首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Purposeful deep-sea carbon dioxide sequestration by direct injection of liquid CO2 into the deep waters of the ocean has the potential to mitigate the rapid rise in atmospheric levels of greenhouse gases. One issue of concern for this carbon sequestration option is the impact of changes in seawater chemistry caused by CO2 injection on deep-sea ecosystems. The effects of deep-sea carbon dioxide injection on infaunal deep-sea organisms were evaluated during a field experiment in 3600 m depth off California, in which liquid CO2 was released on the seafloor. Exposure to the dissolution plume emanating from the liquid CO2 resulted in high rates of mortality for flagellates, amoebae, and nematodes inhabiting sediments in close proximity to sites of CO2 release. Results from this study indicate that large changes in seawater chemistry (i.e. pH reductions of ∼0.5–1.0 pH units) near CO2 release sites will cause high mortality rates for nearby infaunal deep-sea communities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Feasibility studies recently suggest that sequestration of anthropogenic CO2 in the deep ocean could help reduce the atmospheric CO2 concentration. However, implementation of this strategy could have a significant environmental impact on marine organisms. This has highlighted the urgent need of further studies concerning the biological impact of CO2 ocean sequestration. In this paper we summarize the recent literature reporting on the biological impact of CO2 and discuss the research work required for the future. Although fundamental research of the effect of CO2 on marine organisms before the practical consideration of CO2 ocean sequestration was limited, laboratory and field studies concerning biological impacts have been increasing after the first international workshop in 1991 discussing CO2 ocean sequestration. Acute impacts of CO2 ocean sequestration could be determined by laboratory and field experiments and assessed by simulation models as described by the following papers in this section. On the other hand, chronic effects of CO2 ocean sequestration, those directly related to the marine ecosystem, would be difficult to verify by means of experiments and to assess using ecosystem models. One of the practical solutions for this issue implies field experiments starting with controlled small scale and eventually to a large scale of CO2 injection intended to determine ecosystem alteration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Effects of CO<Subscript>2</Subscript> Enrichment on Marine Phytoplankton   总被引:1,自引:0,他引:1  
Rising atmospheric CO2 and deliberate CO2 sequestration in the ocean change seawater carbonate chemistry in a similar way, lowering seawater pH, carbonate ion concentration and carbonate saturation state and increasing dissolved CO2 concentration. These changes affect marine plankton in various ways. On the organismal level, a moderate increase in CO2 facilitates photosynthetic carbon fixation of some phytoplankton groups. It also enhances the release of dissolved carbohydrates, most notably during the decline of nutrient-limited phytoplankton blooms. A decrease in the carbonate saturation state represses biogenic calcification of the predominant marine calcifying organisms, foraminifera and coccolithophorids. On the ecosystem level these responses influence phytoplankton species composition and succession, favouring algal species which predominantly rely on CO2 utilization. Increased phytoplankton exudation promotes particle aggregation and marine snow formation, enhancing the vertical flux of biogenic material. A decrease in calcification may affect the competitive advantage of calcifying organisms, with possible impacts on their distribution and abundance. On the biogeochemical level, biological responses to CO2 enrichment and the related changes in carbonate chemistry can strongly alter the cycling of carbon and other bio-active elements in the ocean. Both decreasing calcification and enhanced carbon overproduction due to release of extracellular carbohydrates have the potential to increase the CO2 storage capacity of the ocean. Although the significance of such biological responses to CO2 enrichment becomes increasingly evident, our ability to make reliable predictions of their future developments and to quantify their potential ecological and biogeochemical impacts is still in its infancy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Data concerning the effects of high CO2 concentrations on marine organisms are essential for both predicting future impacts of the increasing atmospheric CO2 concentration and assessing the effects of deep-sea CO2sequestration. Here we review our recent studies evaluating the effects of elevated CO2 concentrations in seawater on the mortality and egg production of the marine planktonic copepod, Acartia steueri, and on the fertilization rate and larval morphology of sea urchin embryos, Hemicentrotus pulcherrimus and Echinometra mathaei. Under conditions of +10,000 ppm CO2 in seawater (pH 6.8), the egg production rates of copepods decreased significantly. The survival rates of adult copepods were not affected when reared under increased CO2 for 8 days, however longer exposure times could have revealed toxic effects of elevated CO2 concentrations. The fertilization rate of sea urchin eggs of both species decreased with increasing CO2 concentration. Furthermore, the size of pluteus larvae decreased with increasing CO2 concentration and malformed skeletogenesis was observed in both larvae. This suggests that calcification is affected by elevated CO2 in the seawater. From these results, we conclude that increased CO2 concentration in seawater will chronically affect several marine organisms and we discuss the effects of increased CO2 on the marine carbon cycle and marine ecosystem. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
CO2-enriched seawater was far more toxic to eggs and larvae of a marine fish, silver seabream, Pagrus major, than HCl-acidified seawater when tested at the same seawater pH. Data on the effects of acidified seawater can therefore not be used to estimate the toxicity of CO2, as has been done in earlier studies. Ontogenetic changes in CO2 tolerance of two marine bony fishes (Pag. major and Japanese sillago, Sillago japonica) showed a similar, characteristic pattern: the cleavage and juvenile stages were most susceptible, whereas the preflexion and flexion stages were much more tolerant to CO2. Adult Japanese amberjack, Seriola quinqueradiata, and bastard halibut, Paralichthys olivaceus, died within 8 and 48 h, respectively, during exposure to seawater equilibrated with 5% CO2. Only 20% of a cartilaginous fish, starspotted smooth-hound, Mustelus manazo, died at 7% CO2 within 72 h. Arterial pH initially decreased but completely recovered within 1-24 h for Ser. quinqueradiata and Par. olivaceus at 1 and 3% CO2, but the recovery was slower and complete only at 1% for M. manazo. During exposure to 5% CO2, Par. olivaceus died after arterial pH had been completely restored. Exposure to 5% CO2 rapidly depressed the cardiac output of Ser. quinqueradiata, while 1% CO2 had no effect. Both levels of ambient CO2 had no effect on blood O2 levels. We tentatively conclude that cardiac failure is important in the mechanisms by which CO2 kills fish. High CO2 levels near injection points during CO2 ocean sequestration are likely to have acute deleterious effects on both larvae and adults of marine fishes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We investigated the effects of seawater acidification induced by ocean CO2 sequestration on bathypelagic prokaryotes. We simulated acidification conditions by bubbling high-CO2 air or adding chemical buffer solutions to seawater samples in order to examine changes in total cell counts, heterotrophic production rate, direct viable cell count, and relative abundance of Bacteria and Archaea. Considerable suppression of prokaryotic activities was observed at pH 7.0 or lower, especially in samples enriched with organic matter. The relative abundance of Archaea increased with increasing CO2 concentration. We found that seawater acidification can potentially alter heterotrophic activities and community structure of bathypelagic prokaryotes.  相似文献   

7.
We have carried out a small-scale (∼20 l) CO2 sequestration experiment off northern California (684 m depth, ∼5°C, background ocean pH ∼7.7) designed as an initial investigation of the effects of physical forcing of the fluid, and the problem of sensing the formation of a low pH plume. The buoyant CO2 was contained in a square frame 1.2 m high, exposing 0.21 m2 to ocean flow. Two pH electrodes attached to the frame recorded the signal; a second frame placed 1.9 m south of the CO2 pool was also equipped with two recording pH electrodes. An additional pH electrode was held in the ROV robotic arm to probe the fluid interface. Local water velocities of up to 40 cm sec−1 were encountered, creating significant eddies within the CO2 box, and forcing wavelets at the fluid interface. This resulted in rapid CO2 dissolution, with all CO2 being depleted in a little more than 2 days. The pH record from the sensor closest (∼10 cm) to the CO2 showed many spikes of low pH water, the extreme value being ∼5.9. The sensor 1 m immediately below this showed no detectable response. The electrodes placed 1.9 m distant from the source also recorded very small perturbations. The results provide important clues for the design of future experiments for CO2 disposal and biogeochemical impact studies. These include the need for dealing with the slow CO2 hydration kinetics, better understanding of the fluid dynamics of the CO2-water interface, and non-point source release designs to provide more constant, controlled local CO2 enrichments within the experimental area. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
CO2 currently accumulating in the atmosphere permeates into ocean surface layers, where it may impact on marine animals in addition to effects caused by global warming. At the same time, several countries are developing scenarios for the disposal of anthropogenic CO2 in the worlds' oceans, especially the deep sea. Elevated CO2 partial pressures (hypercapnia) will affect the physiology of water breathing animals, a phenomenon also considered in recent discussions of a role for CO2 in mass extinction events in earth history. Our current knowledge of CO2 effects ranges from effects of hypercapnia on acid-base regulation, calcification and growth to influences on respiration, energy turnover and mode of metabolism. The present paper attempts to evaluate critical processes and the thresholds beyond which these effects may become detrimental. CO2 elicits acidosis not only in the water, but also in tissues and body fluids. Despite compensatory accumulation of bicarbonate, acid-base parameters (pH, bicarbonate and CO2 levels) and ion levels reach new steady-state values, with specific, long-term effects on metabolic functions. Even though such processes may not be detrimental, they are expected to affect long-term growth and reproduction and may thus be harmful at population and species levels. Sensitivity is maximal in ommastrephid squid, which are characterized by a high metabolic rate and extremely pH-sensitive blood oxygen transport. Acute sensitivity is interpreted to be less in fish with intracellular blood pigments and higher capacities to compensate for CO2 induced acid-base disturbances than invertebrates. Virtually nothing is known about the degree to which deep-sea fishes are affected by short or long term hypercapnia. Sensitivity to CO2 is hypothesized to be related to the organizational level of an animal, its energy requirements and mode of life. Long-term effects expected at population and species levels are in line with recent considerations of a detrimental role of CO2 during mass extinctions in the earth's history. Future research is needed in this area to evaluate critical effects of the various CO2 disposal scenarios. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The direct injection of CO2 in the deep ocean is a promising way to mitigate global warming. One of the uncertainties in this method, however, is its impact on marine organisms in the near field before CO2 is diluted widely in the ocean. Since field experiments cost enormously, computational simulations are expected to show detailed information on the dilution process near injection points and its impact on marine organisms. In general, the LC50 concept is widely applied for testing the acute impact of a toxic agent on organisms. As a biological impact model we therefore consider mortality, which reflects recent laboratory experiments on zooplankton at various concentrations of CO2. Here we regard the sigmoid-transformed mortality as a linear function of time in the logarithmic scale, and not just of the concentration of CO2 in the logarithmic scale. This model was installed in a computational simulation code for the reconstruction of small-scale ocean turbulence. The results suggest that the biological effect is not significant when the ship speed is 4 knots and CO2 is injected at 0.1 ton/sec in the form of a spray through 100 nozzles provided vertically on a pipe at 10 m intervals. It is therefore considered that the moving-ship method is effective for direct CO2 injection. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
An experiment was performed to determine the effect of injected CO2 on the deep-sea (3200 m) meiofaunal community in the Monterey Canyon. Approximately 20 L of liquid CO2 was added to each of three cylindrical corrals (PVC rings pushed into the seabed) that were arranged in a triangular array 10 m on a side. After a 30-day period, sediment cores were collected within an area exposed to the dissolution plume emanating from the CO2 pools and from a reference site approximately 40 m away; cores were also collected from within two of the CO2 corrals. Sediment cores were sectioned into 0–5, 5–10, and 10–20 mm layers. Abundances of major groups (harpacticoid copepods, nematodes, nauplii, kinorhynchs, polychaetes, and total meiofauna) were determined for each layer. CO2 exposure did not significantly influence the abundances or vertical distributions of any of the major taxa. However, other evidence suggests that abundance alone did not accurately reflect the effect of CO2 on meiofauna. We argue that slow decomposition rates of meiofaunal carcasses can mask adverse effects of CO2 and that longer experiments and/or careful examination of meiofaunal condition are needed to accurately evaluate CO2 effects on deep-sea meiofaunal communities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The ocean captures a large part of the anthropogenic carbon dioxide emitted to the atmosphere. As a result of the increase in CO2 partial pressure the ocean pH is lowered as compared to pre-industrial times and a further decline is expected. Ocean acidification has been proposed to pose a major threat for marine organisms, particularly shell-forming and calcifying organisms. Here we show, on the basis of meta-analysis of available experimental assessments, differences in organism responses to elevated pCO2 and propose that marine biota may be more resistant to ocean acidification than expected. Calcification is most sensitive to ocean acidification while it is questionable if marine functional diversity is impacted significantly along the ranges of acidification predicted for the 21st century. Active biological processes and small-scale temporal and spatial variability in ocean pH may render marine biota far more resistant to ocean acidification than hitherto believed.  相似文献   

12.
We have carried out a series of in situ experiments to investigate the formation of a CO2 hydrate (CO2:5.75 H2O) for the purpose of evaluating scenarios for ocean fossil fuel CO2 disposal with a solid hydrate as the sequestered form. The experiments were carried out with a remotely operated vehicle in Monterey Bay at a depth of 619 m. pH measurements made in close proximity to the hydrate–seawater interface showed a wide range of values, depending upon the method of injection and the surface area of the hydrate formed. Rapid injection of liquid CO2 into an inverted beaker to form a flocculant mass of hydrate resulted in pH initially as low as 4.5 within a few centimeters of the interface, decaying slowly over 1–2 h towards normal seawater values as dense CO2 rich brine drained from the hydrate mass. In a second experiment, slower injection of the liquid CO2 to produce a simple two-layer system with a near planar interface of liquid CO2 with a thin hydrate film yielded pH values indistinguishable from the in situ ocean background level of 7.6. Both field and laboratory results now show that the dissolution rate of a mass of CO2 hydrate in seawater is slow but finite.  相似文献   

13.
Direct measurements of the air-sea CO2 flux by the eddy covariance technique were carried out in the equatorial Indian Ocean. The turbulent flux observation system was installed at the top of the foremast of the R/V MIRAI, thus minimizing dynamical and thermal effects of the ship body. During the turbulent flux runs around the two stations, the vessel was steered into the wind at constant speed. The power spectra of the temperature or water vapor density fluctuations followed the Kolmogorov −5/3 power law, although that of the CO2 density fluctuation showed white noise in the high frequency range. However, the cospectrum of the vertical wind velocity and CO2 density was well matched with those of the vertical velocity and temperature or water vapor density in this frequency range, and the CO2 white noise did not influence the CO2 flux. The raw CO2 fluxes due to the turbulent transport showed a sink from the air to the ocean, and had almost the same value as the source CO2 fluxes due to the mean vertical flow, corrected by the sensible and latent heat fluxes (called the Webb correction). The total CO2 fluxes including the Webb correction terms showed a source from the ocean to the air, and were larger than the bulk CO2 fluxes estimated using the gas transfer velocity by mass balance techniques.  相似文献   

14.
Increasing concentrations of atmospheric carbon dioxide are causing oceanic pH to decline worldwide, a phenomenon termed ocean acidification. Mounting experimental evidence indicates that near-future levels of CO2 will affect calcareous invertebrates such as corals, molluscs and gastropods, by reducing their scope for calcification. Despite extensive research into ocean acidification in recent years, the effects on non-calcifying anthozoans, such as sea anemones, remain little explored. In Western Europe, intertidal anemones such as Actinia equina are abundant, lower trophic-level organisms that function as important ecosystem engineers. Changes to behaviours of these simple predators could have implications for intertidal assemblages. This investigation identified the effects of reduced seawater pH on feeding and contest behaviour by A. equina. Video footage was recorded for A. equina feeding at current-day seawater (pH 8.1), and the least (pH 7.9) and most (pH 7.6) severe end-of-century predictions. Footage was also taken of contests over ownership of space between anemones exposed to reduced pH and those that were not. No statistically significant differences were identified in feeding duration or various aspects of contest behaviour including initiating, winning, inflating acrorhagi, inflicting acrorhagial peels and contest duration. Multivariate analyses showed no effect of pH on a combination of these variables. This provides contrast with other studies where anemones with symbiotic algae thrive in areas of natural increased acidity. Thus, novel experiments using intraspecific contests and resource-holding potential may prove an effective approach to understand sub-lethal consequences of ocean acidification for A. equina, other sea anemones and more broadly for marine ecosystems.  相似文献   

15.
There are serious concerns that ocean acidification will combine with the effects of global warming to cause major shifts in marine ecosystems, but there is a lack of field data on the combined ecological effects of these changes due to the difficulty of creating large‐scale, long‐term exposures to elevated CO2 and temperature. Here we report the first coastal transplant experiment designed to investigate the effects of naturally acidified seawater on the rates of net calcification and dissolution of the branched calcitic bryozoan Myriapora truncata (Pallas, 1766). Colonies were transplanted to normal (pH 8.1), high (mean pH 7.66, minimum value 7.33) and extremely high CO2 conditions (mean pH 7.43, minimum value 6.83) at gas vents off Ischia Island (Tyrrhenian Sea, Italy). The net calcification rates of live colonies and the dissolution rates of dead colonies were estimated by weighing after 45 days (May–June 2008) and after 128 days (July–October) to examine the hypothesis that high CO2 levels affect bryozoan growth and survival differently during moderate and warm water conditions. In the first observation period, seawater temperatures ranged from 19 to 24 °C; dead M. truncata colonies dissolved at high CO2 levels (pH 7.66), whereas live specimens maintained the same net calcification rate as those growing at normal pH. In extremely high CO2 conditions (mean pH 7.43), the live bryozoans calcified significantly less than those at normal pH. Therefore, established colonies of M. truncata seem well able to withstand the levels of ocean acidification predicted in the next 200 years, possibly because the soft tissues protect the skeleton from an external decrease in pH. However, during the second period of observation a prolonged period of high seawater temperatures (25–28 °C) halted calcification both in controls and at high CO2, and all transplants died when high temperatures were combined with extremely high CO2 levels. Clearly, attempts to predict the future response of organisms to ocean acidification need to consider the effects of concurrent changes such as the Mediterranean trend for increased summer temperatures in surface waters. Although M. truncata was resilient to short‐term exposure to high levels of ocean acidification at normal temperatures, our field transplants showed that its ability to calcify at higher temperatures was compromised, adding it to the growing list of species now potentially threatened by global warming.  相似文献   

16.
Calcification in the marine environment is the basis for the accretion of carbonate in structures such as coral reefs, algal ridges and carbonate sands. Among the organisms responsible for such calcification are the Corallinaceae (Rhodophyta), recognised as major contributors to the process world-wide. Hydrolithon sp. is a coralline alga that often forms rhodoliths in the Western Indian Ocean. In Zanzibar, it is commonly found in shallow lagoons, where it often grows within seagrass beds and/or surrounded by green algae such as Ulva sp. Since seagrasses in Zanzibar have recently been shown to raise the pH of the surrounding seawater during the day, and since calcification rates are sensitive to pH, which changes the saturation state of calcium carbonate, we measured the effects of pH on photosynthetic and calcification rates of this alga. It was found that pH had significant effects on both calcification and photosynthesis. While increased pH enhanced calcification rates both in the light and in the dark at pH >8.6, photosynthetic rates decreased. On the other hand, an increase in dissolved CO2 concentration to 26 μmol kg−1 (by bubbling with air containing 0.9 mbar CO2) caused a decrease in seawater pH which resulted in 20% less calcification after 5 days of exposure, while enhancing photosynthetic rates by 13%. The ecological implications of these findings is that photosynthetically driven changes in water chemistry by surrounding plants can affect calcification rates of coralline algae, as may future ocean acidification resulting from elevated atmospheric CO2.  相似文献   

17.
The measurements of the vertical transport of CO2 were carried out over the Sea of Japan using the specially designed pier of Kyoto University on September 20 to 22, 2000. CO2 fluxes were measured by the eddy correlation and aerodynamic techniques. Both techniques showed comparable CO2 fluxes during sea breeze conditions: −0.001 to −0.08 mg m−2s−1 with the mean of −0.05 mg m−2s−1. This means that the measuring site satisfies the fetch requirement for meteorological observations under sea breeze conditions. Moreover, the eddy diffusivity coefficient used in the aerodynamic technique is found to be consistent with the coefficient used in the eddy correlation technique. The present result leads us to conclude that the aerodynamic technique may be applicable to underway CO2 flux measurements over the ocean and may be used in place of the bulk technique. The important point is the need to maintain a measuring accuracy of CO2 concentration difference of the order of 0.1 ppmv on the research vessels or the buoys.  相似文献   

18.
The uptake mechanism of anthropogenic CO2 in the Kuroshio Extension is examined by a Lagrangian approach using a biogeochemical model embedded in an ocean general circulation model. It is found that the uptake of anthropogenic CO2 is caused mainly by the increase of pCO2 dependency of seawater on temperature, which is caused by greater dissolved inorganic carbon concentration in the modern state than in the pre-industrial state. In contrast with the view of previous studies, the effect of the vertical entrainment, which brings waters that last contacted the atmosphere with the past lower CO2 concentration, is comparatively small. Winter uptake of anthropogenic CO2 increases with the rise of the atmospheric CO2 level, while summer uptake is relatively stable, resulting in a larger seasonal cycle of the uptake. This increase is significant, especially in the Kuroshio Extension region. It is newly suggested that this increase in the Kuroshio Extension region is largely caused by the combined effects of the increased pCO2 dependency of the sea water on the temperature and the seasonal difference in cooling.  相似文献   

19.
A global ocean carbon cycle model based on the ocean general circulation model POP and the improved biogeochemical model OCMIP-2 is employed to simulate carbon cycle processes under the historically observed atmospheric CO 2 concentration and different future scenarios (called Rep- resentative Concentration Pathways, or RCPs). The RCPs in this paper follow the design of Inter- governmental Panel on Climate Change (IPCC) for the Fifth Assessment Report (AR5). The model results show that the ocean absorbs CO 2 from atmosphere and the absorbability will continue in the 21st century under the four RCPs. The net air-sea CO 2 flux increased during the historical time and reached 1.87 Pg/a (calculated by carbon) in 2005; however, it would reach peak and then decrease in the 21st century. The ocean absorbs CO 2 mainly in the mid latitude, and releases CO 2 in the equator area. However, in the Antarctic Circumpolar Current (ACC) area the ocean would change from source to sink under the rising CO 2 concentration, including RCP4.5, RCP6.0, and RCP8.5. In 2100, the anthropogenic carbon would be transported to the 40 S in the Atlantic Ocean by the North Atlantic Deep Water (NADW), and also be transported to the north by the Antarctic Bottom Water (AABW) along the Antarctic continent in the Atlantic and Pacific oceans. The ocean pH value is also simulated by the model. The pH decreased by 0.1 after the industrial revolution, and would continue to decrease in the 21st century. For the highest concentration sce- nario of RCP8.5, the global averaged pH would decrease by 0.43 to reach 7.73 due to the absorption of CO 2 from atmosphere.  相似文献   

20.
The direct disposal of CO2 into the ocean interior represents a possible means to help mitigate rising levels of atmospheric CO2. Here, we use three different versions of an ocean general circulation model (OGCM) to simulate the direct injection of liquid CO2 near Tokyo. Our results confirm that direct injection can sequester large amounts of CO2 from the atmosphere when disposal is made at sufficient depth (80–100% of the carbon injected at 3000 m remains in the ocean after 500 years) but show that the calculated efficiency is rather sensitive to the choice of physical model. Moreover, we show, for the first time in an OGCM and under a reasonable set of economic assumptions, that sequestration effectiveness is quite high for even shallow injections. However, the severe acidification that accompanies injection and the impossibility of effectively monitoring injected plumes argue against the large-scale viability of this technology. Our coarse-grid models show that injection at the rate of 0.1 Pg-C/yr lowers pH near the site of injection by as much as 0.7–1.0 pH-unit. Such pH anomalies would be much larger in more finely gridded models (and in reality) and have potential to severely harm deep-sea organisms. We also show that, after several hundred years, one would effectively need to survey the entire ocean in order to accurately verify the inventory of injected carbon. These results suggest that while retention may be sufficient to justify disposal costs, other practical problems will limit or at best delay widespread deployment of this technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号