首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
为了解红树林与光滩磷、铁地球化学行为的差异,借助薄膜扩散梯度技术(ZrO-Chelex DGT),对厦门同安湾红树林及临近光滩孔隙水中溶解活性磷(DRP)、Fe~(2+)浓度进行了原位测量,并采集了相应沉积物柱状样进行测定分析。结果表明:(1)Fe~(2+)与DRP呈现较好的线性正相关,说明磷的吸附/解吸与铁氧化还原循环有关;(2)在不同深度,光滩孔隙水中DRP浓度均高于对应深度红树林。在浅层,由于溪水的补给造成光滩的磷富集;在深层,红树植物根部吸收导致磷浓度下降,光滩有机质含量较多,矿化释放DRP使其浓度较高;(3)孔隙水中的Fe~(2+)浓度分布表明,红树林区域随着深度的增加,逐渐由好氧环境进入厌氧环境;而光滩沉积物氧化还原环境可能受到红树林的影响,孔隙水Fe~(2+)在垂向上波动分布。  相似文献   

2.
揭示极端天气影响的红树林潮滩潮流能量耗散过程是理解生物海岸演变及滨海湿地生态修复工程的核心内容。以北部湾防城港东湾白骨壤红树林潮滩为例,基于声学多普勒流速仪(ADV)获取区域2020年8月连续6天的水动力和白骨壤红树林下垫面植被实测数据,分析白骨壤潮滩近底层动力响应台风“森拉克”的耗散过程。结果表明:1)正常天气涨、落潮期间,自光滩到白骨壤红树林林内近底层湍流动能变化具有潮汐不对称性特征。涨潮期间光滩—白骨壤红树林边缘、白骨壤红树林边缘—林内潮流挟沙能量分别通过泥沙沉降以及搬运泥沙两种方式沿程消耗,落潮期间潮流挟沙能量主要以泥沙净沉降的方式消耗。2)白骨壤通过其潮滩表层向上发育长约10 cm的呼吸根以降低湍流垂向紊动;红树林边缘的枝、叶通过影响水平方向上的水流动力,致使潮流挟沙能耗降低。3)与正常天气比较,台风“森拉克”期间东湾自光滩到白骨壤红树林林内近底层水体流速无明显变化,但流向偏转幅度明显变大。同时湍流动能的耗散率和用以搬运泥沙为主的潮流挟沙能耗亦均增大。  相似文献   

3.
中国红树林生态系统的植物种类、多样性、功能及其保护   总被引:28,自引:0,他引:28  
本文从4个方面对中国红树林生态系统的植物进行论述:(1)中国红树林生态系统的红树植物、半红树植物、伴生植物、红树林区的大型藻类和浮游植物种类;(2)中国红树林生态系统植物的物种多样性、红树植物生理和形态适应的多样性、产物的多样性;(3)红树林的生态功能;(4)中国红树林生态系统的主要保护问题及其保护措施。  相似文献   

4.
北部湾大风江与南流江河口红树林空间分布格局研究   总被引:1,自引:1,他引:0  
生长在潮间带的红树植物在河口植物群落构成、海岸防风消浪中具有重要价值。本文基于本地种桐花树胚胎浸泡下沉实验与北部湾南流江和大风江河口段水体盐度、沿线潮间带植物群落结构与地貌分析,探讨红树林在河口空间分布及影响因素。结果主要表明:南流江河口和大风江河口红树林自海向陆基本展现“红树林纯林(桐花树、秋茄、无瓣海桑种类混生)→红树植物与半红树植物(黄槿、苦朗等)混生→红树植物、半红树植物与非红树植物混生→红树植物镶嵌→稀疏红树林小苗”的分布格局,但大风江河口向陆界限主要以红树、红树幼苗及半红树混生为主。此外,红树被浸淹时长是控制河口红树空间分布结构的主要因素。潮水上溯时长影响红树向陆生长的极限位置,宜林滩地是红树发育生长的必要条件。  相似文献   

5.
对长江口2002年和2003年共4个潮周期的数据进行了分析,通过流速对数剖面公式计算边界层参数,并对各个潮周期内的边界层参数的变化规律进行了分析,同时也对悬沙输送可能对垂向水流结构以及边界层参数造成的影响进行了探讨。结果表明,悬沙的时间分布特征对温度、盐度、水体密度的分布格局有重要影响,主要表现在水体的Rf值普遍较高,分层稳定。此外,悬沙也可影响边界层参数,从而对水流结构产生影响。由于水体的层化作用,使层间的摩擦阻力增大,相当于在垂向上产生不同内边界层,因而影响了流速在垂向上的变化。  相似文献   

6.
采用聚丙烯酰胺凝胶电泳方法对广西英罗港内滩和中滩红树林中的白骨壤Avicennia marina、桐花树Ae-giceras corniculatum和秋茄Kandelia candel叶片的过氧化物酶(POD)同工酶、超氧化物歧化酶(SOD)同工酶进行了电泳分离及酶活力测定,同时测定了红树植物采样点土壤的Mn、Cr、Cd、Pb、Cu和Zn 6种重金属元素的含量。结果表明:(1)内滩的3种红树植物叶片的POD同工酶的带数或酶活力均大于中滩;桐花树和秋茄SOD同工酶的变化趋势与POD相似,但酶活力变化幅度小于POD。(2)土壤中各种重金属含量的大小顺序是Mn>Cr>Zn>Pb>Cu>Cd,中滩高于内滩。(3)桐花树POD同工酶活力变化可对土壤重金属污染起指示作用。  相似文献   

7.
江苏大丰潮滩潮流边界层特征研究   总被引:7,自引:0,他引:7  
2003年7月中小潮期间使用MIDAS-400用户化数据采集系统在江苏大丰潮滩上进行了垂向多层位同步的流速和悬沙浓度观测。根据观测资料研究了潮流作用下的潮滩底部边界层过程,结果表明,观测地点的潮汐不对称现象十分明显,落潮流速、历时和输水输沙量皆明显大于涨潮;在潮周期内的多数时间里流速剖面符合对数分布,但在风力较强、水流快速增加和流速缓慢的情况下,流速剖面常偏离对数分布;悬沙颗粒垂向混合均匀,悬沙浓度剖面符合Rouse公式;落潮时的底部切应力和摩阻流速明显大于涨潮,摩阻流速与各水层流速通常有较好的线性关系;滩面糙度主要与沙纹形态和推移质运动强度有关,它与摩阻流速存在密切关系;悬沙浓度具有明显的减阻效应,受其影响,摩阻流速和底部切应力分别减小了28%~41%和40%~62%。  相似文献   

8.
观测红树林潮滩在波浪和潮流作用下的近底层垂向剖面悬沙浓度变化过程, 对理解海岸带植被的消能促淤机制和滨海湿地生态修复工程有着重要作用。本文以北部湾七星岛岛尾桐花树红树林潮滩为例, 基于剖面流速仪HR、声学多普勒单点流速仪ADV、浪潮仪T-wave及剖面浊度仪ASM, 获取了研究区域2019年夏季大潮连续3天的水文数据, 同时结合桐花树典型植株实测参数, 分析了潮周期内红树林潮滩近底层垂向剖面悬沙响应波浪、潮流作用及桐花树空间结构的运动过程。结果表明: 1) 桐花树潮滩近底层悬沙浓度和悬沙通量具有涨潮明显大于落潮的潮汐不对称现象, 剖面垂向高悬沙浓度区域在涨潮初期—涨急由距底部0.1~0.37m转变为距底部0.5~0.67m, 落急—落潮末期则由上部转变为下部; 2) 潮周期内悬沙起动和再悬浮阶段发生在以波浪作用主导的涨潮初期和落潮末期, 平流和沉降发生在以潮流作用为主的涨急至落急整个阶段; 3) 涨潮阶段桐花树冠层的茂密枝叶通过减缓流速拦截多于冠层上部40%以上的悬沙, 落潮水体则挟沙自陆向海经过桐花树群落, 使得悬沙浓度下降超过71%。该不对称涨、落潮动力沉积机制有利于悬沙向岸输运, 促进潮滩扩张过程。  相似文献   

9.
红树林广泛分布于我国南方沿海地区,可有效减小波浪对岸滩的破坏,研究其在规则波作用下对岸滩变化的影响具有重要意义。基于波浪水槽实验,采用PVC圆管模拟红树林,选取无黏性沙堆砌而成的1/10~1/20组合坡概化岸滩。实验结果表明,在规则波作用下,红树林的存在对岸滩剖面变化产生了较大影响;并分析了规则波波陡、植物分布密度和排列方式对岸滩剖面变化的影响。基于实验数据,建立了在实验条件下的岸滩冲刷坑尺度、淤积沙坝尺度、最大冲刷深度、最大淤积高度与规则波波陡、红树林的分布密度和排列方式之间的关系式,结果呈幂指数函数关系。揭示了岸滩剖面变化与规则波水动力特性、红树林、泥沙颗粒和岸滩坡度之间的联系。引入植物综合系数,预测给定规则波波陡和波长情况下的岸滩冲淤演变特征值,为海岸生物防护工程的建设提供科学依据。  相似文献   

10.
脂肪酸的组成分析对认识红树植物脂肪酸资源、红树林生态系统内部的营养关系、食物网的结构,以及红树植物对生境的适应等具有重要参考价值。本研究分析了海南岛铁炉港和清澜港两个港湾的红海榄(Rhizophora stylosa)、杯萼海桑(Sonneratia alba)、木果楝(Xylocarpus granatum)、角果木(Ceriops tagal)、榄李(Lumnitzera racemosa)、木榄(Bruguiera gymnorrhiza)和正红树(Rhizophora apiculata)等7种不同红树植物叶片中脂肪酸的组成及含量。在样品中共检测出25种脂肪酸,其中月桂酸、棕榈酸和肉豆蔻酸等8种存在于所有样品中。样品中含量最高的饱和脂肪酸均为棕榈酸(占比44.32%),其次为硬脂酸(占比7.74%),不饱和脂肪酸含量较高的有油酸(占比7.61%)、亚油酸(占比9.81%)和二十碳烯酸(占比12.16%)。植物样品的脂肪酸不饱和指数为0.24~1.13。除木果楝和清澜港采集的木榄样品外,其余样品种的不饱和脂肪酸含量均低于饱和脂肪酸。铁炉港的红海榄、杯萼海桑、角果木和榄李4种植物叶片不饱和脂肪酸含量高于清澜港同一物种的,而木榄的不饱和脂肪酸含量则表现为清澜港高于铁炉港。脂肪酸组成上,木果楝和正红树在两个港湾的相似性高于其他红树植物,棕榈酸、二十碳烯酸和亚油酸是造成红树植物脂肪酸组成差异的主要组分。本研究的结果表明红树植物的脂肪酸组成与物种和区域有关,而热带地区红树植物可能具有不饱和脂肪酸含量低的特点。  相似文献   

11.
Using an integrated approach including satellite imagery analysis, field measurements, and numerical modeling, we investigated the damage to mangroves caused by the 2004 Indian Ocean tsunami at Pakarang Cape in Pang Nga Province, Thailand. Comparing pre- and post-tsunami satellite imagery of the study area, we found that approximately 70% of the mangrove forest was destroyed by the tsunami. Based on field observations, we found that the survival rate of mangroves increased with increasing stem diameter. Specifically, we found that 72% of Rhizophora trees with a 25–30 cm stem diameter survived the tsunami impact, whereas only 19% with a 15–20 cm stem diameter survived. We simulated the 2004 Indian Ocean tsunami using the nonlinear shallow-water wave theory to reproduce the tsunami inundation flow and investigated the bending moment acting on the mangrove trees. Results of the numerical model showed that the tsunami inundated areas along the mangrove creeks, and its current velocity reached 5.0 m s−1. Based on the field measurements and numerical results, we proposed a fragility function for mangroves, which is the relationship between the probability of damage and the bending stress caused by the maximum bending moment. We refined the numerical model to include the damage probability of mangrove forests using the obtained fragility function to investigate the tsunami reduction effect of mangrove forest. Under simple numerical conditions related to the mangrove forest, ground level, and incident wave, the model showed that a mangrove forest of Rhizophora sp. with a density of 0.2 trees m−2 and a stem diameter of 15 cm in a 400 m wide area can reduce the tsunami inundation depth by 30% when the incident wave is assumed to have a 3.0 m inundation depth and a wave period of 30 min at the shoreline. However, 50% of the mangrove forest is destroyed by a 4.5 m tsunami inundation depth, and most of the mangrove forest is destroyed by a tsunami inundation depth greater than 6 m. The reduction effect of tsunami inundation depth decreased when the tsunami inundation depth exceeded 3 m, and was mostly lost when the tsunami inundation depth exceeded 6 m.  相似文献   

12.
The snail, Littoraria scabra, is a dominant grazer on tropical mangrove trees, and may play an important role in the food web dynamics of these ecosystems. Its daily vertical migration to avoid tidal submersion results in exposure to varying food types and abundances. A comprehensive diet analysis – gut contents, fatty acid profiles, and stable isotopes (δ15N and δ13C) – was conducted on snails migrating along mangrove trees and snails maintained in non-tidal mesocosms at Nananu-i-ra, Fiji Islands. In addition, fatty acid profiles and stable isotope signatures were obtained from surface scrapings of mangrove roots, trunks, branches, and leaves. Results from this multi-technique study indicate that L. scabra is mainly a generalist herbivore, which easily shifts diets depending on food availability, and which also has the ability to ingest and assimilate zooplankton. Ingestion of greater quantities of diverse foods (i.e., microalgae, foliose/corticated macrophytes, filamentous algae, mangrove tissues, zooplankton) takes place in the bottom areas of mangrove trees (roots and trunks) during low tides, while top areas (branches and leaves) provide limited food resources for snails feeding during high tides. However, snails preferentially assimilate microalgae and bacteria, regardless of their feeding habitat (different areas within mangrove trees and non-tidal mesocosms). The daily vertical movements of this snail result in variable feeding times, ingestion of different food types and amounts, and different assimilations. These findings also suggest that organic matter derived from mangrove tissues may not be readily transferred to higher trophic levels through this grazing pathway.  相似文献   

13.
Located in the intertidal zone of the tropical and subtropical coasts, mangrove forests are an important ecosystem in the global carbon cycle and serve as a protector of local seashores. Under the double impacts of climate change,especially sea-level rise, and human activity, mangrove forests around the world have faced degradation, against which the reconstruction of the historical development of mangrove forests using an effective indicator has been regarded as a necessary strategy for designing a predictable model. As the primary product of mangrove forest, it is reasonable that the content of leaf fragments of mangrove(CLFM) buried in sediments in the form of sub-fossils potentially has the same indicative function for the development of mangrove forests as that of widely-used mangrove pollen. In this study, the leaf fragments of mangrove in two sediment cores(YLW02 and YLW03) drilled in the Yingluo Bay in Guangxi, Southwest China were picked out and weighted for calculation of CLFM, which was used as an indicator of mangrove development after examination of parallelism and a statistical correlation of the CLFM with the concentration of mangrove pollen. The results clearly show that the vertical distribution of the CLFM for the core taken from the landward margin of mangrove forests(YLW03) only parallels that of the local mangrove species(Rhizophora. stylosa) with a significantly positive correlation(R=0.56, P=0.05), while the vertical distribution of the CLFM for the core taken from the interface between seaward margin of mangrove forest and the trunk of tidal creeks of the bay(YLW02) parallels the summed concentration of mangrove pollen(SCMP) with a more positive correlation than that of YLW03(R=0.85, P=0.01), indicating that the trunk outlet of tidal creeks must have been the site where mangrove production gathered from the overall forest rather than from local production. The variations in the CLFM of both cores indicate that overall the mangrove forests in the Yingluo Bay have increasingly flourished over the last 130 years except for the interval of 1940–1950 AD in response to an increase in air temperature and decrease in rainfall, which would have resulted in an increase in seawater salinity;while the coupled extreme increases in air temperature and in rainfall in summer, which would have resulted in extreme decreases in seawater salinity, would be responsible for the relative degradation of mangrove forests in the interval of 1940–1950 AD.  相似文献   

14.
Tidal flooding and surface drainage patterns have often been used to describe mangrove species zonation. However, in mangrove forests exhibiting little topography, ambiguous species distributions and/or few species, such approaches are ineffective. We identified four physiognomic mangrove forest types (Riverine, Fringing, Overwash and Basin) at Coombabah Lake, a tidal lake in southeast Queensland, Australia and investigated tidal flooding patterns using synoptic surveys of tidal observations at the local Standard Port combined with local water depth observation. Subsequently three sub-types of the basin forest type were identified: (1) Deep Basin Forest with mature trees, ∼50 cm standing water and ∼3 tides per year; (2) Medium Depth Basin Forest with intermediate tree development, ∼15–30 cm standing water and 20–40 tides per year; and (3) Shallow Basin Forest with relatively recent mangrove establishment, 5–15 cm standing water and ∼80 tides per year. These three basin sub-types were found to flood at different tide heights with the Shallow Basin flooding for tides above mean high water springs and the Deep Basin flooding only for tide heights approaching the highest astronomical tide. We propose that these basin types represent a succession in mangrove forest development that corresponds with increasing water depth and tree maturation over time. The succession not only represents increasing age but also change in basin substrate composition. This is manifest as increasing pneumatophore density and an increasing area of basin surface occupied by contiguous pneumatophore cover. As a result, it seems that mangrove development is able to modify tidal flooding into the basin by increasingly impeding water movement.  相似文献   

15.
Distribution, dynamics and mass budget of phosphorus and nitrogen in a red mangrove forest were studied in the Potengi mangrove forest in northern Brazil (lat. 5 degrees 42' and 5 degrees 53'S, long. 35 degrees 5' and 35 degrees 25'W). Tidal hydrology, net primary productivity, leaf litter decomposition rate and standing stock of leaf litter in a red mangrove forest were measured. The results showed that the main reservoir for total P and total N was the sediment with 309 kg ha(-1) and 4619 kg ha(-1) (77% and 95% of the total P and N content in the mangrove forest), respectively, for the two elements. Total P and total N in Rhizophora mangle trees accounted for 145+/-14 kg ha(-1) and 216+/-23 kg ha(-1) (23% and 5% of the total P and N in the mangrove forest). The estimated average export rates for P and N through leaf litter are 0.5 kg ha(-1)yr(-1) and 1.6 kg ha(-1)yr(-1) respectively. Our measurements support previous results in concluding that mangrove forests efficiently retain P and N.  相似文献   

16.
张信  陈建裕  杨清杰 《海洋学报》2023,45(3):113-124
红树林作为热带、亚热带以红树植物为主体的海岸带生态系统,是重要的海岸湿地类型之一。本文使用多源、多时相遥感数据,形成了1969-2020年粤港澳大湾区岸线、围填海、养殖区、红树林分布数据图集,并利用联合红树林识别指数(CMRI)对大湾区现存红树林进行时序分析得到红树林林龄数据集。结果表明,通过多源遥感数据解译得到现存红树林数据集,结合CMRI时序数据可以建立现存红树林变迁历史,进而有效估算红树林林龄。粤港澳大湾区红树林的时空分布发生了明显变迁,现存红树林面积约为3 316 hm2,大湾区内部各地区存量林龄差异较大,整体林龄均值为20 a。近50年间,岸线整体向海移动,岸线变迁、围填海和养殖区变化显著影响红树林面积、空间分布及林龄大小,人工种植是近20年红树林恢复的主因。  相似文献   

17.
A wave theory of propagation of an acoustic pulse in a moving stratified atmospheric layer above the ground with a finite impedance of an underlying ground surface is developed. The shapes of acoustic signals in a near-ground atmospheric waveguide, which are formed due to temperature inversion and a vertical shear of the wind velocity, are calculated based on this theory. These signals are compared with those measured during the experiments where vertical profiles of the wind velocity and temperature in an atmospheric boundary layer have been continuously controlled using a sodar, a temperature profile meter, and acoustic anemometers or thermometers mounted on a 56-meter-high mast. The joint action of a near-ground acoustic waveguide, the impedance of the underlying surface, and a vertical layered structure of the boundary atmospheric layer on a signal shape far from the acoustic source are studied.  相似文献   

18.
The vertical migration on mangrove trunks of the gastropod Cerithidea decollata was followed for 5 weeks, in a Kenyan mangrove. Most of the times, snails forage on the mud surface, during low tide, and climb back on trees well before the incoming tide. As soon as the sea retreats, the downward migration takes place and the snails spread again on the ground. The migratory behaviour of snails can vary widely, depending on the relative tide intensity, and different strategies can be exhibited. Individuals can spend several days on trees without migrating to the ground, around Spring Tides, or else, they might remain on the ground without bothering to migrate upwards, during Neap Tides, when the study area is not reached by the water. These irregular animal behaviours, relating to the complicated tide succession, can hardly be explained by the sole presence of an internal clock, and direct cues seem necessary to switch between different strategies, tuning the snails migratory behaviour to the actual local sea conditions.  相似文献   

19.
Deforestation of mangrove forests is common occurrence worldwide. We examined fish assemblage composition in three mangrove creek systems in Tanzania (East Africa), including two creeks where the upper parts were partly clear-cut of mangrove forest due to the construction of solar salt farms, and one creek with undisturbed mangrove forest. Fish were caught monthly for one year using a seine net (each haul covering 170 m2) within three locations in each creek, i.e. at the upper, intermediate and lower reaches. Density, biomass and species number of fish were lower in the upper deforested sites compared to the mangrove-fringed sites at the intermediate and lower parts in the two creeks affected by deforestation, whereas there were no differences among the three sites in the undisturbed mangrove creek system. In addition, multivariate analyses showed that the structure of fish assemblages varied between forested and clear-cut sites within the two disturbed creeks, but not within the undisturbed creek. Across the season, we found no significant differences except for a tendency of a minor increase in fish densities during the rainy season. At least 75% of the fishes were juveniles and of commercial interest for coastal fisheries and/or aquaculture. Mugil cephalus, Gerres oyena and Chanos chanos were the most abundant species in the forested sites. The dominant species in the clear-cut areas were M. cephalus and Elops machnata, which were both found in relatively low abundances compared to the undisturbed areas. The conversion of mangrove forests into solar salt farms not only altered fish assemblage composition, but also water and sediment conditions. In comparison with undisturbed areas, the clear-cut sites showed higher salinity, water temperature as well as organic matter and chlorophyll a in the sediments. Our results suggest that mangrove habitat loss and changes in environmental conditions caused by salt farm developments will decrease fish densities, biomass and species numbers as well as alter the overall fish assemblage composition in the salt farm area but not downstream in the creek.  相似文献   

20.
Mangrove forests are ecologically important and carbon-rich coastal ecosystems that provide direct and indirect livelihood support for coastal communities. In recent years there has been increased discussion in the policy and scientific communities over how to include mangrove forests in climate change mitigation initiatives such as REDD+. There are a number of challenges to establishing a successful REDD+ project in mangrove areas, with land tenure and stakeholder entitlements arguably the most challenging. This study examines how REDD+ approaches might be applied to better balance timber production and conservation objectives in the Matang Mangrove Forest Reserve (MMFR), a 40,466 ha mangrove forest area in Malaysia. Stakeholder profiles and needs are linked with ecosystem services to develop an integrated profile of this complex social-ecological system, which has been managed for timber production for more than 100 years, and has recently revealed evidence of declining ecosystem health. The results provide insights into how REDD+ might be operationalised in existing forest areas with traditions of multiple uses, potentially contributing to improved social-ecological outcomes for forests and their diverse stakeholders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号