首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
长江河口悬沙与盐分输运机制分析   总被引:2,自引:0,他引:2  
2004年9月15~22日在长江口南支口门区域进行了水位、流速、悬沙浓度、盐度的全潮观测,基于这些现场数据,分析河口区域流速结构、悬沙浓度与盐度的时空分布特征;利用机制分解法研究河口悬沙、盐分的通量和输运机制,并探讨它们与水体垂向结构之间的关系。主要结论如下:长江河口区的悬沙浓度存在显著的时空变化特征,从口内向口外,悬沙浓度呈显著减小趋势,大潮期间的悬沙浓度较大,是小潮期间的数倍。通量机制分析结果表明,长江河口区以欧拉余流为主,向海输运,并有向海方向逐渐减小的趋势,斯托克斯余流向陆输运,在大、小潮期间有显著差异。盐分输运机制中,以欧拉余流占主导地位,潮泵效应、垂向重力环流、垂向剪切扩散作用的贡献次之。长江河口悬沙净输运率在向海方向逐渐减小,大潮期间的悬沙净输运率比小潮期间的大1~2个数量级,水动力条件是造成长江河口悬沙净输运时空差异的主要因素。悬沙输运机制小潮期间以欧拉余流占主导地位,在大潮期间则以与紊流相关的垂向剪切扩散作用取代欧拉余流占据主导地位。悬沙瞬时输运机制中的剪切扩散项在中下层水体的理查德森数(Ri)小于0.25时才有较大的量值,在南槽内,当底层水体的理查德森数(Ri)处于-0.1相似文献   

2.
研究海平面上升对河口的影响情况有助于了解输运过程的变化,基于21世纪海平面上升预测研究(陈长霖,2012;张吉,2014),本文选取珠江河口这一径优型与潮优型并存的河口为研究区域,利用数值模拟的方法,研究其在未来海平面上升后可能出现的响应。结果表明,河口的平均盐度、咸潮上溯距离和层化强度都将随着海平面的上升而增加,这些因素的变化有着明显的季节性。伶仃洋平均盐度在4月和10月增加更多;伶仃洋枯水期咸潮上溯距离的增量大于丰水期,磨刀门则相反;伶仃洋丰水期层化强度及其增量都要大于枯水期。海平面上升后的输运过程响应结果显示:(1) 垂向输运时间将增加,虽然海平面上升带来的潮差潮流的增强将加强垂向混合,但是层化的加强会削弱垂向交换。垂向输运时间的增加是由于层化的加强,层化加强抑制了潮汐变化带来的影响,表层水更难交换到底层; (2) 南北向河口环流将加强,表层余流向海加强,底层余流向陆加强,南北向余流整体向海减小。造成这些现象的主要原因是海平面上升后水深增加带来的河道比降的减小和压力梯度力的改变。  相似文献   

3.
一次东北季风过程下珠江口磨刀门河口环流研究   总被引:3,自引:0,他引:3  
刘欢  吴超羽  包芸  温晶 《海洋工程》2008,26(2):102-111
根据2003年12月9日至15日的大、中潮同步水文观测资料及江门市斗门县气象局关于风的气象资料,结合Ecomsed三维斜压模型,对东北季风过程下的磨刀门垂向环流进行研究。通过理论分析和模型计算,表明向海的冬季风对河口垂向环流的形成起着重要的作用。风的作用有加强径流效果,加大了表层水体向下游的流动,同时底层水体的上溯使该地区形成了稳定的垂向环流。统计气象资料推断,枯季期间磨刀门水道出现垂向环流现象的时间约占总天数的51%。  相似文献   

4.
根据2007-2008年冬季大、小潮时对珠江河口的走航和定点同步观测资料,分析了虎门水道、横门水道和磨刀门水道的盐度、流场特征以及各口门咸水入侵的程度,探讨了影响各口门与水道咸潮的因素.分析结果显示,该季度咸潮入侵现象严重,对珠海、广州等地的供水造成影响;咸潮的入侵受潮汐、径流和风的共同作用,各因素对各个口门的影响程度不同;磨刀门的咸潮活动有较独特的规律和动力机制.  相似文献   

5.
卢陈  吴尧  杨裕桂  袁菲 《海洋学报》2022,44(12):9-18
河口环流结构关系到物质输运、泥沙沉积和地貌变化等物理过程。根据2019年磨刀门河口原型观测平台洪枯季连续观测分层潮流资料,统计洪枯季、大小潮河口东、西汊的涨落潮流及历时变化特征,利用理论方法解析河口东西汊平面环流和重力环流结构,进一步引入混合参数研究河口纵向环流中的潮汐应变环流。研究发现枯季东、西汊在转潮时刻存在东涨西落的平面环流结构,洪季平面环流特征较不明显;枯季重力环流强度整体略大于洪季,西汊重力环流强于东汊,表层向海环流流速可达0.2~0.25 m/s,而底层向陆环流流速相对较小。洪季大潮期由潮不对称性驱动的潮汐应变环流相对较大,进而增强了纵向环流的强度。河口垂向余流结构同样表现洪枯季、大小潮的变化规律。洪季余流整体较大,西汊在小潮期表层余流流速超过0.6 m/s,而东汊余流则明显呈现表层向海、底层向陆的分布特征,枯季余流整体较小,表明其对物质输运和河口地形塑造作用较弱。  相似文献   

6.
基于2019年6月在蓬莱近岸海域实地观测获取的样品和数据,研究了海流、温度、盐度和悬浮泥沙的时空分布特征,利用小波分析、单宽通量机制分解和Richardson数等方法,探讨了悬浮泥沙的输运机制和控制因素。研究区悬浮泥沙在平面上呈以登州浅滩为中心向周围海域逐渐降低的分布特征,垂向上呈由表层至底层逐渐升高的趋势。悬浮泥沙浓度变化与潮流变化具有较好的正相关关系,但在时间上滞后1~2 h。研究区单宽净输沙率为7.84~43.12 g/(s·m)。平流输运在研究区悬浮泥沙输运过程中占主导地位,垂向净环流输运次之。潮流是研究区悬浮泥沙输运的主要动力,悬浮泥沙净输运方向与余流方向一致,登州水道南部悬浮泥沙由西向东输运,水道中部悬浮泥沙由东向西输运,南长山岛两侧悬浮泥沙呈向水道输运的趋势。研究区海域部分水体层化现象明显,水体混合受到抑制,悬浮泥沙的分布和输运受到潮流、水体混合和地形地貌共同控制。  相似文献   

7.
伶仃河口湾铜鼓水域水沙净输运分析   总被引:7,自引:1,他引:6  
根据对珠江伶仃河口湾铜鼓水域丰水期9个测站大、中、小潮三次同步水文泥沙资料及57个底质样品的分析结果,本文讨论了此水域的水沙净输运趋势。结果表明,铜鼓水域表层余流向海,浅滩测站中底层余流指向河口方向,欧拉余流主要由径流构成。沟槽悬沙输运以净平流作用为主,浅滩区则以向上游的潮抽吸输运为主。沉积物净输运趋势显示铜鼓浅滩是海陆双向底质输运的汇聚地带  相似文献   

8.
珠江河口磨刀门水道枯季盐水入侵特性分析   总被引:1,自引:0,他引:1  
方神光 《海洋科学》2014,38(11):90-99
为探讨磨刀门水道潮流和盐度的三维分布特性,本文建立了磨刀门水道的三维潮流和盐度数值模型,采用2009年枯季磨刀门水道实测潮流和盐度资料对模型参数进行率定和验证。结果显示,枯季由于上游径流量小,磨刀门水道总体涨、落潮流速都不大,表层总体涨潮平均流速都在0.5 m/s以内,总体落潮平均流速在0.8 m/s以内;底层总体涨落潮平均流速都在0.5 m/s以内;从盐度的平面分布来看,磨刀门水道近口门河段总体呈现涨潮时水道东侧盐度高于西侧,落潮时东侧盐度小于西侧的趋势。大潮和中潮期间,落潮时盐水向上游的入侵距离反而较涨潮时更远,主要原因是,落潮时的底层盐水向上游的补偿流动以及地形阻拦形成更为强烈的紊动扩散。潮汐动力弱(小潮)时,整个水道内水流流速很小,流态平缓,紊动较弱,总体仍呈现涨潮时入侵距离大于落潮,显示枯季磨刀门水道盐水入侵的主要影响因素取决于地形和潮动力。  相似文献   

9.
随着全球气候变暖加剧, 台风强度和强台风数量不断增加, 加剧了磨刀门水道咸潮灾害的变化形势。本文采用SCHISM(semi-implicit cross-scale hydroscience integrated system model)模型建立磨刀门水道三维水流盐度数值模型, 分析台风路径对磨刀门水道盐水入侵的影响。选取以“纳沙”为代表的西径型台风和以“天兔”为代表的东径型台风, 发现二者对盐度输运和层化过程的动力响应具有差异性。东径型台风导致外海减水, 平流通量向海增大; 而西径型台风引起外海增水, 逆转了原本向口外输出盐度的平流通量, 会引起严重的盐水入侵。台风不仅引起外海的增减水效应, 还带来强劲的局地风作用, 对水道流速和盐度分布产生重要影响。在西径型台风下, 顺河口向上游的风会减弱盐淡水分层, 并加强平流项的向海输出; 而在东径型台风下, 一定强度顺河口向下游的风加强盐淡水分层, 但当风速过强时, 则会削弱盐淡水分层。  相似文献   

10.
根据2012年9月在杭州湾口门中部外侧海域岱衢洋主槽内获得的包括大、中、小潮的垂向流速和悬浮泥沙观测资料,利用机制分解方法计算了岱衢洋的水沙输移通量等特征,分析并讨论了各个输沙项对总输沙量的贡献,解释了杭州湾水沙进出外海的输运机制。研究结果表明:研究区域单宽涨潮量大潮为小潮的2.3倍,单宽落潮量大潮为小潮的1.6倍。从小潮到大潮的余流和单宽净输水量由向海变为向陆;单宽涨潮输沙量大潮为小潮的4.5倍,单宽落潮输沙量大潮为小潮的2.7倍。单宽输沙量表现为小潮和中潮向海,大潮向陆的特点,大潮单宽净输沙量约为小潮和中潮的2倍;在各输沙项中,平流输沙主要来自水体净输移(拉格朗日余流决定)对悬沙输移的贡献,平流输沙方向小潮向海,中潮和大潮向陆,其中大潮和小潮时平流输沙在各项中贡献率最大;潮泵输沙小潮和中潮向海,大潮输沙向陆,中潮时潮泵输沙贡献率在各项中贡献率最大;垂向净环流输沙方向均向陆,大中小潮悬沙含量的垂向的差异是导致小潮垂向净环流输沙量大,大潮输沙量小的主要原因;杭州湾中部通过岱衢洋通道与外海泥沙交换的主要形式是大进大出、反复搬运,而在一个完整的半月周期内外海泥沙净进杭州湾的量相对较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号