首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although grazing is considered an essential process controlling epiphyte biomass on seagrass leaves, there is still a lack of fundamental knowledge about the species‐specific consumption rates of the most common grazers in Mediterranean meadows. This study experimentally assessed the effect of Posidonia oceanica‐associated gastropod grazing on early successional biofilm and the species‐specific relationship between biofilm consumption rates and biofilm biomass. Two biofilms on artificial substrata, both developed in situ (in a P. oceanica meadow), one under ambient conditions and the other under nutrient‐enriched conditions, were offered in aquaria assays to nine species of grazers found in P. oceanica meadows. Biofilm consumption rates and their association with biofilm biomass were assessed. It was found that: (i) there was a positive association between biofilm consumption and biofilm biomass up to 20 mg Chl a·m?2 for Bittium reticulatum, Gibbula ardens, Jujubinus exasperatus and Tricolia pullus; (ii) Alvania montagui, B. reticulatum and Jujubinus striatus showed the highest consumption rates and are thus expected to be amongst the leading consumers in early‐successional epiphytic communities; (iii) there was not an increase of consumption rate when a substratum colonized under nutrient‐enriched conditions was offered to any of the nine studied species. This study provides species‐specific consumption rates knowledge that is useful for the assessment of the strength of grazer–epiphyte interactions and trophic fluxes in P. oceanica meadows.  相似文献   

2.
The tropical seagrass Halophila stipulacea is dominant in most regions of the Indo‐Pacific and the Red Sea and was introduced into the Mediterranean Sea after the opening of the Suez canal. The species is considered invasive in the Mediterranean Sea and has been progressively colonizing new areas westward. Growth and photosynthetic responses of H. stipulacea have been described but no information is yet available on the nitrogen nutrition of the species. Here we simultaneously investigated the uptake kinetics of ammonium and nitrate and the internal translocation of incorporated nitrogen in H. stipulacea using 15N‐labelled substrates across a range of Ni levels (5, 25, 50 and 100 μm ). The ammonium uptake rates exceeded the nitrate uptake rates 100‐fold, revealing a limited capacity of H. stipulacea to use nitrate as an alternative nitrogen source. The uptake rates of ammonium by leaves and roots were comparable up to 100 μm 15NH4Cl. At this concentration, the leaf uptake rate was 1.4‐fold higher (6.22 ± 0.70 μmol·g?1 DW h?1) than the root uptake rate (4.54 ± 0.28 μmol·g?1 DW h?1). The uptake of ammonium followed Michaelis–Menten kinetics, whereas nitrate uptake rates were relatively constant at all nutrient concentrations. The maximum ammonium uptake rate (Vmax) and the half‐saturation constant (Km) of leaves (9.79 μmol·g?1 DW h?1 and 57.95 μm , respectively) were slightly higher than that of roots (6.09 μmol·g?1DW h?1 and 30.85 μm , respectively), whereas the affinity coefficients (α = Vmax/Km) for ammonium of leaves (0.17) and roots (0.20) were comparable, a characteristic that is unique among seagrass species. No substantial translocation (<2.5%) of 15N incorporated as ammonium was detected between plant parts, whereas the translocation of 15N incorporated as nitrate was higher (40–100%). We conclude that the Ni acquisition strategy of H. stipulacea, characterized by a similar uptake capacity and efficiency of leaves and roots, favors the geographical expansion potential of the species into areas with variable water‐sediment N levels throughout the Mediterranean.  相似文献   

3.
Halipteris finmarchica is one of the most common species of deep‐sea pennatulacean corals in the Northwest Atlantic; it was recently determined to act as a biogenic substrate for other species and as a nursery for fish larvae. Its reproductive cycle was investigated in colonies sampled in 2006 and 2007 along the continental slope of Newfoundland and Labrador (Canada). Halipteris finmarchica exhibits large oocytes (maximum diameter of 1000 μm), which are consistent with lecithotrophic larval development. Female potential fecundity based on mature oocytes just before spawning was ~6 oocytes · polyp?1 (500–6300 oocytes · colony?1); male potential fecundity was 16 spermatocysts · polyp?1 (5500–57,400 spermatocysts · colony?1). Based on statistical analysis of size‐probability frequency distributions, males harboured one cohort of spermatocysts that matured inside 8–11 months, whereas females harboured two distinct cohorts of oocytes; a persistent pool of small ones (≤400 μm) and a small number (~20%) of larger ones that grew from ~400 to >800 μm over a year. Despite this difference in the tempo of oogenesis and spermatogenesis, a synchronic annual spawning was detected. A latitudinal shift in the spawning period occurred from south (April in the Laurentian Channel) to north (May in Grand Banks and July–August in Labrador/Lower Arctic), following the development of the phytoplankton bloom (i.e. sinking of phytodetritus). Prolonged oogenesis with the simultaneous presence of different oocyte classes in a given polyp is likely not uncommon in deep‐sea octocorals and could hamper the detection of annual/seasonal reproduction when sample sizes are low and/or time series discontinued or brief.  相似文献   

4.
Porites panamensis is a hermatypic coral present in the eastern Pacific Ocean. Skeletal growth parameters have been reported, but studies of the relationship between annual calcification rates and environmental controls are scarce. In this study, we investigated three aspects of the annual calcification rates of P. panamensis: growth parameters among three P. panamensis populations; the sea surface temperature as a calcification rate control spanning a latitudinal gradient; and calcium carbonate production among three sites. Growth parameters varied among the sites due to the colony growth form. Massive colonies in the north showed a higher calcification rate than encrusting colonies in the south (mean: 1.22–0.49 g CaCO3 · cm?2 · yr?1), where variations in calcification rates were related to growth rate (0.91–0.38 cm · yr?1) rather than to skeletal density differences (overall mean ± SD, 1.31 ± 0.04 g CaCO3 · cm?3). Our results showed a positive linear relationship between annual calcification rates and sea surface temperatures within these P. panamensis populations. Differences were related to distinct oceanographic environments (within and at the entrance of the Gulf of California) with different sea surface temperature regimes and other chemical properties. Different populations calcified under different environmental conditions. Calcium carbonate production was dependent upon the calcification rate and coral cover and so carbonate production was higher in the north (coral cover 12%) than in the south (coral cover 3.5). Thus, the studied sites showed low calcium carbonate production (0.25–0.43 kg CaCO3 · m?2 · yr?1). Our results showed reduced calcification rates, regional temperature regime control over calcification rates, different growth forms, low coral cover and low calcium carbonate production rates in P. panamensis.  相似文献   

5.
6.
Magellania venosa, the largest recent brachiopod, occurs in clusters and banks in population densities of up to 416 ind m?2 in Comau Fjord, Northern Chilean fjord region. Below 15 m, it co‐occurs with the mytilid Aulacomya atra and it dominates the benthic community below 20 m. To determine the question of why M. venosa is a successful competitor, the in situ growth rate of the brachiopod was studied and its overall growth performance compared with that of other brachiopods and mussels. The growth in length was measured between February 2011 and March 2012 after mechanical tagging and calcein staining. Settlement and juvenile growth were determined from recruitment tiles installed in 2009 and from subsequent photocensus. Growth of M. venosa is best described by the general von Bertalanffy growth function, with a maximum shell length (L) of 71.53 mm and a Brody growth constant (K) of 0.336 year?1. The overall growth performance (OGP index = 5.1) is the highest recorded for a rynchonelliform brachiopod and in the range of that for Mytilus chilensis (4.8–5.27), but lower than that of A. atra (5.74). The maximal individual production (PInd) is 0.29 g AFDM ind?1 year?1 at 42 mm shell length and annual production ranges from 1.28 to 89.25 g AFDM year?1 m?2 (1–57% of that of A. atra in the respective fjords). The high shell growth rate of M. venosa, together with its high overall growth performance may explain the locally high population density of this brachiopod in Comau Fjord. However, the production per biomass of the population (‐ratio) is low (0.535) and M. venosa may play only a minor role in the food chain. Settling dynamics indicates that M. venosa is a pioneer species with low juvenile mortality. The coexistence of the brachiopod and bivalve suggests that brachiopod survival is affected by neither the presence of potential brachiopod predators nor that of space competitors (i.e. mytilids).  相似文献   

7.
Sponges are inhabited by a wide variety of organisms and have been regarded as one of the richest biotopes in tropical seas. The aim of this study was to assess the influence of the host morphology and selected environmental conditions on macrofaunal assemblages associated with the sponge Halichondria melanadocia in an estuarine system of the southern Gulf of Mexico. This sponge exhibits different growth forms when it inhabits mangrove prop roots of Rhizophora mangle (thickly encrusting form) and adjacent seagrass beds (massive, amorphous or ramose form). From a total of 50 sponge specimens collected in each habitat, a total of eight taxa (of epi‐ and endobionts) was found associated with this sponge, with polychaetes, echinoderms and crustaceans the most abundant groups. In both morphotypes (thickly‐encrusting and massive‐ramose forms), taxon richness was positively related to sponge volume and oscular diameter. The overall mean abundance of associated fauna was also positively related to sponge volume in both morphotypes and with the oscular diameter (in the seagrass morphotype only). These findings suggest that H. melanadocia constitutes an important microhabitat for a wide variety of fauna, independent of its morphology and habitat type. However, when comparing the two morphotypes, the mangrove individuals, despite having smaller sizes, smaller oscular diameter and less structural complexity, displayed an overall mean abundance of fauna 17 times higher [0.36 ± 0.18 individuals (ind.)·ml·sponge?1] than that recorded in the seagrass individuals (0.021 ± 0.01 ind.·ml·sponge?1). There were also marked differences in the proportions of the major taxonomic groups; in fact, some of them were found exclusively in one morphotype. The variability recorded in the composition and abundance of associated fauna between the morphotypes seems to be influenced by differences in sponge morphology, environmental conditions (e.g. sedimentation rate and light intensity), substrate orientation and the fauna inhabiting the surrounding area.  相似文献   

8.
During a research cruise carried out in April 2010, aimed at updating the knowledge on the biodiversity of the Santa Maria di Leuca (SML) cold‐water coral province (Mediterranean Sea), a facies of the sea pen Kophobelemnon stelliferum (Muller, 1776) was found on mud‐dominated bottoms. This finding represents a new species and a new habitat record from the SML coral province as well as a new bathyal facies in the whole Central Mediterranean Sea. The colonies were collected using an epi‐benthic sledge, at depths between 400 and 470 m. A significant positive relationship between polyp number and colony length was detected. Density of the colonies ranged from 0.003 to 0.038 N·m?2. Differences and affinities between Mediterranean and Atlantic occurrences of K. stelliferum are discussed.  相似文献   

9.
To test the effects of site and successional stage on nitrogen fixation rates in salt marshes of the Venice Lagoon, Italy, acetylene reduction assays were performed with Salicornia veneta‐ and Spartina townsendii‐vegetated sediments from three restored (6–14 years) and two natural marshes. Average nitrogen fixation (acetylene reduction) rates ranged from 31 to 343 μmol C2H4·m?2·h?1 among all marshes, with the greatest average rates being from one natural marsh (Tezze Fonde). These high rates are up to six times greater than those reported from Southern California Spartina marshes of similar Mediterranean climate, but substantially lower than those found in moister climates of the Atlantic US coast. Nitrogen fixation rates did not consistently vary between natural and restored marshes within a site (Fossei Est, Tezze Fonde, Cenesa) but were negatively related to assayed plant biomass within the acetylene reduction samples collected among all marshes. Highest nitrogen fixation rates were found at Tezze Fonde, the location closest to the city of Venice, in both natural and restored marshes, suggesting possible site‐specific impacts of anthropogenic stress on marsh succession.  相似文献   

10.
We present the results of the first study to highlight the demography, morphometry and growth rates of Spinimuricea klavereni, a rare Mediterranean endemic gorgonian exceptionally common in shallow depths of the Northeast Marmara Sea. In the study area, this species forms vast populations on rocks, boulders and attached to pebbles/stones/shells on soft substrates between 20 and 45 m depth, with a total average density of 0.3 colonies·m?2 but comprising patches up to 3 colonies·m?2. Colonies, which are on average 42.9 (±20.1) cm in height, can reach up to 110 cm. Unlike other Mediterranean gorgonians, the colonies studied here showed fast growth rates that decreased with increasing colony height, between 1.5–11.1 and 4.96 ± 3.01 cm·year?1 on average. The low necrosis and high growth rates displayed by this species in the Northeast Marmara Sea confirm the previously hypothesized opportunistic behaviour of the species. The unique community consisting of S. klavereni and other rare gorgonian/soft corals has limited distribution in this area and should be considered to be a vulnerable marine ecosystem. Therefore we recommend that some conservation measures are taken, including the prohibition of all fisheries and anchoring over these assemblages.  相似文献   

11.
Leaf growth, biomass and production of Cymodocea nodosa were measured from October 2006 to September 2007 in Monastir Bay (Tunisia). Shoot density showed a clear seasonal pattern, increasing during spring and summer and decreasing during fall and winter. Monthly mean shoot density ranged between 633 ± 48 and 704 ± 48 shoots?m?2. The monthly average total biomass ranged between 560 ± 37 and 646 ± 32 g dry weight (DW)?m?2. Total biomass varied significantly among stations and sampling times but did not show seasonal variation. Leaf plastochrone intervals varied seasonally, with an annual average of 28–30 days. Leaf productivity was highest in August (2.61 g DW?m?2?day?1) and lowest in February (0.35 g DW?m?2?day?1). Annual belowground primary production varied from 263 to 311 g DW?m?2?year?1. Annual leaf production was approximately equal for all the stations (from 264 to 289 g DW?m?2?year?1). Variability in water temperature, air temperature and salinity explained the annual variability in biological characteristics. Changes in belowground and total biomass were not correlated with seasonal variability in the environmental parameters monitored. Additionally, a literature review was conducted of C. nodosa features at other Mediterranean sites, encompassing 30 studies from 1985 to 2014.  相似文献   

12.
The effect of self‐shading and competition for light in the seagrass Enhalus acoroides were investigated with a density reduction experiment in Haad Chao Mai National Park, Trang Province, Thailand. The study was carried out in a monospecific meadow with a natural density of 141.0 ± 8.7 shoots·m?2. The intent was to determine the response of E. acoroides beds to loss of shoots and thinning, which often occur during typhoons and severe storm activity. Permanent quadrats were manipulated by clipping the seagrass shoots to 140, 72, 36 and 16 shoots·m?2, to yield natural, 50%, 25% and 10% densities, respectively. Reducing shoot density in E. acoroides increased underwater light intensity below the canopy, generating increased leaf surface area and shoot weight. Seagrass leaf width, growth rate, and number of leaves per shoot also increased with greater light. The extent of flowering varied among treatments with no consistent trend. Our results demonstrate that increasing the available light to E. acoroides produces an increasing leaf size response as self‐shading in the bed is reduced.  相似文献   

13.
Population abundance, distribution and habitat preference of the Mediterranean sympatric seahorses Hippocampus guttulatus and Hippocampus hippocampus were investigated in a semi‐enclosed sea system (Apulian coast, Ionian Sea). A total of 242 individuals of seahorses were sighted in the 11 transects surveyed in summer 2011. Hippocampus guttulatus (n = 225) were 14 times more abundant than H. hippocampus (17). The mean abundance of H. guttulatus for all the pooled sites was 0.018 m?2 (SE ± 0.003) ranging from a maximum of 0.035 (SE ± 0.007) to a minimum of 0.008 (SE ± 0.002). The size structure of long‐snouted seahorse shows a population ranging from 7 to 14 cm (SL) with a peak at 10 cm (TL). Juveniles (96.0 ± 8.0 mm) represent a significant fraction of the population, accounting more than 21% of the sighted individuals. In Mar Piccolo, H. guttulatus is able to shelter both in monotonous habitats, including the algal beds, and diversified ones, such as the rich filter‐feeder communities that colonize hard substrates. By contrast, H. hippocampus is mainly associated with habitats of low complexity. Today, the Mar Piccolo di Taranto is among the most heavily polluted water bodies in South Italy, with trace metals, hydrocarbons, pesticides and organic wastes affecting both biotic and abiotic matrices. However, despite the high level of degradation, the presence of a large mussel farm has avoided the impact of towed fishing gears, and eutrophication of water bodies has ensured a high trophic level that supports large crustacean populations, potential prey for seahorses.  相似文献   

14.
The Arabian Sea is characterized by a mid‐depth layer of reduced dissolved oxygen (DO) concentration or oxygen minimum zone (OMZ ‐DO concentration <0.5 ml·l?1) at ~150–1000 m depth. This OMZ results from the flux of labile organic matter coupled with limited intermediate depth water ventilation. Generally, benthic animals in the OMZ have morphological and physiological adaptations that maximize oxygen uptake in the limited oxygen availability. Characteristics of OMZ benthos have been described from only a few localities in the Arabian Sea. We measured the bottom water DO and studied the characteristics of infaunal macrobenthos of the Indian western continental shelf by collecting samples at 50, 100 and 200 m in depth from 7° to 22° N. The DO values observed at 200 m (0.0005–0.24 ml·l?1) indicated that this area is lying within an OMZ. Five major taxa, namely Platyhelminthes, Sipunculoidea, Echiuroidea, Echinodermata and Cephalochordata were absent from the samples collected from this OMZ. In general, declines in total macrobenthic density and biomass and polychaete species richness and diversity were observed in this OMZ compared with the shallower depths above it. Community analyses of polychaetes revealed the dominance of species belonging to families Spionidae, Cirratulidae and Paraonidae in this OMZ. Low oxygen condition was more pronounced in the northern continental shelf edge (≤0.03 ml·l?1), where the majority of spionids including Prionospio pinnata and cirratulids were absent; whereas amphipod, isopod and bivalve communities were not impacted.  相似文献   

15.
By creating novel habitats, habitat‐modifying species can alter patterns of diversity and abundance in marine communities. Many sea urchins are important habitat modifiers in tropical and temperate systems. By eroding rocky substrata, urchins can create a mosaic of urchin‐sized cavities or pits separated by exposed, often flat surfaces. These microhabitats appear to harbor distinct assemblages of species. We investigated how a temperate rocky intertidal community uses three small‐scale (<100 cm2) microhabitats created by or adjacent to populations of the purple sea urchin (Strongylocentrotus purpuratus): pits occupied by urchins, unoccupied pits, and adjacent flat spaces. In tidepools, flat spaces harbored the highest percent cover of algae and sessile fauna, followed by empty pits and then occupied pits. The Shannon diversity and richness of these sessile taxa were significantly higher in flat spaces and empty pits than in occupied pits. The composition of these primary space holders in the microhabitats also varied. Unlike primary space holders, mobile fauna exhibited higher diversity and richness in empty pits than in flat spaces and occupied pits, although results were not significant. The protective empty pit microhabitat harbored the highest densities of most trophic functional groups. Herbivores, however, were densest in flat spaces, concordant with high algal coverage. These results suggest the habitats created by S. purpuratus in addition to its biological activities alter community structure at spatial scales finer than those typically considered for sea urchins.  相似文献   

16.
Commercially harvested since ancient times, the highly valuable red coral Corallium rubrum (Linnaeus, 1758) is an octocoral endemic to the Mediterranean Sea and adjacent Eastern Atlantic Ocean, where it occurs on rocky bottoms over a wide bathymetric range. Current knowledge is restricted to its shallow populations (15–50 m depth), with comparably little attention given to the deeper populations (50–200 m) that are nowadays the main target of exploitation. In this study, red coral distribution and population structure were assessed in three historically exploited areas (Amalfi, Ischia Island and Elba Island) in the Tyrrhenian Sea (Western Mediterranean Sea) between 50 and 130 m depth by means of ROV during a cruise carried out in the summer of 2010. Red coral populations showed a maximum patch frequency of 0.20 ± 0.04 SD patches·m?1 and a density ranging between 28 and 204 colonies·m?2, with a fairly continuous bathymetric distribution. The highest red coral densities in the investigated areas were found on cliffs and boulders mainly exposed to the east, at the greatest depth, and characterized by medium percentage sediment cover. The study populations contained a high percentage (46% on average) of harvestable colonies (>7 mm basal diameter). Moreover, some colonies with fifth‐order branches were also observed, highlighting the probable older age of some components of these populations. The Ischia population showed the highest colony occupancy, density and size, suggesting a better conservation status than the populations at the other study locations. These results indicate that deep dwelling red coral populations in non‐stressed or less‐harvested areas may diverge from the inverse size‐density relationship previously observed in red coral populations with increasing depth.  相似文献   

17.
Jellyfish are often the most prominent components of plankton, with severe consequences for fisheries and tourism. However, in tropical regions, there is much uncertainty about these consequences due to the lack of basic data. Our objective was to improve the knowledge about jellyfish in the Western Atlantic, with an emphasis on understanding diversity, abundance, and distribution patterns. Samples were collected at 34 stations in 1995 using a 300‐μm‐mesh Bongo net. The 21 species identified belonged to Hydromedusae (11), Siphonophora (nine), and Scyphomedusae (one). The overall mean density was low (5.2 ± 5.3 ind. m?3). Total Hydromedusae biomass was 130.86 mg C m?3, and total Siphonophora biomass was 19.04 mg C m?3. Chelophyes appendiculata (Eschscholtz, 1829) was the most frequent species captured in the oceanic samples, and Aglaura hemistoma (Péron & Lesueur, 1810) was the most common in the neritic region. The latter species is sometimes characterized as a bloom associated with the most polluted and eutrophic river plumes. The main role of jellyfish species in the area is as a higher‐order carnivore. A cross‐shelf significant difference (P < 0.05) was registered, with higher species numbers in oceanic regions and higher densities and biomass in neritic regions.  相似文献   

18.
The Western Antarctic Peninsula (wAP) is globally one of the systems most heavily impacted by climate change, notably steep declines in sea ice extent. In forage species, reproductive resilience to change is particularly important because population fluctuations are rapidly communicated through the system via trophic interactions. The reproductive traits of the ice‐dependent forage species Antarctic silverfish (Pleuragramma antarctica) from different areas along the wAP and at the tip of the Antarctic Peninsula were investigated through macroscopic and histological analyses of gonads, with the aim to assess its reproductive potential and to test for spatial differences in fecundity and spawning season. Fish samples were collected in late summer off Charcot Island, in Marguerite Bay and off Joinville Island; no fish were caught in the central wAP. Samples from Charcot Island and Marguerite Bay consisted of adults in developing gonad stage, whereas those from Joinville consisted almost exclusively of juveniles. Mean GSI was relatively low (2–3%) and similar in both sexes, as specimens were still far from being actively reproducing. Developing females exhibited two discrete, though partially overlapping modes of oocytes of different size, with vitellogenic oocytes measuring 0.5–1.0 mm. Absolute and relative fecundity ranged between 3000 and 12,000 eggs per female and between 80 and 190 eggs·g?1, with a strong relationship between absolute fecundity and body size. These results were consistent with a single population at Charcot Island and Marguerite Bay and indicated substantial reproductive potential, which may mitigate population isolation and reductions in habitat availability but cannot ultimately offset catastrophic loss of spawning habitat linked to sea‐ice retreat.  相似文献   

19.
Rhodoliths are important marine carbonate producers that provide habitat for several marine organisms, and are threatened by ongoing global climate change. Meter‐sized sedimentary patches rich in living rhodoliths, interspersed among corals, were discovered in the back reef of Ras Ghamila lagoon, Southern Sinai, at less than 1 m water depth. In this shallow and relatively sheltered subtropical environment, rhodoliths were found to be monospecific or oligospecific, spheroidal, 3.5 to 9.4 cm in maximum diameter, with warty/lumpy or fruticose (protuberance degree IV) growth forms, and corresponded to the unattached branches or praline type. They grew in bright light under seasonal, moderate, wind‐driven water motion. The dominant rhodolith‐forming species recorded were: Lithophyllum kotschyanum, Porolithon onkodes, Hydrolithon sp. and three species of Neogoniolithon: Neogoniolithon fosliei, Neogoniolithon brassica‐florida, and an undescribed species noted in the text as Neogoniolithon sp. A total of 38 Alizarin‐stained rhodoliths was released in the field and collected after 1 year. They showed different banding patterns (alternating long and short cells) that revealed seasonal growth, with the lowest rates occurring in winter for all species, and an additional summer growth slackening in Neogoniolithon fosliei. Lithophyllum kotschyanum presented evidence of occasional growth cessation, possibly due to temporary burial. The observed annual growth rate of rhodoliths was unrelated to their size. The mean accretion rates were 1.08 mm · year?1 in L. kotschyanum, 0.75 mm · year?1 in P. onkodes, 0.49 mm · year?1 in Hydrolithon sp., 0.85 mm mm · year?1 in N. fosliei, 0.63 mm · year?1 in N. brassica‐florida and 0.57 mm · year?1 in Neogoniolithon sp. The annual mean marginal elongation rate for these taxa was respectively 8.74, 13.92, 3.59, 9.40 and 9.25 mm · year?1, with the exception of Neogoniolithon sp., for which this parameter was not recorded. Maximum marginal elongation occurred in P. onkodes pointing out its greater ability as a space competitor in comparison with the other rhodolith species. The highest accretion rate and common presence of L. kotschyanum indicate its importance as carbonate producer in tropical reef.  相似文献   

20.
We examined whether adults of three species of sea urchins species (Diadema antillarum, Arbacia lixula, and Paracentrotus lividus) exhibit a consistent depth-dependent partitioning pattern on rocky reefs of the Canarian Archipelago (eastern Atlantic). Hydrodynamic experiments were carried out to quantify the resistance to flow-induced dislodgement in these three species. We tested the model that different morphology can result in habitat partitioning among these sea urchins. Abundances of D. antillarum increased with depth. In contrast, A. lixula and P. lividus showed the opposite zonation pattern, coexisting in high abundances in the shallowest depths (<5 m), and occurring in low densities in the deepest part of reefs (>7 m). Both A. lixula and P. lividus had greater adhesion-surface to body-height ratios than D. antillarum. Similarly, A. lixula and P. lividus showed a greater ability to resist flow-induced dislodgement compared with D. antillarum. The mean “velocity of dislodgement” was 300% and 50% greater for A. lixula and P. lividus, respectively, relative to D. antillarum, for any particular size. As a result, A. lixula and P. lividus are better fitted to life in high-flow environments than D. antillarum. We conclude that the risk of dislodgement by water motion likely play a relevant role in the vertical distribution patterns of these sea urchins in the eastern Atlantic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号