首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vertical distribution of reactive mercury has been measured at two stations in the eastern North Atlantic and one station in the southeast Atlantic in conjunction with the IOC Open Ocean Baseline Survey. The average concentrations of reactive Hg in vertical profiles ranged from 0.70 to 1.07 pM with the highest values found at the northeast Atlantic stations and the lowest at the southeast station. No significant concentration gradients were found below the surface mixed layer at the two stations in the eastern North Atlantic. At station 7, in the southeast Atlantic, an increase in reactive Hg was noted in the water adjacent to the mixed layer (35–200 m) which was coincident with an oxygen depletion, down to 20% saturation at 200 m. The concentration of reactive Hg in the North Atlantic Deep Water (0.48–1.34 pM), the Antarctic Intermediate Water (0.47 pM), the Antarctic Bottom Water (0.67–1.25 pM), and the Mediterranean Outflow Water (0.83–1.06 pM) were noted. The trends in Hg concentration in the water masses between stations showed the concentration decreasing with distance from the water mass source except for Hg in the Antarctic Bottom Water. The increase noted in this water mass was attributed to mixing with North Atlantic Deep Water and or release from bottom sediments.  相似文献   

2.
Based on the data on the sea-surface temperature (SST), the heat content of the upper 200-m layer, and the sea-level pressure, we analyze the low-frequency variability of the SST and heat content in the North Atlantic in 1950–1992 and the index of North-Atlantic Oscillation (NAO) in 1940–1995. It is confirmed that the role of the ocean and various mechanisms controlling the variability of SST changes for processes corresponding to different time scales (interannual, decadal, and interdecadal). It is shown that the interaction of tropical and subtropical latitudes is of principal importance on the interannual scale, the processes regulating the variability of subtropical gyre are important on the decadal scale, and the variations of the NAO with lower frequencies are controlled by the oceanic variability at high latitudes. We discuss possible feedbacks in the ocean–atmosphere system maintaining the NAO.  相似文献   

3.
The mixed layer of the ocean and the processes therein affect the ocean’s biological production, the exchanges with the atmosphere, and the water modification processes important in a climate change perspective. To provide a better understanding of the variability in this system, this paper presents time series of the mixed layer properties depth, temperature, salinity, and oxygen from Ocean Weather Station M (OWSM; 66° N,2° E) as well as spatial climatologies for the Norwegian Sea. The importance of underlying mechanisms such as atmospheric fluxes, advective signals, and dynamic control of isopycnal surfaces are addressed. In the region around OWSM in the Norwegian Atlantic Current (NwAC) the mixed layer depth varies between ∼20 m in summer and ∼300 m in winter. The depth of the wintertime mixing here is ultimately restrained by the interface between the Atlantic Water (AW) and the underlying water mass, and in general, the whole column of AW is found to be mixed during winter. In the Lofoten Basin the mean wintertime mixed layer reaches a depth of ∼600 m, while the AW fills the basin to a mean depth of ∼800 m. The temperature of the mixed layer at OWSM in general varies between 12 °C in summer and 6 °C in winter. Atmospheric heating controls the summer temperatures while the winter temperatures are governed by the advection of heat in the NwAC. Episodic lateral Ekman transports of coastal water facilitated by the shallow summer mixed layer is found important for the seasonal salinity cycle and freshening of the northward flowing AW. Atmospheric freshwater fluxes have no significant influence on the salinity of the AW in the area. Oxygen shows a clear annual cycle with highest values in May-June and lowest in August-September. Interannual variability of mixed layer oxygen does not appear to be linked to variations in any of the physical properties of the mixed layer.  相似文献   

4.
ORA-S3 oceanological reanalysis data for 1959–2011 is applied to analyze the role different factors play in forming advective heat transfer anomalies on an interannual–decadal scale in the upper mixed layer of the North Atlantic. Regions are revealed in which horizontal heat advection anomalies are determined by variations in current intensity, temperature gradients, and their joint influence. It is demonstrated that the contribution of different mechanisms responsible for advective heat transfer anomalies in the upper mixed layer to the total anomalies of advective origin varies fundamentally from one current to another in the North Atlantic. In the Gulf Stream area (after it separates from the continental slope), horizontal heat advection anomalies in the upper mixed layer result mainly from fluctuations in current intensity, while in the Caribbean Current and the Gulf Stream area (until its separation), they result from variations in the horizontal temperature gradients in the upper mixed layer. In the Labrador Current, both of these mechanisms have the same sign and approximately the same absolute values. In the East Greenland Current, they compensate each other. The contribution of anomalies in horizontal temperature gradients transferred by anomalous currents to the formation of heat transfer anomalies in the upper layer of the North Atlantic are, on the whole, relatively small throughout the water area. The areas of the North Atlantic and West Greenland currents are exceptions.  相似文献   

5.
The heat balance of the upper ocean under a land and sea breeze was investigated based on observations of sea water temperature in the upper 300 m layer and heat flux across the sea surface at a fixed station in Sagami Bay (3510N, 13925E) during two periods of two days in August 1980 and three days in August 1981. During both periods, a typical land and sea breeze of 4–6 m sec–1 at maximum prevailed in the observation area. Large diurnal variation of sea surface temperature with a maximum peak around noon LST was observed during both periods (the daily value of the range was 0.9C and 2.5C in 1980, and 1.2C, 1.5C and 1.7C in 1981). It was found that these large temperature variations were caused by diurnal variation of the wind speed which dropped to 0–3 m sec–1 at noon when the strongest insolation (–270 Wm–2) penetrated the sea and at midnight in association with alternations of the land breeze and the sea breeze. On the other hand, vertical mixing of the sea water caused by the wind stress and/or convection due to cooling at night extended down only to the surface 10 m layer. Horizontal heat advection was negligibly small. Therefore the local time change of the heat content in the upper 10 m water column was affected mainly by the heat flux across the air-sea interface which was estimated from data on radiation fluxes measured directly on board and latent and sensible heat fluxes calculated by the aerodynamic bulk method. The water temperature below the 10 m layer also varied with time and the temperature variation in the thermocline (20–50 m depth) was frequently larger than that of the sea surface temperature. However, the variation in the upper 10 m layer was little influenced by that below the layer.  相似文献   

6.
Plankton biomass and indices of metabolism and growth [electron transport system (ETS), glutamate dehydrogenase (GDH) and aspartate transcarbamylase (ATC) activities] were studied over a 2,800 km east-west section of the tropical North Atlantic Ocean (21°N) in <200, 200–500 and >;500 µm size classes. On the large-scale, zooplankton (>;200 µm) enzymatic activities increased westward in the study section, where large cyanobacteria chains (Trichodesmium spp.) were observed. Parallel to it, an increase in medium calanoids (1–2 mm length) was observed towards the western part of the transect, whereas small calanoids (<1 mm) were dominant throughout the boundary area of the subtropical gyre. Microplankton ETS and mesoplankton ETS and ATC activities seemed to match the wave length of low frequency waves. Our results suggest that such waves are related to the observed enhancement of metabolic activity of micro- and mesoplankton. The large-scale and mesoscale variability observed give evidence of the inadequacy of assuming a steady-state picture of the euphotic zone of tropical and subtropical waters.  相似文献   

7.
Shelf break systems are highly dynamic environments. However little is known about the influence that benthic interactions and water mass mixing may have on vertical distributions of iron in these systems. Dissolved Fe (< 0.4 μm) concentrations were measured in samples from nine vertical profiles across the upper slope (150–2950 m water depth) at the Atlantic Ocean–Celtic Sea shelf break. Dissolved iron concentrations varied between less than 0.2 and 5.4 nM, and the resulting detailed section showed evidence of a range of processes influencing the Fe distributions. The near sea floor data were interpreted in terms of release and removal processes. The concentrations of dissolved Fe present in near seabed waters were consistent with release of Fe from in situ remineralisation of particulate organic matter at two upper slope stations, and possibly release from pore water upon resuspension on shelf. Lateral transport of dissolved iron was evident from elevated Fe concentrations in an intermediate nepheloid layer and its advection along isopycnals. Surface waters at the shelf break also showed evidence of vertical mixing of deeper iron-rich waters. These waters contained macronutrients that sustained primary productivity in these otherwise nutrient-depleted surface waters. The data also suggest some degree of stabilisation of relatively high concentrations of iron, presumably through ligand association or as colloids. This study supports the view that lateral export of dissolved iron to the interior of the ocean from shelf and coastal zones and may have important implications for the global budget of oceanic iron.  相似文献   

8.
The modern Sea of Okhotsk and the high-latitude glacial ocean share similar radiolarian faunas suggesting they also share environmental similarities. This sea favors deep- (>200 m) over shallow-living species as evidenced by collections of sediment traps set at 258 and 1061 m in the central part of the Sea. Of the twelve dominant polycystine radiolarian species, four live above and eight below 258 m. The shallow-living species’ productivity maxima coincide with spring and fall phytoplankton blooms while deep-living species’ annual production, nearly twice that of the shallow-living species, is concentrated in fall. Previous workers have shown that summer plankton tows collect higher concentrations of polycystine Radiolaria below than above 200 m and that Radiolaria, fish and zooplankton have unusual concentration maxima between 200 and 500 m. The paucity of Radiolaria and other consumers above 200 m coincides with an upper (0–150 m) cold (−1.5°C to 1.5°C), low salinity layer while higher concentrations below 200 m occur within warmer saltier water. This unusual biological structure must produce a lower ratio of shallow (<200 m) to deep carbon remineralization than elsewhere in the world ocean.Deep-living radiolarian species, similar to those of the modern Sea of Okhotsk, dominate glacial high-latitude deep-sea sediments. If the hydrographic and biological structures that produced these glacial faunas were like those of the modern Sea of Okhotsk, then glacial high-latitude oceans would have differed from today's in at least two respects. Surface waters were less saline and more stable enhancing the spread of winter sea ice. This stability, combined with a deepening of nutrient regeneration, reduced surface water nutrients contributing to a reduction of atmospheric carbon dioxide.  相似文献   

9.
We study the formation of the vertical distribution of temperature in the upper layer of the oceans (0– 300m) at low latitudes (10°N-10°S) by using the nonlinear dependence of the vertical heat flow on the vertical temperature gradient with regard for the influence of the bulk absorption of solar radiation and heat sink on the temperature of water. The thermocline is formed under the condition that the modulus of temperature gradient attains values for which their subsequent increase leads either to insignificant variations of the heat flow or even to its decrease. We consider the possibility of solution of inverse problems for the evaluation of the heat-exchange coefficient and the parameter of the heat sink. For the Equatorial Atlantic considered as an example, we compare the theoretical results with the data of instrumental measurements.__________Translated from Morskoi Gidrofizicheskii Zhurnal, No. 6, pp. 10–16, November–December, 2004.  相似文献   

10.
Hydrographic changes in the Labrador Sea, 1960–2005   总被引:1,自引:0,他引:1  
The Labrador Sea has exhibited significant temperature and salinity variations over the past five decades. The whole basin was extremely warm and salty between the mid-1960s and early 1970s, and fresh and cold between the late 1980s and mid-1990s. The full column salinity change observed between these periods is equivalent to mixing a 6 m thick freshwater layer into the water column of the early 1970s. The freshening and cooling trends reversed in 1994 starting a new phase of heat and salt accumulation in the Labrador Sea sustained throughout the subsequent years. It took only a decade for the whole water column to lose most of its excessive freshwater, reinstate stratification and accumulate enough salt and heat to approach its record high salt and heat contents observed between the late 1960s and the early 1970s. If the recent tendencies persist, the basin’s storages of salt and heat will fairly soon, likely by 2008, exceed their historic highs.The main process responsible for the net cooling and freshening of the Labrador Sea between 1987 and 1994 was deep winter convection, which during this period progressively developed to its record depths. It was caused by the recurrence of severe winters during these years and in its turn produced the deepest, densest and most voluminous Labrador Sea Water (LSW1987–1994) ever observed. The estimated annual production of this water during the period of 1987–1994 is equivalent to the average volume flux of about 4.5 Sv with some individual annual rates exceeding 7.0 Sv. Once winter convection had lost its strength in the winter of 1994–1995, the deep LSW1987–1994 layer lost “communication” with the mixed layer above, consequently losing its volume, while gaining heat and salt from the intermediate waters outside the Labrador Sea.While the 1000–2000 m layer was steadily becoming warmer and saltier between 1994 and 2005, the upper 1000 m layer experienced another episode of cooling caused by an abrupt increase in the air-sea heat fluxes in the winter of 1999–2000. This change in the atmospheric forcing resulted in fairly intense convective mixing sufficient to produce a new prominent LSW class (LSW2000) penetrating deeper than 1300 m. This layer was steadily sinking or deepening over the years following its production and is presently overlain by even warmer and apparently less dense water mass, implying that LSW2000 is likely to follow the fate of its deeper precursor, LSW1987–1994. The increasing stratification of the intermediate layer implies intensification in the baroclinic component of the boundary currents around the mid-depth perimeter of the Labrador Sea.The near-bottom waters, originating from the Denmark Strait overflow, exhibit strong interannual variability featuring distinct short-term basin-scale events or pulses of anomalously cold and fresh water, separated by warm and salty overflow modifications. Regardless of their sign these anomalies pass through the abyss of the Labrador Sea, first appearing at the Greenland side and then, about a year later, at the Labrador side and in the central Labrador Basin.The Northeast Atlantic Deep Water (2500–3200 m), originating from the Iceland–Scotland Overflow Water, reached its historically freshest state in the 2000–2001 period and has been steadily becoming saltier since then. It is argued that LSW1987–1994 significantly contributed to the freshening, density decrease and volume loss experienced by this water mass between the late 1960s and the mid 1990s via the increased entrainment of freshening LSW, the hydrostatic adjustment to expanding LSW, or both.  相似文献   

11.
An intense deep chlorophyll layer in the Sargasso Sea was reported near the center of an anticyclonic mode-water eddy by McGillicuddy et al. [2007. Eddy–wind interactions stimulate extraordinary mid-ocean plankton blooms, Science, accepted]. The high chlorophyll was associated with anomalously high concentrations of diatoms and with a maximum in the vertical profile of 14C primary productivity. Here we report tracer measurements of the vertical advection and turbulent diffusion of deep-water nutrients into this chlorophyll layer. Tracer released in the chlorophyll layer revealed upward motion relative to isopycnal surfaces of about 0.4 m/d, due to solar heating and mixing. The density surfaces themselves shoaled by about 0.1 m/d. The upward flux of dissolved inorganic nitrogen, averaged over 36 days, was approximately 0.6 mmol/m2/d due to both upwelling and mixing. This flux is about 40% of the basin wide, annually averaged, nitrogen flux required to drive the annual new production in the Sargasso Sea, estimated from the oxygen cycle in the euphotic zone, the oxygen demand below the euphotic zone, and from the 3He excess in the mixed layer. The observed upwelling of the fluid was consistent with theoretical models [Dewar, W.K., Flierl, G.R., 1987. Some effects of wind on rings. Journal of Physical Oceanography 17, 1653–1667; Martin, A.P., Richards, K.J., 2001. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Research II 48, 757–773] in which eddy surface currents cause spatial variations in surface stress. The diapycnal diffusivity at the base of the euphotic zone was 3.5±0.5×10−5 m2/s. Diapycnal mixing was probably enhanced over more typical values by the series of storms passing over the eddy during the experiment and may have been enhanced further by the trapping of near-inertial waves generated within the eddy.  相似文献   

12.
宋伟  王玉  崔凤娟  谢强 《海洋与湖沼》2019,50(4):752-758
南海上层海洋热力结构年代际变化的研究,是海气相互作用与变化研究的热点之一,对南海区域及更大范围的气候异常的研究和南海海洋环流年际变化的研究都具有重要意义。本文采用多套海温、流场和海气界面通量资料,基于热平衡方程和统计分析方法,分析了南海上层热含量的年代际变化,研究了南海上层热含量影响因子的变化特征,比较了混合层及混合层以下热含量变化的异同,进而探讨了影响因子在混合层及混合层以下的不同作用;利用区域积分海温方程后得到的热量收支方程,诊断南海内区不同海域的热收支方程中的各项,发现了不同海域在影响热收支的物理过程方面存在差异。结果表明:南海混合层的热含量的变化主要受海气界面热通量的影响,夹卷效应在热含量的变化中也有接近1/3的贡献。在整个上层400m的热含量变化中,平流效应占据了主导地位。  相似文献   

13.
Vertical distribution of faecal pellets (FP), their sedimentation and the production rates of FP by mesozooplankton were studied during a cruise on and off the Iberian shelf in August 1998. The cruise was divided into two legs, each of them a short-term Lagrangian drift experiment. FP were collected with water bottles, with drifting sediment traps and during experiments carried out onboard the ship. The pellets were enumerated and their biovolumes and carbon contents (FPC) were calculated.The standing stock of FP in the upper 50 m was on average three times higher during the first on-shelf experiment than during the second off-shelf experiment. There were large diurnal variations, but no clear pattern emerged between day and night sampling. The vertical export of FPC from the upper, productive layer was on average one order of magnitude greater on the shelf (range 6–160 mg.m−2.d−1) compared to the off-shelf experiment (range 1–30 mg.m−2.d−1). FPC sedimentation explained 20% of the total POC export from the euphotic layer on the shelf, but <5% off the shelf. FP sedimentation was dominated by medium-sized cylindrical pellets (40–60 μm in diameter), but larger cylindrical pellets (60–100 μm in diameter) also played an important role. The smaller FP size fractions were never of any significance, in spite of the high abundance of smaller calanoid and cyclopoid copepods. The community production of FPs by mesozooplankton were calculated for the off shelf stations, and the average retention potential of FP in the upper 200 m was estimated to be 98%. Thus retention processes are clearly important for cross-shelf advection of FPs, their injection into the deep ocean and in the regulation of pelagic benthic coupling.  相似文献   

14.
The effects of biological heating on the upper-ocean temperature of the global ocean are investigated using two ocean-only experiments forced by prescribed atmospheric fields during 1990–2007, on with fixed constant chlorophyll concentration, and the other with seasonally varying chlorophyll concentration. Although the existence of high chlorophyll concentrations can trap solar radiation in the upper layer and warm the surface, cooling sea surface temperature (SST) can be seen in some regions and seasons. Seventeen regions are selected and classified according to their dynamic processes, and the cooling mechanisms are investigated through heat budget analysis. The chlorophyll-induced SST variation is dependent on the variation in chlorophyll concentration and net surface heat flux and on such dynamic ocean processes as mixing, upwelling and advection. The mixed layer depth is also an important factor determining the effect. The chlorophyll-induced SST warming appears in most regions during the local spring to autumn when the mixed layer is shallow, e.g., low latitudes without upwelling and the mid-latitudes. Chlorophyll-induced SST cooling appears in regions experiencing strong upwelling, e.g., the western Arabian Sea, west coast of North Africa, South Africa and South America, the eastern tropical Pacific Ocean and the Atlantic Ocean, and strong mixing (with deep mixed layer depth), e.g., the mid-latitudes in winter.  相似文献   

15.
According to Ocean Re-Analysis System 3 (ORA-S3) data, all components of the annual mean heat budget of the upper quasi-homogeneous ocean layer (UQL) in the North Atlantic for the period of 1959–2011 have been calculated and errors of these estimates have been determined. It has been shown that the contribution of the horizontal eddy diffusivity (estimated as a residual term of the UQL heat balance equation) to changes in the UQL annual mean temperature is significantly overestimated. This takes place mainly due to neglecting the covariances of seasonal fluctuations of current velocity vector components and UQL temperature gradients in calculations carried out with the use of annual average values. These covariances play an important role in the annual mean heat budget in some regions of the North Atlantic, especially in tropical latitudes. Changes in the annual average UQL temperature in the central and eastern parts of the North Atlantic are significantly affected by errors related to an inaccuracy of estimates of annual average heat fluxes on the ocean surface. The maximum contribution of the horizontal eddy diffusivity to the interannual variability of the UQL temperature is observed in the northwestern part of the North Atlantic and the region of the Subpolar Gyre.  相似文献   

16.
Observations of the western Arabian Sea over the last decade have revealed a rich filamentary eddy structure, with large horizontal SST gradients in the ocean, developing in response to the southwest monsoon winds. This summertime oceanic condition triggers an intense mesoscale coupled interaction, whose overall influence on the longer-term properties of this ocean remains uncertain. In this study, a high-resolution regional coupled model is employed to explore this feedback effect on the long-term dynamical and thermodynamical structure of the ocean.The observed relationship between the near-surface winds and mesoscale SSTs generate Ekman pumping velocities at the scale of the cold filaments, whose magnitude is the order of 1 m/day in both the model and observations. This additional Ekman-driven velocity, induced by the wind-eddy interaction, accounts for approximately 10–20% of oceanic vertical velocity of the cold filaments. This implies that Ekman pumping arising from the mesoscale coupled feedback makes a non-trivial contribution to the vertical structure of the upper ocean and the evolution of mesoscale eddies, with obvious implications for marine ecosystem and biogeochemical variability.Furthermore, SST features associated with cold filaments substantially reduce the latent heat loss. The long-term latent heat flux change due to eddies in the model is approximately 10–15 W/m2 over the cold filaments, which is consistent with previous estimates based on short-term in situ measurements. Given the shallow mixed layer, this additional surface heat flux warms the cold filament at the rate of 0.3–0.4 °C/month over a season with strong eddy activity, and 0.1–0.2 °C/month over the 12-year mean, rendering overall low-frequency modulation of SST feasible. This long-term mixed layer heating by the surface flux is approximately ±10% of the lateral heat flux by the eddies, yet it can be comparable to the vertical heat flux. Potential dynamic and thermodynamic impacts of this observed air–sea interaction on the monsoons and regional climate are yet to be quantified given the strong correlation between the Somalia upwelling SST and the Indian summer monsoons.  相似文献   

17.
18.
Modelling trace metal concentration distributions in estuarine waters   总被引:2,自引:1,他引:2  
The concentration of dissolved organic carbon (DOC) was measured every few months from September 2000 through October 2001 at a coastal location in the center of Suruga Bay, Japan (34°51′N, 138°38′E). Water samples were collected three times per day (midday, night and predawn). DOC concentrations ranged from 91.3 to 45.2 μM C on the surface to 100 m depth. Diel variation in DOC concentrations, among the three sampling times, was greater in the upper 20 m, with a maximum difference of 21.7 μM C in July 2001, and reflected in diel DOC inventory variations from the surface to 50 m. Diel variations were controlled by both physical and biological factors. DOC concentrations were significantly correlated with potential density in the deeper layers (100–1000 m), indicating that the distribution of DOC concentrations in the deeper layer was mainly due to mixing. Most DOC concentrations in the upper layer (0–50 m) did not display the same relationship as in the deeper layer. Using the relationship with potential density at 100–1000 m, the DOC concentration in the upper layer, due simply to mixing, was calculated. The difference between the calculated and observed DOC was used to estimate biological contribution. The biological contributions to the DOC inventory in the upper layer (0–50 m) were found greatly in November 2000 and April 2001. This indicates that excess DOC accumulated, by biological processes, in the upper layer during these periods. In November 2000, the excess DOC in the inventory was constant throughout the sampling days (0.36–0.37 mol C m−2), whereas diel variations of DOC in the vertical profile were large and contrary to the variation between 10 and 20 m. This suggests that the excess DOC was contributed biologically during daytime in the uppermost layer and reached to the 50 m depth by deeper mixing. As a result, the inventory appeared to be stable over a day because of the compensating effects of DOC production and consumption throughout 50 m. In contrast, in spring and summer, there was a distinct diel inventory decrease in the nighttime, with apparent rates ranging from −0.61 to −0.35 μM C h−1. It is probable that the DOC, which accumulated during the daytime, was mostly labile, with a turnover time of a few hours. The results indicate that the dynamics of diel DOC variations varied seasonally, and suggest that these variations need to be considered when estimating seasonal DOC pools in the coastal ocean.  相似文献   

19.
20.
In January–February 1987, an urgent cruise JENEX-87 was carried out in the central equatorial Pacific during the occurrence of the 1986–87 El Niño. This cruise, supported by the Japan Science and Technology Agency, supplied heat flux data through the sea surface, on the basis of direct measurements of short- and long-wave radiation fluxes.In the time average, the heat gain due to the radiation flux (153 W m–2) was almost compensated by the heat loss due to latent heat flux (130 W m–2), and thus the net heat gain was small in magnitude (20 W m–2). On the other hand, day-to-day changes of the net heat flux ranged within ±130 W m–2, mainly reflecting the downward short-wave radiation variations.The heat balance in the surface oceanic mixed layer was investigated in two quadrangle areas (160°E-180° and 180°-160°W between 2°N and 2°S), using the surface heat flux and estimating the advective heat fluxes due to the geostrophic and Ekman currents. In these two quadrangles, we respectively derived –187±88 W m–2 and +27±95 W m–2. The former value, which is equivalent to about 1°C month–1 drop of the mixed layer temperature, is evidence of the abnormal oceanic condition in the occurrence of the 1986–87 El Niño event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号