the winter mixed layer. That is, the dichothermal waters are formed in the winter mixed layer in the Bering Sea. Since these waters are found in the Kamchatka Strait, i.e., the main exit of the Bering Sea waters, it can be supposed that the dichothermal waters are exported from the Bering Sea to the Pacific Ocean by the Kamchatka Current. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Researches on the currents in the South China Sea (SCS) and the interaction between the SCS and its adjacent seas are reviewed. Overall seasonal circulation in the SCS is cyclonic in winter and anticyclonic in summer with a few stable eddies. The seasonal circulation is mostly driven by monsoon winds, and is related to water exchange between the SCS and the East China Sea through the Taiwan Strait, and between the SCS and the Kuroshio through the Luzon Strait. Seasonal characteristics of the South China Sea Warm Current in the northern SCS and the Kuroshio intrusion to the SCS are summarized in terms of the interaction between the SCS and its adjacent seas.  相似文献   

17.
Using the mesoscale eddy trajectory atlas product derived from satellite altimeter data from 1993 to 2016, this study analyzes statistical characteristics and seasonal variability of mesoscale eddies in the Banda Sea of the Indonesian seas. The results show that there were 147 mesoscale eddies that occurred in the Banda Sea, of which 137 eddies were locally generated and 10 originated from outside. The total numbers of cyclonic eddies (CEs, clockwise) and anticyclonic eddies (AEs, anticlockwise) are 76 and 71, respectively. Seasonally, the number of CEs (AEs) is twice larger than the number of AEs (CEs) in winter (summer). In winter, CEs are distributed in the southern and AEs in the northern basins, respectively, but the opposite thing occurs in summer, i.e., the polarities of mesoscale eddies observed at the same location reverse seasonally. The mechanisms of polarity distribution reversal (PDR) of mesoscale eddies are examined with reanalysis data of ocean currents and winds. The results indicate that the basin-scale vorticity, wind stress curl, and the meridional shear of zonal current reverse seasonally, which are favorable to the PDR of mesoscale eddies. The possible generation mechanisms of mesoscale eddies include direct wind forcing, barotropic and baroclinic instabilities, of which the direct wind forcing should play the dominant role.  相似文献   

18.
厄尔尼诺和台风共同影响下的7月份黄、东海海温变化   总被引:1,自引:0,他引:1  
张守文  王辉  姜华  宋春阳  杜凌 《海洋学报》2017,39(12):32-41
基于历史海温数据和台风路径数据,研究了厄尔尼诺/拉尼娜(El Niño/La Niña)背景下7月份中国近海海温变化特征。结果表明:7月黄、东海海温异常与El Niño/La Niña有显著相关关系,OISST和GODAS海温数据与Niño3指数同步相关系数分别为-0.32和-0.45。El Niño年7月,黄、东海海表温度异常低于-0.5℃的概率超过60%;La Niña年7月,黄海海温异常高于0.5℃的概率约有60%;正常年7月,海温异常的空间分布与El Niño年相反,但量值偏低。El Niño年7月,中国近海及邻近区域大气异常能够给局地带来更多降水;同时,受El Niño背景场的影响,入侵黄、东海的台风强度更强、影响时间更长。大尺度的降水和台风活动的影响是导致黄、东海海温异常降低的重要原因。因此,分析和预测7月份中国近海海温异常,在充分考虑El Niño/La Niña背景场的基础上,需要结合局地的大尺度降水和台风的影响同时分析,这为特定背景下结合不同时间尺度上的因素共同分析中国近海海温变化提供了一种思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号