首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
黄河三角洲区域的波流相互作用数值分析   总被引:1,自引:0,他引:1  
将三维水动力-生态模式COHERENS与第三代波浪模式SWAN结合起来,采用该耦合模式数值计算了黄河三角洲的波浪特征波高与特征周期情况,从而探讨水流和波动水位对波浪特征波高和特征周期计算结果的影响。总的说来特征波高、特征周期、流速的计算结果与观测值吻合得较好,说明了COHERENS模式和SWAN模式相结合而成的波流耦合模式能够较好地计算黄河三角洲地区的流场与浪场情况。研究这些动力因素的机制和时空变化规律,对于研究海岸、河口的泥沙运动,海岸侵蚀的机理,合理开发利用自然资源,防止海洋灾害具有十分重大的意义。  相似文献   

2.
海岸湿地是近海地区重要的生态系统,由于潮流、波浪尤其是非连续水流与植被的相互作用,导致该海域的水动力环境复杂多变。本文发展了一个深度平均二维波流耦合数学模型,模拟湿地海域波浪和波生沿岸流的运动特性。水动力模型中植物拖曳力作为源项放入动量方程中,在波浪作用量平衡方程增加波能耗散项用于解释水生植物对波浪产生的阻力作用。在动态耦合模型中,波浪模型为潮流模型提供波浪辐射应力、波高、波浪周期等数据信息,潮流模型为波浪模型提供计算的水位和流速,可以达到双向动态耦合。本文发展的波流耦合模型通过三个实验室试验数据加以验证,计算结果和实验数据吻合较好,在波浪、波生流和植物迭加条件下,所建模型能够有效地模拟波浪、沿岸流等不同现象。  相似文献   

3.
结合椭圆型缓坡方程模拟近岸波流场   总被引:9,自引:3,他引:6  
波浪向近岸传播的过程中,由波浪破碎效应所产生的近岸波流场是近岸海域关键的水动力学因素之一.结合近岸波浪场的椭圆型缓坡方程和近岸波流场数学模型对近岸波浪场及由斜向入射波浪破碎后所形成的近岸波流场进行了数值模拟.计算中考虑到波浪向近岸传播中由于波浪的折射、绕射、反射等效应使局部复杂区域波向不易确定,采用结合椭圆型缓坡方程所给出的波浪辐射应力公式来计算波浪产生的辐射应力,在此基础上耦合椭圆型缓坡方程和近岸波流场数学模型对近岸波流场进行数值模拟,从而使模型综合考虑了波浪的折射、绕射、反射等效应且避免了对波向角的直接求解,可以应用于相对较复杂区域的近岸波流场模拟.  相似文献   

4.
浪、潮、风暴潮联合作用下的底应力效应   总被引:7,自引:1,他引:6  
运用建立的二维非线性浪,潮和风暴耦全模式分析了波流相互作用下的底应力及其对耦合波浪场和流场的影响。由渤海的两次强寒潮过程的数值实验表明,在波流相互作用下,底应力明显增大,增大的底应力对波浪场影响甚微,但将明显改变水位和流速的大小,这种影响在近岸浅水区更加显著。  相似文献   

5.
大尺度圆柱墩群周围的波流场的数值模拟   总被引:5,自引:0,他引:5  
本文对波流共同作用下大尺度圆柱墩群周围的波流场进行了数值研究。利用波浪弥散关系的迭代计算求得波向与流向的夹角以及波浪的相对频率。流场通过求解浅水环流方程得到,波浪场通过求解含流的缓坡方程得到,通过二者的迭代计算得到大尺度圆柱墩群周围的波流场的耦合解。用有限元法建立了数值模型,并将本文的计算数据与试验数据以及其他学者计算数据进行了比较,结果较为合理。  相似文献   

6.
为了研究波流共同荷载作用下开挖基槽附近海床动态响应和液化破坏情况,提出一个二维耦合计算模型,采用雷诺时均纳维-斯托克斯(RANS)方程描述波浪运动情况,通过设定侧边界条件实现稳定流场。海床部分通过求解Biot固结方程,得到波流荷载下海床中的应力和位移情况。将模型计算结果与水槽试验数据和解析解进行比较,验证了波流模型和海床模型的有效性。在此模型基础上,分析得到了开挖之后海床新的应力和固结状态。同时,通过参数分析得到了波流耦合情况下波浪形态的变化,以及海流对海床液化情况和孔压情况的影响。最后,通过线性回归计算得到最大液化深度与流速的拟合关系曲线。计算结果可用于判断基槽开挖后不规则海床的液化情况,对相关研究和实际工程具有一定参考意义。  相似文献   

7.
王平  邹文峰 《海洋通报》2017,36(5):568-577
基于三维潮流和谱波浪模型,以及输移扩散模型和拉格朗日粒子追踪模型,构建了波流耦合下保守污染物的迁移扩散模型。模型基于非结构化网格,对近岸复杂岸线有很好的拟合,可用于大范围波流耦合计算。运用所建的耦合模型研究了旅顺港内外的潮流变化、波生流场、保守污染物输移、粒子运动、以及新水道对湾内污染物迁移的影响,模拟的潮流场与实测数据吻合较好。结果表明:潮流会在湾内近湾口处形成一逆时针涡,波浪对湾内影响较小,但波生流会改变湾口流场分布;在湾内处于涡中的水体潮流自净能力较强,而湾中及湾底则较弱,SE向波浪会降低湾内水体的自净能力;新潮流通道的开挖,会显著改善水体的自净能力,尤其对湾底浅水区域作用明显。  相似文献   

8.
长兴岛海区波流相互作用数值模拟研究   总被引:1,自引:0,他引:1  
王彪  沈永明  王亮 《海洋工程》2012,30(3):87-96
波和流是近岸海区的主要动力因素。应用二维潮流数学模型和最新第三代近岸海浪模式SWAN,建立了非结构网格下二维情况近岸波流耦合作用数学模型。时间离散采用欧拉向前格式,空间离散采用有限体积法显式格式。通过将波浪场及潮流场进行迭代耦合计算,实现了对波流共同作用下波浪场和潮流场的数值模拟。将模型应用于矩形海湾实验和李孟国数模实验等理想地形以及大连长兴岛海区实际复杂地形算例,并用现场实测资料对计算结果进行验证,结果表明:耦合结果与实测结果吻合良好,并且要优于未耦合的结果。  相似文献   

9.
研究近海海域水流、悬沙运动规律,运用基于COHERENS发展的水动力悬沙模型COHERENS-SED,结合当地一般波浪条件,模拟了青岛近海悬浮泥沙输运情况,并验证及分析了水动力环境及悬沙输运的模拟结果。结果表明:在波流合作用下,近岸掀沙明显,大潮期间该海域近岸悬沙浓度值最高可达50mg/L。  相似文献   

10.
近岸区域波流耦合作用的数学模型   总被引:5,自引:0,他引:5  
本文提出了一个讨论近岸波浪和波生流耦合作用的二维数学模型。在波浪场中运用波数矢量无旋和波作用量守恒方程求解波浪在波生流作用下的折射、绕射变形,以辐射应力作为波生流场的驱动力,考虑地转柯氏力和海底底摩擦的作用。文中采用Dingemans(1987)的地形对波流耦合作用进行了分析。数值计算结果表明波流耦合作用对近岸波浪场和波生流场的影响比较显著,在工程实际上应当综合考虑波流耦合问题。  相似文献   

11.
A three-dimensional suspended sediment model(SED)developed by the present authors is coupled with the combinatorial model of COHERENS(Luyten et al.,1999) (the three-dimensional coupled hydrodynamical-ecological model for Regional and Shelf Seas) and SWAN(Holthuijsen et al.,2004) (the third generation wave model).SWAN is regarded as a subroutine of COHERENS and gets time-and space-varying current velocity and surface elevation from COHERENS.COHERENS gets time-and space-varying wave relevant parameters provided by SWAN.Effects of wave on current are applied in bottom shear stress,wave-induced depth-dependent radiation stress and surface drag coefficient calculation.At the same time,the damping function of suspended sediment on turbulence is introduced into COHERENS.So the sediment model SED has feed back on circulation model COHERENS.The SED obtains current as sociated parameters from COHERENS.Then a couple dhydrodynamic-sediment model COHERENS-SED being able to account for interaction between wave and current is obtained.COHERENS-SED is adopted to simulate three-dimensional suspended sediment transport in the Huanghe River delta.In terms of simulation results,there is obvious diffierence between top and bottom layer of wave-induced longshore current.The values of time series of sediment concentration gotten by COHERENS-SED have,generally,an accepted agreement extent with measurement.Significant wave heights and wave periods obtained by COHERENS-SED show that wave simulation case with current’s effect can give better agreement extent with measurement than case without current’s effect.In the meantime,suspended sediment concentration distributing rule obtained by COHERENS-SED is similar to former researches and measurement.  相似文献   

12.
A three-dimensional wave radiation stress is introduced into the hydrodynamic sediment coupled model COHERENS-SED,which has been developed through introducing wave-enhanced bottom shear stress,wave dependent surface drag coefficient,wave-induced surface mixing,SWAN,damping function of sediment on turbulence,sediment model and depth-dependent wave radiation stress to COHERENS.The COHERENS-SED is adopted to study the effects induced by wave-induced three-dimensional longshore current on suspended sediment spreading of the Huanghe River (Yellow River) mouth.Several different cases divided by setting different wave parameters of inputting boundary waves are carried out.The modeling results agree with measurement data.In terms of simulation results,it is easy to know that three-dimensional wave radiation stress plays an obvious role when inputting boundary wave height is stronger than 3 m.Moreover,wave direction also affects the sediment spreading rules of the mouth strongly too.  相似文献   

13.
A three-dimensional wave radiation stress is introduced into the hydrodynamic sediment coupled model COHERENS-SED, which has been developed through introducing wave-enhanced bottom shear stress, wave dependent surface drag coefficient, wave-induced surface mixing, SWAN, damping function of sediment on turbulence, sediment model and depth-dependent wave radiation stress to COHERENS. The COHERENS-SED is adopted to study the effects induced by wave-induced three-dimensional longshore current on suspended sediment spreading of the Huanghe River (Yellow River) mouth. Several different cases divided by setting different wave parameters of inputting boundary waves are carried out. The modeling results agree with measurement data. In terms of simulation results, it is easy to know that three-dimensional wave radiation stress plays an obvious role when inputting boundary wave height is stronger than 3 m. Moreover, wave direction also affects the sediment spreading rules of the mouth strongly too.  相似文献   

14.
A quasi three-dimensional numerical model of wave-driven coastal currents with the effects of surface rollers is developed for the study of the spatial lag between the location of the maximum wave-induced current and the wave breaking point.The governing equations are derived from Navier-Stokes equations and solved by the hybrid method combining the fractional step finite different method in the horizontal plane with a Galerkin finite element method in the vertical direction.The surface rollers effects are considered through incorporating the creation and evolution of the roller area into the free surface shear stress.An energy equation facilitates the computation process which transfers the wave breaking energy dissipation to the surface roller energy.The wave driver model is a phase-averaged wave model based on the wave action balance equation.Two sets of laboratory experiments producing breaking waves that generated longshore currents on a planar beach are used to evaluate the model's performance.The present wave-driven coastal current model with the roller effect in the surface shear stress term can produce satisfactory results by increasing the wave-induced nearshore current velocity inside the surf zone and shifting the location of the maximum longshore current velocity landward.  相似文献   

15.
Numerical study of wave and longshore current interaction   总被引:1,自引:0,他引:1  
Wave and longshore current interaction was examined based on the numerical models.In these models,water waves in the presence of longshore currents were modeled by parabolic mild slope equation,and wave breaking induced longshore currents were modeled by shallow water equation.Water wave provided the radiation stress gradients to drive current.Wave and longshore current interactions were considered by cycling the wave and longshore current models to a steady state.The experiments for regular and irregular breaking wave induced longshore currents by Hamilton and Ebersole(2001) and Reniers and Battjes(1997) were simulated.The numerical results indicate that the present models are effective for simulating the interaction of wave and breaking wave induced longshore currents,and the numerically simulated longshore current at wave breaking point considering wave and longshore current interaction show some disagreement with those neglecting the wave-current interaction,and the breaking wave induced longshore current effect on wave transformation is not obvious.  相似文献   

16.
使用近岸波浪模型SWAN计算存在沿岸流和离岸流时的近岸波浪传播。先设离岸流u=0m/s,模拟均匀、非均匀沿岸流的流速和梯度对波高传播的影响;再设沿岸流v=0.5m/s,模拟均匀、非均匀离岸流的流速和梯度对波能高传播的影响。从模拟中得到,近岸波浪传播受沿岸流、离岸流的流速和梯度影响时,波高的变化规律。  相似文献   

17.
Bingchen Liang  Huajun Li  Dongyong Lee   《Ocean Engineering》2007,34(11-12):1569-1583
In the present work, a three-dimensional suspended sediment model (SED) is built. A three-dimensional hydrodynamic model (COHERENS) and a third-generation wave model (SWAN) are fully coupled through accounting for mutual influences between wave and current in them. SED is combined with the coupled model built up above. Damping function of suspended sediment on turbulence is introduced into COHERENS. Then a coupled hydrodynamic–sediment model COHERENS-SED incorporating mutual influences between wave and current is obtained. COHERENS-SED is adopted to simulate three-dimensional suspended sediment transport of Yellow River Delta with wave–current co-existing. The simulated tidal current velocities and suspended sediment concentration match well with field measurement data. The simulated significant wave height and wave period for a case with current's effects can give better agreement with measurement data than a case without current's effects. Numerical simulation results of COHERENS-SED are demonstrated to be reasonable though being compared with previous studies and field measurements [Wang, H., Yang, Z.S., Li, R., Zhang, J., Chang, R., 2001. Numerical modeling of the seabed morphology of the subaqueous Yellow River Delta. International Journal of Sediment Research 16(4), 486–498; Wang, H., 2002. 3-dimensional numerical simulation on the suspended sediment transport from the Huanghe to the Sea. Ph.D. Thesis, Ocean University of China, pp. 12–14 (in Chinese)].  相似文献   

18.
Regional Ocean Modeling System (ROMS v 3.0), a three-dimensional numerical ocean model, was previously enhanced for shallow water applications by including wave-induced radiation stress forcing provided through coupling to wave propagation models (SWAN, REF/DIF). This enhancement made it suitable for surf zone applications as demonstrated using examples of obliquely incident waves on a planar beach and rip current formation in longshore bar trough morphology (Haas and Warner, 2009). In this contribution, we present an update to the coupled model which implements a wave roller model and also a modified method of the radiation stress term based on Mellor (2008, 2011a,b,in press) that includes a vertical distribution which better simulates non-conservative (i.e., wave breaking) processes and appears to be more appropriate for sigma coordinates in very shallow waters where wave breaking conditions dominate. The improvements of the modified model are shown through simulations of several cases that include: (a) obliquely incident spectral waves on a planar beach; (b) obliquely incident spectral waves on a natural barred beach (DUCK'94 experiment); (c) alongshore variable offshore wave forcing on a planar beach; (d) alongshore varying bathymetry with constant offshore wave forcing; and (e) nearshore barred morphology with rip-channels. Quantitative and qualitative comparisons to previous analytical, numerical, laboratory studies and field measurements show that the modified model replicates surf zone recirculation patterns (onshore drift at the surface and undertow at the bottom) more accurately than previous formulations based on radiation stress (Haas and Warner, 2009). The results of the model and test cases are further explored for identifying the forces operating in rip current development and the potential implication for sediment transport and rip channel development. Also, model analysis showed that rip current strength is higher when waves approach at angles of 5° to 10° in comparison to normally incident waves.  相似文献   

19.
Based on the third-generation oceanic wave prediction model (WAVEWATCH Ⅲ) ,the third-generation nearshore wave calculation model (SWAN) and the mathematical tide, tidal current and cyclone current model, which have been improved, interconnected and expanded, a coupled model of offshore wave, tide and sea current under tropical cyclone surges in the South China Sea has been established. The coupled model is driven by the tropical cyclone field containing the background wind field. In order to test the hindcasting effect of the mathematical model, a comparison has been made between the calculated results and the observational results of waves of 15 cyclone cases, water levels and current velocities of the of 7 cyclones. The results of verification indicate that the calculated and observed results are basically identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号