首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
《Marine Chemistry》2007,103(1-2):122-130
Phosphomolybdenum blue (PMB) paired with cetyltrimethylammonium bromide (CTAB) can be extracted using a solid phase extraction technique on C18 sorbent. Based on this, a novel on-line solid phase extraction method coupled with flow injection (FI) analysis and colorimetric detection has been established to determine nanomolar level orthophosphate in seawater. A stopped flow technique was employed to assure the complete formation of the PMB–CTAB compound, which was sequentially extracted on an in-line Sep-Pak C18 cartridge. The adsorbed PMB–CTAB can be rapidly eluted by 0.56 mol/L H2SO4 in ethanol, and determined with a spectrophotometer at 700 nm. Experimental parameters, including reaction temperature, sample loading flow rate, stopped time and eluting flow rate, were optimized throughout the experiments based on univariate experimental design. The results show that reaction temperature and stopped time were the major factors affecting the formation of PMB–CTAB. Silicate concentration up to 5000 times higher than that of orthophosphate would not interfere with the determination of orthophosphate. Using artificial seawater with salinity of 35 as a matrix under the optimized conditions, the standard curve shows a linear range between 3.2 and 48.5 nmol/L, and the recovery and the detection limit of the proposed method are 96.4% and 1.57 nmol/L, respectively. The relative standard deviation (RSD) (n = 8), which was determined daily for 8 days, was 4.52% for the artificial seawater at a concentration of 32.4 nmol/L orthophosphate. Two typical seawater samples were analyzed using both the proposed method and the MAGnesium hydroxide-Induced Coprecipitation (MAGIC) method. The results of the two methods show no significant difference using the t test. Compared to the MAGIC method, the proposed method has the advantage of being more sensitive, faster, sample saving and easy for on-line analysis.  相似文献   

2.
A method for the determination of nanomolar concentrations of orthophosphate in oligotrophic seawater developed by Liang et al. (2007) has been modified to make it fully feasible for shipboard application and for faster sample throughput with minimized sample volume. The technique is based on the flow injection method with solid phase extraction on a Sep-Pak C18 cartridge and colorimetric detector. The Schlieren effect was minimized by rinsing the cartridge sequentially with 5 mL water and 2 mL 95% ethanol solution. With three micro pumps in parallel, savings of up to 80% in amount of reagents and 25% volume of seawater samples could be achieved in comparison to the previous method. Variation of stopped flow time and sample loading time gave 3 different standard curves, which corresponded to 3 linear ranges within 3.4 and 515 nM. The modified method permits the analysis of samples over a wide range of concentrations, and has been successfully applied to shipboard determination of trace orthophosphate in more than 200 seawater samples during a one-month cruise in the South China Sea. For seawater at concentrations of 20.6, 82.5, 206.2 nM orthophosphate, the relative standard deviations (RSD) (n = 6), determined daily for 6 days on board ship were 4.45%, 4.73% and 6.75%, respectively. Five seawater samples collected in the Station SEATS (South East Asia Time Series Station at 18°N, 116°E) were analyzed using the present method both on board and in a land-based laboratory, as well as with the magnesium hydroxide-induced coprecipitation (MAGIC) method, and showed no significant difference according to the statistical t-test.  相似文献   

3.
In parallel with the process of lead removal from gasoline in Italy, a research programme was undertaken to study the lead content of Adriatic coastal seawater. In the period 2000–2004 seawater was collected systematically at three sites along the coast line close to the city of Ancona: (i) the mouth of the River Esino, (ii) an area close to the Api refinery and (iii) Portonovo beach, a less impacted zone located along the coast of Mt. Conero. All samples were analyzed by Square-Wave Anodic-Stripping Voltammetry (SWASV). The results show that dissolved Pb content in coastal seawater diminished from an overall median value of 0.25 nmol/L in 2000–2001 to 0.12 nmol/L in 2003–2004, with a decrease of about 50% (statistically significant at 95% significance level). This decrease has been correlated to the concurrent decrease of lead consumption in gasoline in Italy which led to a reduction of ~ 65% Pb emissions into the atmosphere in the same period (r = 0.8791, p < 0.05).  相似文献   

4.
海水溶解有机物(dissolvedorganicmatter,DOM)中含有的生物活性物质在海洋生态系统中作用巨大,但因缺乏适合的分离提取方法而严重阻碍了对其不同组分在生态系统中作用的探索。固相萃取法对富集提取海水DOM十分有效,在用其提取海水DOM时,海水pH对活性物质提取效果的影响很大,但目前针对海水的这种影响尚存在很大争议。本文以天然近海海水作为基质,探究不同pH条件下用亲水-疏水平衡(hydrophilic-lipophilicbalanced,HLB)固相萃取小柱萃取海水中活性分子的提取效率,并使用高效液相色谱-四极杆飞行时间质谱(HPLC-Q-TOF-MS)在负离子(ESI-)模式下检测解析提取物的组成。研究结果表明,当海水样品pH为中性和强酸性时都能获得较好的提取效率,随着pH的降低,提取物质谱的整体响应值降低,但可识别的谱峰数目增加,提取出有机物的分子量和性质差异都更广泛。分析提取物分子在范克雷维伦(van Krevelen)图和质荷比-氢碳比(m/z-H/C)图上的分布发现,中性条件适合提取饱和度较高的小分子化合物,而具有生物活性的带有不饱和基团的化合物及蛋白质、糖类等生物大分子在强酸性提取条件时提取效果和分辨率更好。综合提取效率、有效峰数目和分子组成特征考虑,用HLB固相萃取小柱提取近海海水中的小分子活性物质时,将海水样品pH调节为2较为适宜。  相似文献   

5.
Jingfeng Wu   《Marine Chemistry》2007,103(3-4):370-381
A low-blank pre-concentration procedure is described for the analysis of picomolar iron (Fe) in seawater by isotope dilution high-resolution inductively coupled plasma mass-spectrometry (HR-ICPMS). The procedure uses a two-step Mg(OH)2 co-precipitation procedure to extract Fe from a 50 ml seawater sample into a 100 μl 4% nitric acid (HNO3) solution followed by HR-ICPMS measurement. The high pre-concentration ratio ( 500:1) achieved by the procedure minimizes the Fe blank due to ICPMS instrumental Fe background and results in a detection limit of  2 pM and a precision of  4% at the 50 pM Fe level. The measurement of a low-Fe seawater sample spiked with gravimetric Fe standard shows that the method can clearly distinguish 0.01 nM Fe from 0.02 nM Fe in seawater with high accuracy. The method is demonstrated by the analysis of dissolved Fe in the equatorial Pacific Ocean.  相似文献   

6.
A chemoreduction-purge-and-trap gas chromatographic method has been developed for the determination of trace dimethylsulfoxide (DMSO) in seawater. In the analysis procedure, DMSO was first reduced to dimethylsufide (DMS) by sodium borohydride and then the produced DMS was analyzed using the purge-and-trap technique coupled with gas chromatographic separation and flame photometric detection. Under the optimum conditions, 97% DMSO was reduced in the standard solution samples with a standard deviation of 5% (n=5). The detection limit of DMSO was 2.7 pmol of sulfur, corresponding to a concentration of 0.75 nmol/L for a 40 ml sample. This method was applied to determine the dissolved DMSO (DMSOd) and particulate DMSO (DMSOp) concentrations in the surface seawater of the Jiaozhou Bay, and the results showed that the DMSOd and DMSOp concentrations varied from 16.8 to 921.1 nmol/L (mean:165.2 nmol/L) and from 8.0 to 162.4 nmol/L (mean:57.7 nmol/L), respectively. The high concentrations of DMSOp were generally found in productive regions. Consequently, a significant correlation was found between the concentrations of DMSOp and chlorophyll a, suggesting that phytoplankton biomass might play an important role in controlling the distribution of DMSOp in the bay. Moreover, in the study area, the concentrations of DMSOd were significantly correlated with the levels of DMS, implying that the production of DMSOd is mainly via photochemical and biological oxidation of DMS.  相似文献   

7.
A method has been developed for the determination of ammonium concentration and isotopic enrichment in seawater samples at the low nanomolar range (10–100 nmol/kg). It is based on the reaction of phenol/hypochlorite with ammonium to form indophenol, with subsequent solid phase extraction, derivatisation and analysis by Gas Chromatography Mass Spectrometry. The precision of the method was maximised by incorporating a deuterated indophenol internal standard. A system was developed which generated seawater with extremely low ammonium concentrations thus matching sample and standard matrices for quantitative analysis. Data are presented from a study of ammonium regeneration rates at three stations in the oligotrophic North–East Atlantic where ambient ammonium concentrations were < 21 nmol/kg. Results suggested that ammonium availability for phytoplankton was limited by the rate of ammonium regeneration. Efficient ammonium assimilation contributed to the very low ambient ammonium concentrations measured at these stations. The study highlights the need for the accurate determination of ammonium regeneration rates in studies of new production, particularly in extreme oligotrophic conditions. If not corrected for isotope dilution, f-ratio estimates may be overestimated by 10.7–13.7%.  相似文献   

8.
Iron chemistry in seawater has been extensively studied in the laboratory, mostly in small-volume sample bottles. However, little has been reported about iron wall sorption in these bottles. In this paper, radio-iron 55Fe was used to assess iron wall adsorption, both in terms of capacity, affinity and kinetics. Various bottle materials were tested. Iron sorption increased from polyethylene/polycarbonate to polymethylmetacrylate (PMMA)/high-density polyethylene/polytetrafluoroethylene to glass/quartz, reaching equilibrium in a 25–70 h period. PMMA was studied in more detail: ferric iron (Fe(III)) adsorbed on the walls of the bottles, whereas ferrous iron (Fe(II)) did not. Considering that in seawater the inorganic iron pool mostly consists of ferric iron, the wall will be a factor that needs to be considered in bottle experiments.The present data indicate that for PMMA with specific surface (S)-to-volume (V) ratio S/V, both iron capacity (42 ± 16 × 10− 9 mol/m2 or 1.7 × 10− 9 mol/L recalculated for the S/V-specific PMMA bottles used) and affinity (log KFe'W = 11.0 ± 0.3 m2/mol or 12.4 ± 0.3 L/mol, recalculated for the S/V-specific PMMA bottles used) are of similar magnitude as the iron capacity and -affinity of the natural ligands in the presently used seawater and thus cannot be ignored.Calculation of rate constants for association and dissociation of both Fe'L (iron bound to natural occurring organic ligands) and Fe'W (iron adsorbed on the wall of vessels) suggests that the two iron complexes are also of rather similar kinetics, with rate constants for dissociation in the order of 10 −4–10− 5 L/s and rate constants for association in the order of 108 L/(mol s). This makes that iron wall sorption should be seriously considered in small-volume experiments, both in assessments of shorter-term dynamics and in end-point observations in equilibrium conditions. Therefore, the present data strongly advocate making use of iron mass balances throughout in experiments in smaller volume set-ups on marine iron (bio) chemistry.  相似文献   

9.
Silicate has been determined in sea water by four different electrochemical methods based on the detection of the silicomolybdic complex formed in acidic media by the reaction between silicate and molybdenum salts. The first two methods are based on the addition of molybdate and protons in a seawater sample in an electrochemical cell. Cyclic voltammetry presents two reduction and two oxidation peaks giving four values of the concentration and therefore increasing the precision. Then chronoamperometry is performed on an electrode held at a constant potential. A semi-autonomous method has been developed based on the electrochemical anodic oxidation of molybdenum, the complexation of the oxidation product with silicate and the detection of the complex by cyclic voltammetry. This method is tested and compared with the classical colorimetric one during ANT XXIII/3 cruise across Drake Passage (January–February 2006). The detection limit is 1 μM and the deviation between both methods is less than 3% for concentrations higher than 10 μM. Finally a complete reagentless method with a precision of 2.6% is described based on the simultaneous formation of the molybdenum salt and protons in a divided electrochemical cell. This latter method should be very useful for developing a reagentless sensor suitable for long term in situ deployments on oceanic biogeochemical observatories.  相似文献   

10.
In the framework of the KEOPS project (KErguelen: compared study of the Ocean and the Plateau in Surface water), we aimed to provide information on the water mass pathways and vertical mixing on the Kerguelen Plateau, Southern Ocean, based on 228Ra profiles. Because 228Ra activities are extremely low in this area (~ 0.1 dpm/100 kg or ~ 2.10− 18 g kg− 1), the filtration of large volumes of seawater was required in order to be able to detect it with minimal uncertainty. This challenging study was an opportunity for us to test and compare methods aimed at removing efficiently radium isotopes from seawater. We used Mn-fiber that retains radium and that allows the measurement of all four radium isotopes (226Ra, 228Ra, 223Ra, 224Ra). First, we used Niskin bottles or the ship's seawater intake to collect large volumes of seawater that were passed onto Mn-fiber in the laboratory. Second, we filled cartridges with Mn-fiber that we placed in tandem on in situ pumps. Finally, we fixed nylon nets filled with Mn-fiber on the frame of in situ pumps to allow the passive filtration of seawater during the pump deployment.Yields of radium fixation on the cartridges filled with Mn-fiber and placed on in situ pumps are ca. 30% when combining the two cartridges. Because large volumes of seawater can be filtered with these pumps, this yields to effective volumes of 177–280 kg (that is, higher than that recovered from fourteen 12-l Niskin bottles). Finally, the effective volume of seawater that passed through Mn-fiber placed in nylon nets and deployed during 4 h ranged between 125 and 364 kg. Consequently, the two techniques that separate Ra isotopes in situ are good alternatives for pre-concentrating radium from seawater. They can save ship-time by avoiding repeated CTD casts to obtain the large volumes of seawater. This is especially true when in situ pumps are deployed to collect suspended particles. However, both methods only provide 228Ra/226Ra ratios. The determination of the 228Ra specific activity is obtained by multiplying this ratio by the 226Ra activity measured in a discrete sample collected at the same water depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号