首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The effects of tropical storm Dennis were documented in the coastal waters of South Carolina during August 1981. Phytoplankton photosynthesis vs. irradiance curves showed initial depression of the parameter a followed by three- to five-fold increase of both a and the asymptotic maximum rate of photosynthesis PmB. Productivity rates were depressed in most samples immediately after the storm. Surface samples at the inshore stations were around 50 mg C m?3 h?1 at saturating light intensities, while the offshore station rates were around 10 mg C m?3 h?1. After a 10-day lag these rates had increased to about 200 mg C m?3 h?1 inshore and 75 mg C m?3 h?1 offshore. These changes are thought to be primarily caused by changes in species composition. Some of the dominant diatom species changed and dinoflagellate species were introduced. No significant changes in nutrient concentrations were observed. Transient depressions of water temperature, salinity and light intensity may have contributed to the observed changes.  相似文献   

2.
Available data on phytoplankton and bacterial abundance and production off the coasts of southern Africa (to the 500 m depth contour) have been assembled and analysed for a network analysis of carbon flow in the Benguela ecosystem. Phytoplankton carbon biomass (from measurements of chlorophyll a) in the northern Benguela (2 558 300 tons) was considerably higher than in the southern Benguela (671 420 and 516 400 tons for the West and South coasts respectively). However, overall annual production (from C14-uptake measurements) was similar, 77 416 608, 76 399 973 and 78 988 020 tons C·year?1 respectively. Phytoplankton respiration and sedimentation losses were calculated as functions of primary production and therefore followed similar trends. From the most conservative estimates (mean bacterial biomass of 10 mg C·m?3 and average P:B of 0,2·day?1) bacterial biomass is 2–7 per cent of phytoplankton biomass in the northern and southern Benguela, and bacterial production is 3–5 per cent of primary production. Assuming a net growth yield of 30 per cent, bacteria would need to consume 9–15 per cent of the total primary production in order to meet their requirements for carbon consumption. Calculations based on a mean bacterial biomass of 40 mg C·m?3 and a mean growth rate of 0,5·day?1 in the upper 30 m of the water column show bacterial biomass to be 8–27 per cent of phytoplankton biomass and bacterial production to be 26–44 per cent of phytoplankton production. Bacterial carbon consumption requirements at these rates amount to 86–147 per cent of total primary production.  相似文献   

3.
The biomass and productivity of phytoplankton populations inshore on the west coast of South Africa were investigated towards the end of the upwelling season, a period when high-biomass dinoflagellate blooms are common. Productivity was estimated from natural fluorescence measurements (PNF ), using photosynthesis (P) v. irradiance (E) relationships (PE ) and by means of the in situ 14C-method (PC ) A linear regression of PNF productivity against PC and PE productivities yielded a slope of 0.911 and an r 2 of 0.83 (n = 41). Physical and biological variability was high inshore, reflecting alternating periods of upwelling and quiescence. Mean chlorophyll inshore (within a 12 m water column) ranged from 0.7 to 57.8 (mean = 8.9) mg·m&minus3, mean PNF productivity ranged from 8.4 to 51.0 (mean = 24.6) mgC·m?3·h?1 and daily integral PNF productivity from 0.8 to 4.8 (mean = 2.3) gC·m?2·day?l. Transects sampled during active and relaxation phases of upwelling had different chlorophyll distributions. High chlorophyll concentrations (sometimes >50 mg·m?3) were associated with surface blooms within the region of the upwelling front. Estimates of daily water-column PNF productivity within these frontal blooms ranged from 4.0 to 5.6 gC·m?2·day?1. With relaxation of wind stress, blooms dominated by dinoflagellates flooded shorewards and often formed red tides. Chlorophyll concentrations of > 175 mg·m?3 and productivity rates > 500 mgC·m?3·h?1 and 12 gC·m?2·day?1 were measured during a particularly intense red tide. Offshore, the water column was highly stratified with a well-defined subsurface chlorophyll maximum layer within the pycnocline region. Estimates of daily water-column PNF productivity ranged from 2.4 to 4.0 gC·m?2·day?1 offshore. The high productivity of shelf waters on the West Coast in late summer can be ascribed largely to dinoflagellate populations and their success in both upwelling systems and stratified conditions.  相似文献   

4.
Whereas diatoms (class Bacillariophyceae) often dominate phytoplankton taxa in the Amazon estuary and shelf, their contribution to phytoplankton dynamics and impacts on regional biogeochemistry are poorly understood further offshore in the western tropical Atlantic Ocean (WTAO). Thus, relative contribution of diatoms to phytoplankton biomass and primary production rates and associated environmental conditions were quantified during three month-long cruises in January–February 2001, July–August 2001, and April–May 2003. The upper water column was sampled at 6 light depths (100%, 50%, 25%, 10%, 1% and 0.1% of surface irradiance) at 64 stations between 3° and 14°N latitude and 41° and 58°W longitude. Each station was categorized as ‘oceanic’ or ‘plumewater’, based on principal component analysis of eight physical, chemical and biological variables. All stations were within the North Brazil Current, and plumewater stations were characterized by shallower mixed layers with lower surface salinities and higher dissolved silicon (dSi) concentrations than oceanic stations. The major finding was a much greater role of diatoms in phytoplankton biomass and productivity at plumewater stations relative to oceanic stations. Mean depth-integrated bSi concentrations at the plumewater and oceanic stations were 14.2 and 3.7 mmol m−2, respectively. Mean depth-integrated SiP rates at the plumewater and oceanic stations were 0.17 and 0.02 mmol m−2 h−1, respectively. Based on ratios of SiP and PP rates, and typical Si:C ratios, diatoms contributed on average 29% of primary productivity at plumewater stations and only 3% of primary productivity at oceanic stations. In contrast, phytoplankton biomass (as chlorophyll a concentrations) and primary production (PP) rates (as 14C uptake rates) integrated over the euphotic zone were not significantly different at plumewater and oceanic stations. Chlorophyll a concentrations ranged from 8.5 to 42.4 mg m−2 and 4.0 to 38.0 mg m−2 and PP rates ranged from 2.2 to 11.2 mmol m−2 h−2 and 1.8 to 10.8 mmol m−2 h−2 at plumewater and oceanic stations, respectively. A conservative estimate of annual integrated SiP in offshore waters of Amazon plume between April and August is 0.59 Tmol Si, based on mean SiP rates in plumewaters and satellite-derived estimates of the area of the Amazon plume. In conclusion, river plumewaters dramatically alter the silicon dynamics of the WTAO, forming extensive diatom-dominated phytoplankton blooms that may contribute significantly to the global Si budget as well as contributing to energy and matter flow off of the continental shelf.  相似文献   

5.
An in situ chamber of volume 3881 and bottom area 0·64 m2 was used to determine the flux of oxygen and inorganic nutrients across an estuarine sediment-water interface over a 65-day period. Over the first 7 days, oxygen uptake was 378 mg m?2 day?1 and the rates of ammonium and phosphate release were 2·22 and 0·34 mg at. m?2 day?1, respectively. The water became anoxic in 14 days.The rates of flux in a similar chamber containing only detritus recently settled from the water column were 371 mg m?2 day?1 (oxygen), 1·66 mg at. m?2 day?1 (ammonium) and 0 12 mg at. m?2 day?1 (phosphate), demonstrating that detritus contributes substantially to exchange across the sediment-water interface.The evolution of the two chambers was similar over the latter part of the experimental period. A third chamber containing only water exhibited very minor changes.The role of detritus in nutrient recycling at the sediment-water interface is discussed in relation to the productivity of shallow water bodies such as the estuary in which the experiment was conducted, which itself undergoes periodic deoxygenation during prolonged stratification. The measured flux of nitrogen across the interface was found to represent approximately 31% of the mean daily phytoplankton requirement.  相似文献   

6.
Phytoplankton biomass, taxonomy, primary productivity, and photosynthetically available radiation (PAR) were studied as part of baseline data collection for prospective nodule mining in the Central Indian Basin during the ORV Sagar Kanya cruise SK-120 in January 1997. The phytoplankton cell counts and chlorophyll a estimates showed low biomass level, suggesting low rates of primary productivity in the region studied. The average chlorophyll a value was 0.775 mg m?3 at surface and 17.75 mg m?2 in the water column. Similarly, average primary productivity at surface was 3.72 mg C m?3 d?1 and was 51.23 mg C m?2 d?1 in column. The chlorophyll a maxima at 50 to 80 m was the characteristic feature of the euphotic zones of the area. Average phytoplankton counts at the surface were low (3960 cells/l), compared to those at 25 m (6421 cells/l) and 75 m (5187 cells/l). At most of the stations mesozooplankton biomass was maximum in the top 50 m water column, indicating the importance of grazing in the euphotic zone. Appreciable quantities of mesozooplankton were observed below the euphotic zone, where settlement of chlorophyll a occurs. The low iron concentration in the water and its relationship with the water column productivity were correlated. The results show that waters in the CIB have low productivity in the surface as well as subsurface layers. This is expected to change in this case of a mining discharge in to these layers, possibly locally affecting the existing marine ecosystems. The final impact of such mining activity may remain negligible in the deep sea environment.  相似文献   

7.
Quantitative research on composition, biomass and production rates of zooplankton community is crucial to understand the trophic structure in coral reef pelagic ecosystems. In the present study, micro‐ (35–100 μm) and net‐ (>100 μm) metazooplankton were investigated in a fringing coral reef at Tioman Island of Malaysia. Sampling was done during the day and night in August and October 2004, and February and June 2005. The mean biomass of total metazooplankton (i.e. micro + net) was 3.42 ± 0.64 mg C·m?3, ranging from 2.32 ± 0.75 mg C·m?3 in October to 3.26 ± 1.77 mg C·m?3 in August. The net‐zooplankton biomass exhibited a nocturnal increase from daytime at 131–264% due to the addition of both pelagic and reef‐associated zooplankton into the water column. The estimated daily production rates of the total metazooplankton community were on average 1.80 ± 0.57 mg C·m?3·day?1, but this increased to 2.51 ± 1.06 mg C·m?3·day?1 if house production of larvaceans was taken into account. Of the total production rate, the secondary and tertiary production rates were 2.20 ± 1.03 and 0.30 ± 0.06 mg C·m?3·day?1, respectively. We estimated the food requirements of zooplankton in order to examine the trophic structure of the pelagic ecosystem. The secondary production may not be satisfied by phytoplankton alone in the study area and the shortfall may be supplied by other organic sources such as detritus.  相似文献   

8.
By simulating an upwelling event in a laboratory microcosm, it was possible to promote the development of a natural and diverse planktonic community. An initial bacterioplankton community which developed in response to phytoplankton growth was dominated by small coccoid forms (0,14–0,2 μm3) of the genera Vibrio and Pseudomonas. This group was heavily exploited by the heterotrophic microflagellate Pseudobodo sp. (30 μm3). Later, the bacterioplankton community was dominated by large rods (0,7 μm3) which the flagellates seemed unable to exploit. A Lotka-Volterra predator-prey model fitted to the observed data indicated that the flagellates consumed 2,4 times their carbon body mass per day or 19 bacteria·flagellate?1·h?1 when prey were not limiting. Clearance rates were inversely proportional to prey density and ingestion rate, ranging from 2 × 10?3 to 20 × 10?3) μ?·flagellate?1·h?1. At typical field densities of bacteria and heterotrophic flagellates in the southern Benguela region, between 5 and 30 percent of the water column could be cleared per day. Specific growth rates of the flagellates were positively related to prey density, the maximal rate being 0,84 · d?1. Their initially faster growth rates allowed bacteria to increase in numbers despite predation. The growth yield of the flagellates (34–36 per cent) was also positively related to food density. Such low values suggest inefficient transfer of carbon to higher trophic orders but considerable nitrogen regeneration. Nitrogen excretion rates were approximately 6–7 μg N·mg dry weight?1·h?1, comparable to other flagellates but faster than ciliates. These rates are comparable with in situ measurements of NH+4-N excretion in pycnoclinal regions based on 15N isotope studies but are only about 20 per cent of measured rates in surface waters. This is interpreted to mean that, in pycnoclinal regions where the relative input of "new" nitrogen is high, there are few regenerative steps and the model describes them satisfactorily. In surface waters, observed rates of excretion can only be accounted for by many regenerative steps in a highly complex food chain in which the cumulative total of nitrogen excretion at each step amounts to that based on 15N labelling studies.  相似文献   

9.
The nitrogen relations of Enteromorpha spp. growing on intertidal mud flats have been examined over a twelve-month period. Nitrogen assimilation rates using 15N have been used to calculate the production of the alga and were between 0·046 and 0·217 mg NH4+N (g dry wt alga)?1 h?1 A considerable quantity of the alga was buried beneath the sediment over the growth season and was calculated to be equivalent to an input of up to 9·52 g N m?2 per month and 32 g N m?2 over one complete growth season. Based on carbon, this latter value represented an input of approximately 320 g C m?2 annually. Low rates of nitrogenase activity (acetylene reduction) were found to be associated with the Enteromorpha. The organisms responsible for the nitrogenase activity were probably heterotrophic bacteria but they did not contribute significant quantities of nitrogen to the alga.  相似文献   

10.
In the coastal and estuarine waters of Goa, particulate organic carbon (POC) varied from 0.52 to 2.51 mg l?1 and from 0.28 to 5.24 mg l?1 and particulate phosphorus (PP) varied from 0.71 to 5.18 μg l?1 and from 0.78 to 20.34 μg l?1, respectively. The mean values of chlorophyll and primary productivity were 1.94 mg m?3 and 938.1 mg C m?2 day?1 in the coastal waters and 4.3 mg m?3 and 636.5 mg C m?1 day?1 in the estuarine waters, respectively.POCchl ratios were low in June and October even when POC values were quite high. The POC in surface waters was linearly correlated with the chlorophyll content. Also PP increased when chlorophyll and primary productivity remained high. The results suggest that the phytoplankton was sharply increasing and contributed to POC and PP content. The percentage of detritus calculated from the intercept values of chlorophyll on POC varied from 46 to 76% depending on season. Results indicate that the major portion of POC and PP during postmonsoon (October–January) is derived from phytoplankton production while the allochthonous matter predominate during monsoon (June–September).  相似文献   

11.
Anchovy biomass and copepod standing stocks and growth rates on the Agulhas Bank were compared during the peak spawning period (November) in 1988 and 1989. In 1988, copepod biomass over the western Agulhas Bank was low (1,0 g dry mass·m?2) relative to anchovy biomass there (14,7 g dry mass·m?2). In November 1989 in the same area, fish biomass was much lower (5,7 g dry mass·m?2), following a recruitment failure, and copepod biomass was higher (2,4 g dry mass·m?2), possibly as a result of lesser predation by anchovy. By contrast, the eastern Agulhas Bank had a larger biomass of copepods (4–6 g dry mass·?2) and a lower biomass of anchovy during both years. Knowing, from laboratory studies, that a prey biomass of 0,78 g·m?2 is required for fish to obtain their daily maintenance ration, it is suggested that spawning on the western Agulhas Bank was food-limited in 1988. Copepods on the western Bank may be replaced by local growth or transport from the eastern Bank. Growth rates of copepods on the western Bank were 10–50 per cent of maximum in 1988, but total production (c. 100 mg dry mass·m?2·day?1) was low, primarily because biomass was low and less than the rate of consumption by anchovy (243 mg copepod dry mass·m?2·day?1). On the eastern Bank, copepod production exceeded anchovy consumption and it is concluded that the flux of copepod biomass onto the western Bank may be as important as local growth in replenishing copepod stocks there. Feeding conditions for anchovy on the western Agulhas Bank are often marginal compared to the situation on the eastern Bank, and it is suggested that the selection of the western Bank as the major spawning area is related more to the success of transport and survival of eggs and larvae on the West Coast recruiting grounds than to feeding conditions per se.  相似文献   

12.
Growth, survivorship, reproduction and productivity of a Pectinaria (Lagis) koreni population was studied in Colwyn Bay, from July 1975 to August 1976. The cephalic disc diameter of the worms was chosen as an index of size, after the relations between linear and weight measurements of the body were established. Settlement of Pectinaria was estimated to have occured at the beginning of June, and the whole population had disappeared by April. Growth was initially fast but it ceased completely during the winter, probably due to low temperatures and disturbance by storms. Bundles of gametes first appeared in the coelomic fluid in November, but maturation was not completed before May. Mature ova, 60–65 μ in diameter, were released individually: sperms, a few microns in diameter, were released in bundles. The highest standing crop, 47·5 g m?2 was present in September and the total production of the cohort during its lifetime was 138·8 g m?2. The ratio between total production and mean biomass was given by P/B: 7·3.  相似文献   

13.
The KwaZulu-Natal Bight is a shallow indentation of the eastern seaboard of South Africa, characterised by a narrow (45 km wide) extension of the continental shelf, with a shelf break at about 100 m. It has a complex hydrography: the waters of the bight are derived from the fast-flowing, southward-trending Agulhas Current, which is fed mostly by the tropical and subtropical surface waters of the South-West Indian Ocean subgyre, which are generally oligotrophic in nature, notably depleted in reduced nitrogen and phosphate except at river mouths and during periodic upwelling of deeper nutrient-rich water. Despite this, the bight is believed to be relatively productive, and it is suggested that efficient nutrient recycling by prokaryotes may sustain primary productivity efficiently, even in the absence of new nutrient inputs. Here we have measured bacterial numbers, biomass and heterotrophic productivity during summer and winter in conjunction with phytoplankton standing stock and factors that influence it. Bacterial distribution closely matched phytoplankton distribution in surface waters, and was highest close to the coast. Bacterial standing stocks were similar to those of oligotrophic systems elsewhere (0.5–5.0 × 105 cells ml–1; 1 × 10–8 to 1.25 × 10–7 g C ml–1) and increased in association with the development of phytoplankton blooms offshore and with inputs of allochthonous material by rivers at the coast. Heterotrophic productivity in summer was lowest in the far south and north of the bight (0.5 × 10–10 g C ml–1 h–1) but higher close to the shore, over shallow banks, and in association with increased phytoplankton abundance over the midshelf (1.0–3.5 × 10–9 g C ml–1 h–1). There were marked seasonal differences with lower bacterial standing stocks (5 × 104 to 2 × 105 cells ml–1; 4–5 × 10–9 to 1–2 × 10–8 g C ml–1) and very low bacterial productivity (4 × 10–11 to 1 × 10–10 g C ml–1 h–1) in winter, probably resulting from lowered rates of primary productivity and dissolved organic matter release as well as reduced riverine allochthonous inputs during the winter drought.  相似文献   

14.
Phytoplankton community composition, productivity and biomass characteristics of the mesohaline lower Neuse River estuary were assessed monthly from May 1988 to February 1990. An incubation method which considered water-column mixing and variable light exposure was used to determine phytoplankton primary productivity. The summer productivity peaks in this shallow estuary were stimulated by increases in irradiance and temperature. However, dissolved inorganic nitrogen loading was the major factor controlling ultimate yearly production. Dynamic, unpredictable rainfall events determined magnitudes of seasonal production pulses through nitrogen loading, and helped determine phytoplankton species composition. Dinoflagellates occasionally bloomed but were otherwise present in moderate numbers; rainfall events produced large pulses of cryptomonads, and dry seasons and subsequent higher salinity led to dominance by small centric diatoms. Daily production was strongly correlated (r = 0·82) with nitrate concentration and inversely correlated (r = −0·73) with salinity, while nitrate and salinity were inversely correlated (r = −0·71), emphasizing the importance of freshwater input as a nutrient-loading source to the lower estuary. During 1989 mean daily areal phytoplankton production was 938 mgC m−2, mean chlorophyll a was 11·8 mg m−3, and mean phytoplankton density was 1·56 × 103 cells ml−1. Estimated 1989 annual areal phytoplankton production for the lower estuary was 343 gC m−2.  相似文献   

15.
Total, chemical and biological oxygen demand of intertidal sediment cores from 12 stations in a mangrove swamp in southern Africa were measured under mean temperature and salinity conditions. In addition to measuring oxygen removed from water overlying cores, the uptake of oxygen from air overlying sealed cores was also determined. Total oxygen consumption ranged from 2·9 to 37·0 ml O2 m?2 h?1 in water and from 22·1 to 81·6 ml O2 m?2 h?1 in air. Chemical oxygen demand usually equalled or exceeded the total, underlining problems in the measurement of this parameter. Since oxygen is not present below a few millimeters in the sediment, it is concluded that oxygen diffusing from the overlying water or air is rapidly utilized at the surface and its uptake rate does not give any measure of metabolic activity deeper down. The oxygen content of the overlying water present during high tide may drop to relatively low levels due to this demand.  相似文献   

16.
Leaf growth, biomass and production of Cymodocea nodosa were measured from October 2006 to September 2007 in Monastir Bay (Tunisia). Shoot density showed a clear seasonal pattern, increasing during spring and summer and decreasing during fall and winter. Monthly mean shoot density ranged between 633 ± 48 and 704 ± 48 shoots?m?2. The monthly average total biomass ranged between 560 ± 37 and 646 ± 32 g dry weight (DW)?m?2. Total biomass varied significantly among stations and sampling times but did not show seasonal variation. Leaf plastochrone intervals varied seasonally, with an annual average of 28–30 days. Leaf productivity was highest in August (2.61 g DW?m?2?day?1) and lowest in February (0.35 g DW?m?2?day?1). Annual belowground primary production varied from 263 to 311 g DW?m?2?year?1. Annual leaf production was approximately equal for all the stations (from 264 to 289 g DW?m?2?year?1). Variability in water temperature, air temperature and salinity explained the annual variability in biological characteristics. Changes in belowground and total biomass were not correlated with seasonal variability in the environmental parameters monitored. Additionally, a literature review was conducted of C. nodosa features at other Mediterranean sites, encompassing 30 studies from 1985 to 2014.  相似文献   

17.
Saldanha Bay is a narrow-mouth bay on the west coast of South Africa linked to the southern Benguela upwelling system. Bay productivity was investigated by use of the conventional light-and-dark bottle oxygen method, and, for comparison, through assimilation of the stable isotope tracer 13C. Gross community production GCP and net community production NCP, as determined from the oxygen method, were respectively 2.6 and 2.4 times higher than estimates determined from the stable isotope method. Chlorophyll a (Chl a) concentrations increased with the onset of spring and well-defined subsurface maxima developed in association with increasingly stratified conditions (mean water column Chl a concentrations ranged from 5.4 to 31.5?mg m?3 [mean 15.5?mg m?3; SD 7.6]). A sharp decline in photosynthetic rates P* (GCP normalised to Chl a concentration) with depth was attributed to light limitation, as demonstrated by the high vertical attenuation coefficients for downward irradiance Kd, which varied from 0.29 to 0.70?m?1 (mean 0.48?m?1; SD 0.12). Productivity maxima were consequently near-surface despite the presence of deeper subsurface biomass maxima. The community compensation depth Zcc, where gross community production balances respiratory carbon loss for the entire community, ranged from 2.9 to 9.2?m (mean 5.8?m; SD 2.2), and was typically shallower than the 1% light depth for PAR (photosynthetically available radiation), Z1%PAR, which is traditionally assumed to be the depth of the euphotic zone and which ranged from 6.6 to 15.9?m (mean 9?m; SD 2.6). Autotrophic communities, where organic matter is produced in excess of respiratory demand, were confined on average to the upper 5.8?m of the water column, and often excluded the bulk of the phytoplankton community, where light limitation is considered to lead to heterotrophic community metabolism. Estimates of integrated water column productivity ranged from 0.84 to 8.46?g C m–2 d?1 (mean 3.35?g C m?2 d?1; SD 1.9).  相似文献   

18.
We conducted a study that shows that light and dark conditions do not affect the uptake rates of ammonium and nitrate by the seagrass Zostera noltei. This is an important advantage over some seaweed species in which these rates are severely reduced at night. In the light, the ammonium uptake rates were initially higher (15 and 20 μmol·g?1·h?1) and stabilized at a rate of 5 μmol·g?1·h?1 after 1 h, whereas in the dark the rates remained constant at a rate of 10 μmol·g?1·h?1 over the first 180 min of incubation. The rates of nitrate uptake in the light were high within the first 120 min of incubation (7.2–11.1 μmol·g?1·h?1) and decreased afterwards to lower values (0.8–3.9 μmol·g?1·h?1), whereas in the dark the rates fluctuated around 0.0–11.1 μmol·g?1·h?1 throughout the whole incubation time (7 h). The soluble sugar content of Z. noltei leaves increased significantly with both ammonium and nitrate incubations in the light, indicating the metabolic outcome of photosynthesis. In the dark, there was no significant variation in either the soluble sugar or in the starch content of leaves, rhizomes or roots in either the ammonium or nitrate incubations. However, the total starch content of plants decreased at night whereas the total soluble sugars increased, suggesting a process of starch catabolism to generate energy with the consequent production of smaller monosaccharide products. The starch content of rhizomes decreased significantly during the light incubations with nitrate but not with ammonium. These results suggest that carbohydrate mobilization is necessary for Z. noltei to account for extra energetic costs needed for the uptake and assimilation of nitrate. Furthermore, our results suggest that nitrate uptake, at least during the day, requires the mobilization of starch whereas the uptake of ammonium does not.  相似文献   

19.
Phytoplankton standing stocks and carbon assimilation were measured during four cruises to the southern Ross Sea, Antarctica during 1996 and 1997 in order to assess the details of the seasonal cycle of biomass and productivity. The seasonal composite showed that phytoplankton biomass increased rapidly during the austral spring, and integrated chlorophyll reached a maximum during the summer (January 15) and decreased thereafter. Particulate matter ratios (carbon:nitrogen, carbon:chlorophyll) also showed distinct seasonal trends with summer minima. Carbon assimilation increased rapidly in the spring, and reached a maximum of 231 mmol C m−2 d−1, ca. four weeks earlier than the maximum observed biomass (during early December). It decreased rapidly thereafter, and in austral autumn when ice formed, it approached zero. The time of maximum growth rate coincided with the maximum in C-assimilation, and at 0.66 d−1 equaled predictions based on laboratory cultures. Growth rates over the entire growing season, however, were generally much less. Deck-board incubations suggested that photoinhibition occurred at the greatest photon flux densities, but in situ incubations revealed no such surface inhibition. We suggest that due to the nature of the irradiance field in the Antarctic, assemblages maintained in on-deck incubators received more light than those in situ, which resulted in photoinhibition. This in turn resulted in a 17% underestimate in on-deck productivity relative to in situ determinations. The phytoplankton bloom appeared to be initiated when vertical stability was imparted in austral spring, coincident with greater daily photon flux densities. Conversely, decreased productivity likely resulted from trace metal limitation, whereas biomass declines likely resulted from enhanced loss rates, such as aggregate formation and enhanced vertical flux of larger particles. The seasonal progression of productivity and biomass in the southern Ross Sea was similar to other areas in the ocean that experience blooms, and the cycling of carbon in this region is extensive, despite the fact that the growing season extends no more than five months.  相似文献   

20.
莱州湾及潍河口夏季浮游植物生物量和初级生产力的分布   总被引:9,自引:2,他引:9  
于1998年6月黄河断流期在潍河口及其邻近海域进行了水文、化学和生物等专业综合外业调查.对此海区浮游植物叶绿素a浓度、脱镁色素浓度和初级生产力的变化进行了分析.研究结果表明,叶绿素a浓度介于0.089~5.444mg/m3之间,平均值为1.331mg/m3;脱镁色素浓度介于0.176~3.402mg/m3之间,平均值为0.905mg/m3.叶绿素a和脱镁色素浓度高密度区分布在小清河口附近、潍河口内及潍河口以外临近海域.初级生产力介于13.58~301.54mg/(d·m2)之间,平均值为62.49mg/(d·m2).水柱初级生产力高值区分布在小清河口和37.30°N,119.47°E附近.对水文、化学和浮游动物等环境因子与浮游植物生物量和初级生产力的相关性分析表明,整个调查区,浮游植物生物量和初级生产力与海区潮汐、光照、磷酸盐、硅酸盐和微型浮游动物等环境因子密切相关,同氨盐、硝酸盐和亚硝酸盐的作用不明显,其中潍河口内浮游植物的生物量分布同潮汐的关系最为密切.夏季此海域浮游植物生长主要受磷酸盐和硅酸盐的限制.调查海域浮游植物生物量及生产力水平较历史同期有所增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号