首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial and temporal variations of turbulent diapycnal mixing along 18°N in the South China Sea(SCS) are estimated by a fine-scale parameterization method based on strain, which is obtained from CTD measurements in yearly September from 2004 to 2010. The section mean diffusivity can reach ~10~(–4)m~2/s, which is an order of magnitude larger than the value in the open ocean. Both internal tides and wind-generated near-inertial internal waves play an important role in furnishing the diapycnal mixing here. The former dominates the diapycnal mixing in the deep ocean and makes nonnegligible contribution in the upper ocean, leading to enhanced diapycnal mixing throughout the water column over rough topography. In contrast, the influence of the wind-induced nearinertial internal wave is mainly confined to the upper ocean. Over both flat and rough bathymetries, the diapycnal diffusivity has a growth trend from 2005 to 2010 in the upper 700 m, which results from the increase of wind work on the near-inertial motions.  相似文献   

2.
利用1992—2002年的温盐深数据与2012—2016年的Argo数据,基于细尺度参数化方法研究了吕宋海峡及周边海域(12°—30°N,115°—129°E)湍流混合的时空分布特征,并分析了地形粗糙度、内潮以及风输入的近惯性能通量对湍流混合的影响。结果表明,吕宋海峡和东海陆坡处具有强混合的特征,扩散率高达4×10~(-3) m~2/s,主要是由内潮产生导致的,其中吕宋海峡主要是M2、K1和O1内潮的贡献,而东海陆坡处主要是M_2内潮的贡献;南海北部也呈现较强的混合,且陆坡处的混合比海盆高1—2个量级;南海中央海盆和离岸的菲律宾海混合较弱,扩散率为O (10-5 m2/s)。此外,在研究区域内,湍流混合的年际变化和季节变化均不明显,且混合扩散率与风输入的近惯性能通量未表现出明显的季节相关。  相似文献   

3.
《Ocean Modelling》2004,6(3-4):245-263
Astronomical data reveals that approximately 3.5 terawatts (TW) of tidal energy is dissipated in the ocean. Tidal models and satellite altimetry suggest that 1 TW of this energy is converted from the barotropic to internal tides in the deep ocean, predominantly around regions of rough topography such as mid-ocean ridges. A global tidal model is used to compute turbulent energy levels associated with the dissipation of internal tides, and the diapycnal mixing supported by this energy flux is computed using a simple parameterization.The mixing parameterization has been incorporated into a coarse resolution numerical model of the global ocean. This parameterization offers an energetically consistent and practical means of improving the representation of ocean mixing processes in climate models. Novel features of this implementation are that the model explicitly accounts for the tidal energy source for mixing, and that the mixing evolves both spatially and temporally with the model state. At equilibrium, the globally averaged diffusivity profile ranges from 0.3 cm2 s−1 at thermocline depths to 7.7 cm2 s−1 in the abyss with a depth average of 0.9 cm2 s−1, in close agreement with inferences from global balances. Water properties are strongly influenced by the combination of weak mixing in the main thermocline and enhanced mixing in the deep ocean. Climatological comparisons show that the parameterized mixing scheme results in a substantial reduction of temperature/salinity bias relative to model solutions with either a uniform vertical diffusivity of 0.9 cm2 s−1 or a horizontally uniform bottom-intensified arctangent mixing profile. This suggests that spatially varying bottom intensified mixing is an essential component of the balances required for the maintenance of the ocean’s abyssal stratification.  相似文献   

4.
The mean available potential energy released by baroclinic instability into the meso-scale eddy field has to be dissipated in some way and Tandon and Garrett [Tandon, A., Garrett, C., 1996. On a recent parameterization of mesoscale eddies. J. Phys. Oceanogr. 26 (3), 406–416] suggested that this dissipation could ultimately involve irreversible mixing of buoyancy by molecular processes at the small-scale end of the turbulence cascade. We revisit this idea and argue that the presence of dissipation within the thermocline automatically requires that a component of the eddy flux associated with meso-scale eddies must be associated with irreversible mixing of buoyancy within the thermocline. We offer a parameterisation of the implied diapycnal diffusivity based on (i) the dissipation rate for eddy kinetic energy given by the meso-scale eddy closure of Eden and Greatbatch [Eden, C., Greatbatch, R.J., 2008. Towards a meso-scale eddy closure. Ocean Modell. 20, 223–239.] and (ii) a fixed mixing efficiency. The implied eddy-induced diapycnal diffusivity (κ) is implemented in a coarse resolution model of the North Atlantic. In contrast to the vertical diffusivity given by a standard vertical mixing scheme, large lateral inhomogeneities can be found for κ in the interior of the ocean. In general, κ is large, i.e. up to o(10) cm2/s, near the western boundaries and almost vanishing in the interior of the ocean.  相似文献   

5.
Estimates of mixing on the South China Sea shelf   总被引:3,自引:3,他引:0  
1 Introduction The outer shelf of the South China Sea is a di- verse environment characterized by sharp changes in bottom topography (Wang et al., 2002). Internal wave and diapycnal mixing may be a vital mechanism con- trolling the distribution of physical water properties, nutrient fluxes, and concentrations of particulate mat- ter. Therefore, the research on diapycnal mixing on the outer shelf in the South China Sea is of great impor- tance to explore the level and variability of the abov…  相似文献   

6.
海洋中的跨等密度面湍流混合对于热量和淡水输送、翻转环流以及全球气候变化都有重要影响,理解跨等密度面湍流混合的变化对于改进气候模式模拟和预测大尺度海洋环流的能力具有重要作用.基于细尺度参数化方法,本文利用黑潮延伸体区的一个长期潜标K7观测,对跨等密度面湍流混合的次季节变化进行了分析.结果 表明,在2004年6~9月,30...  相似文献   

7.
Recent numerical studies (Hibiya et al., 1996, 1998, 2002) showed that the energy cascade across the internal wave spectrum down to small dissipation scales was under strong control of parametric subharmonic instabilities (PSI) which transfer energy from low vertical mode double-inertial frequency internal waves to high vertical mode near-inertial internal waves. To see whether or not the numerically-predicted energy cascade process is actually dominant in the real deep ocean, we examine the temporal variability of vertical profiles of horizontal velocity observed by deploying a number of expendable current profilers (XCPs) at one location near the Izu-Ogasawara Ridge. By calculating EOFs, we find the observed velocity profiles are dominated by low mode semidiurnal (∼double-inertial frequency) internal tides and high mode near-inertial internal waves. Furthermore, we find that the WKB-stretched vertical scales of the near-inertial current shear are about 250 sm and 100 sm. The observed features are reasonably explained if the energy cascade down to small dissipation scales is dominated by PSI.  相似文献   

8.
In the spring of 1988, time series of microstructure and ADCP current profiles were collected at four locations in the North Main Basin of Puget Sound, Washington. Depth and time averages of diapycnal diffusivity at the four stations (1.8−67.0×10−4 m2 s−1) were one to three decades above typical open-ocean thermocline levels. The buoyancy frequency-squared N2 was near open-ocean levels, but unlike the open-ocean where N2S2, finescale shear-squared S2 was three to six times N2 over significant portions of the water column at two of the stations. The time and space mean of all measurements ( ) is close to inferred vertical eddy diffusivity from a primitive equation model for Puget Sound (Kz=3×10−3 m2 s−1) (J. Geophys. Res. 96 (1991) 16779). Large time and space variability of Kρ was found, with differences of inter-station, depth–time means over one decade. A simple scaling argument using the observed Kρ suggests significant exchange of mass between the layers of the subtidal flow over the basin's residence time. Additionally, measurements show that local mixing may be comparable to volume-weighted sill mixing in modifying the Main Basin's stratification. Both are contrary to the “advective reach” simplification of fjord dynamics. The mixing levels were dominated by the passage of a mid-depth, southward-flowing density intrusion and what we interpret as a strongly advected, non-linear internal tide. These mechanisms elevated profile-averaged Kρ by more than 10 times background levels, with sustained patches of Kρ≥1×10−2 m2 s−1. Critical 8-m gradient Richardson numbers (Ri8<0.25) matching regions of overturns (>20 m) and strong turbulence suggest that shear instabilities dominated the turbulence production, though there was support for double-diffusive convection in the warm core of the density intrusion.  相似文献   

9.
This study quantifies diapycnal mixing and vertical heat transfer in the Pacific side of the Arctic Ocean, where sea-ice cover has disappeared between July and September in the last few decades. We conducted microstructure measurements in the open water region around the Canada Basin from late summer to fall in 2009 and 2010 using R/V Mirai. In the study domain, the dissipation rate of turbulent kinetic energy, ε, is typically as low level as O(10?10) W kg?1, resulting in vertical heat diffusivity of O(10?7) m2 s?1, which is close to the molecular diffusivity of heat, suggesting comparatively little predominance of mechanical turbulent mixing. An exception is the case at the Barrow Canyon, where the strong baroclinic throughflow generates substantial vertical mixing, producing ε > O(10?7) W kg?1, because of the shear flow instability. Meanwhile, in the confluence region, where the warm/salty Pacific water and the cold/fresh Arctic basin water encounter, the micro-temperature profiles revealed a localized enhancement in vertical diffusivity of heat, reaching O(10?5) m2 s?1 or greater. In this region, an intrusion of warm Pacific water creates a horizontally interleaved structure, where the double-diffusive mixing facilitates vertical heat transfer between the intruding Pacific water and the surrounding basin waters.  相似文献   

10.
The pattern and magnitude of the global ocean overturning circulation is believed to be strongly controlled by the distribution of diapycnal diffusivity below 1000 m depth. Although wind stress fluctuation is a candidate for the major energy sources of diapycnal mixing processes, the global distribution of wind-induced diapycnal diffusivity is still uncertain. It has been believed that internal waves generated by wind stress fluctuations at middle and high latitudes propagate equatorward until their frequency is twice the local inertial frequency and break down via parametric subharmonic instabilities, causing diapycnal mixing. In order to check the proposed scenario, we use a vertically two-dimensional primitive equation model to examine the spatial distribution of “mixing hotspots” caused by wind stress fluctuations. It is shown that most of the wind-induced energy fed into the ocean interior is dissipated within the top 1000 m depth in the wind-forced area and the energy dissipation rate at low latitudes is very small. Consequently, the energy supplied to diapycnal mixing processes below 1000 m depth falls short of the level required to sustain the global ocean overturning circulation.  相似文献   

11.
The measurements of the vertical transport of CO2 were carried out over the Sea of Japan using the specially designed pier of Kyoto University on September 20 to 22, 2000. CO2 fluxes were measured by the eddy correlation and aerodynamic techniques. Both techniques showed comparable CO2 fluxes during sea breeze conditions: −0.001 to −0.08 mg m−2s−1 with the mean of −0.05 mg m−2s−1. This means that the measuring site satisfies the fetch requirement for meteorological observations under sea breeze conditions. Moreover, the eddy diffusivity coefficient used in the aerodynamic technique is found to be consistent with the coefficient used in the eddy correlation technique. The present result leads us to conclude that the aerodynamic technique may be applicable to underway CO2 flux measurements over the ocean and may be used in place of the bulk technique. The important point is the need to maintain a measuring accuracy of CO2 concentration difference of the order of 0.1 ppmv on the research vessels or the buoys.  相似文献   

12.
内波破碎引起的能量耗散和混合是海洋内部的重要物理过程。通过在二维内波水槽进行实验室实验,分析内波与地形的作用,探究内孤立波与平顶海山地形作用时波要素、能量以及湍耗散率的时空变化。本实验利用重力塌陷法在两层流体中制造第一模态内孤立波,通过粒子图像测速技术(particle image velocimetry, PIV)获得内孤立波与地形作用时的流场结构,定量分析整个作用过程。结果表明,地形会改变波形甚至引起破碎,内波与地形作用时,振幅和能量密度会在内孤立波爬坡时迅速增大,在地形前缘产生强烈能量耗散。入射波的能量与塌陷高度呈二次函数关系,透射波能量随地形升高减小,反射波能量随地形升高增大。地形前缘局地湍耗散率极值时间序列在部分实验中呈双峰结构,对应内孤立波界面处剪切加强引起湍流耗散和波后缘翻转破碎。破碎引起的地形前缘区域平均湍耗散率量级在10~(-5)m~2/s~3,局地湍耗散率极值与入射波振幅呈指数关系,所有实验中局地湍耗散率的最大值接近10~(-3) m~2/s~3量级。  相似文献   

13.
He  Ying  Wang  Jianing  Wang  Fan  Hibiya  Toshiyuki 《Journal of Oceanography》2022,78(1):35-48

The Mindanao Current (MC) bridges the North Pacific low-latitude western boundary current system region and the Indonesian Seas by supplying the North Pacific waters to the Indonesian Throughflow. Although the previous study speculated that the diapycnal mixing along the MC might be strong on the basis of the water mass analysis of the gridded climatologic dataset, the real spatial distribution of diapycnal mixing along the MC has remained to be clarified. We tackle this question here by applying a finescale parameterization to temperature and salinity profiles obtained using two rapid-sampling profiling Argo floats that drifted along the MC. The western boundary (WB) region close to the Mindanao Islands and the Sangihe Strait are the two mixing hotspots along the MC, with energy dissipation rate ε and diapycnal diffusivity Kρ enhanced up to?~?10–6 W kg?1 and?~?10–3 m2 s?1, respectively. Except for the above two mixing hotspots, the turbulent mixing along the MC is mostly weak, with ε and Kρ to be 10–11–10–9 W kg?1 and 10–6–10–5 m2 s?1, respectively. Strong mixing in the Sangihe Strait can be basically attributed to the existence of internal tides, whereas strong mixing in the WB region suggests the existence of internal lee waves. We also find that water mass transformation along the MC mainly occurs in the Sangihe Strait where the water masses are subjected to strong turbulent mixing during a long residence time.

  相似文献   

14.
This study presents an analysis of the CTD data and the turbulent microstructure data collected in 2014, the turbulent mixing environment above the Atlantic Water(AW) around the Chukchi Borderland region is studied.Surface wind becomes more efficient in driving the upper ocean movement along with the rapid decline of sea ice,thus results in a more restless interior of the Arctic Ocean. The turbulent dissipation rate is in the range of4.60×10~(–10)~(–3.31×10~(–9) W/kg with a mean value of 1.33×10~(–9) W/kg, while the diapycnal diffusivity is in the range of1.45×10~(–6)–1.46×10~(–5)m~2/s with a mean value of 4.84×10~(–6) m~2/s in 200–300 m(above the AW). After investigating on the traditional factors(i.e., wind, topography and tides) that may contribute to the turbulent dissipation rate, the results show that the tidal kinetic energy plays a dominating role in the vertical mixing above the AW. Besides, the swing of the Beaufort Gyre(BG) has an impact on the vertical shear of the geostrophic current and may contribute to the regional difference of turbulent mixing. The parameterized method for the double-diffusive convection flux above the AW is validated by the direct turbulent microstructure results.  相似文献   

15.
Hourly fluctuations of vertical velocity in relation to components of flow and wind and temperature oscillations at a morring site in the shelf waters off the west coast of India are discussed. The vertical velocities were computed from a time series of vertical temperature profiles assuming that horizontal advection of temperature is negligible. The computed values at a depth of 40 m during the 72-h period of observation were of the order of 10−1 to 10−2cm s−1, with a mean value of −2·77 × 10−2 cm s−1 indicating a net upward movement of water. The computed vertical velocity showed fluctuations of about 2–3 h, in addition to weaker signals of about 12 h. Based on the spectral estimates, we speculate that these fluctuations of 2–3 h in the vertical velocity may be caused by the fluctuations in the along-shore wind. The oscillations of isotherms found in the temperaturedepth time series and the spectral estimates of temperature and cross-shore flow component showed a periodicity of about 12 h, which indicated the presence of semi-diurnal internal waves. The fact that these internal wave troughs were associated with the measured onshore flow suggested that the waves were propagating offshore. The computed stability parameters showed little evidence of instability or mixing. It was found that the isotherm troughs in the temperaturedepth time series at about 12-h period coincided with high vertical shear in the cross-shore direction and low values of Brunt Vaisälä frequency.  相似文献   

16.
Shear and Richardson number in a mode-water eddy   总被引:1,自引:0,他引:1  
Measurements of stratification and shear were carried out as part of the EDDIES tracer release experiment in mode-water eddy A4 during the summer of 2005. These measurements were accomplished using both shipboard instrumentation and a drifting mooring. A strong relationship between shear intensity and distance from the center of the eddy A4 was observed with the shipboard ADCP. Diapycnal diffusivity at the SF6 tracer isopycnal prior to and during the release was estimated from the drifting mooring to be 2.9×10−6 m2 s−1. Diffusivity increased by an order of magnitude to 3.2×10−5 m2 s−1 during the period of the final tracer survey in early September, which was similar to the value estimated from the tracer analysis for the whole experiment (3.5×10−5 m2 s−1, [Ledwell, J.R., McGillicuddy Jr., D.J., Anderson, L.A., 2008. Nutrient flux into an intense deep chlorophyll layer in a mode-water eddy. Deep-Sea Research II, this issue [doi:10.1016/j.dsr2.2008.02.005]].  相似文献   

17.
基于Vector Geometry方法对2016—2018年的高度计资料进行涡旋识别,并使用细尺度参数化方法和Argo数据计算了涡旋附近的海洋内部扩散率,分析了北太平洋的涡旋对海洋内部混合的影响。结果显示,研究区域在涡旋影响下的平均扩散率比无涡旋影响下的值大6%,并且气旋涡增强了600—1200m深度的混合,对600—900m深度的混合影响最大,可达18%;反气旋涡明显增强了300—900m深度的混合,但对900—1200m深度的混合没有明显影响。随着与涡旋中心距离的增大,涡旋外围混合扩散率缓慢减小,涡旋内部混合扩散率变化不明显,此结果与2014年3—10月在24°—36°N、132°—152°E区域的一个个例分析结果一致。此外,随着涡旋强度的增大,海洋内部混合明显增强。统计结果表明,在研究区域, 90%的扩散率值在10~(-5.5)—10~(-4)m~2/s范围内。  相似文献   

18.
Reynolds stress and TKE production in an estuary with a tidal bore   总被引:4,自引:0,他引:4  
We report new measurements of the turbulent properties of the flow in a tidally energetic estuarine channel of almost uniform cross-section. A high-frequency (1.2 MHz), bottom-mounted Acoustic Doppler Current Profiler (ADCP) has been used to observe the velocity field at a sampling rate of 10 Hz in parallel with measurements of the surface elevation by tide gauges. Our data have been analysed using the Variance Method to determine turbulent kinetic energy (TKE), shear stress and TKE production over the tidal cycle with a time resolution of 60 s. During the highly energetic but brief flood period, when the surface axial velocity reaches 2 m s−1, we observed large values of stress (>2 Pa) and shear production (5 W m−3). TKE is also input through the release of energy in the bore itself which results in a brief but intense injection of energy at the bore front with large transient TKE levels (100 J m−3). Subsequent input by shear production maintains TKE levels which are generally lower (20 J m−3) than the strong peak associated with the bore for the rest of the flood. On the ebb, the flow is relatively tranquil with maximum speeds 0.5 m s−1 and peak TKE production rates of 0.1 W m−3.The flow and elevation data have also been used to estimate the energy fluxes into and out of the estuary. Short (1 h), intense energy inputs (8 MW at springs) on the flood flow are largely balanced by longer, less intense seaward energy flow on the ebb. The net energy input is found to be 0.1 MW at springs which is consistent with estimates of upstream dissipation. Peak dissipation in the bore itself may exceed the mean energy input but it is active only for a small fraction of the tidal cycle and its average contribution does not exceed 12% of total dissipation.  相似文献   

19.
In this study we estimate diffusive nutrient fluxes in the northern region of Cape Ghir upwelling system (Northwest Africa) during autumn 2010. The contribution of two co-existing vertical mixing processes (turbulence and salt fingers) is estimated through micro- and fine-structure scale observations. The boundary between coastal upwelling and open ocean waters becomes apparent when nitrate is used as a tracer. Below the mixed layer (56.15±15.56 m), the water column is favorable to the occurrence of a salt finger regime. Vertical eddy diffusivity for salt (Ks) at the reference layer (57.86±8.51 m, CI 95%) was 3×10−5 (±1.89×10−9, CI 95%) m2 s−1. Average diapycnal fluxes indicate that there was a deficit in phosphate supply to the surface layer (6.61×10−4 mmol m−2 d−1), while these fluxes were 0.09 and 0.03 mmol m−2 d−1 for nitrate and silicate, respectively. There is a need to conduct more studies to obtain accurate estimations of vertical eddy diffusivity and nutrient supply in complex transitional zones, like Cape Ghir. This will provide us with information about salt and nutrients exchange in onshore–offshore zones.  相似文献   

20.
An intense deep chlorophyll layer in the Sargasso Sea was reported near the center of an anticyclonic mode-water eddy by McGillicuddy et al. [2007. Eddy–wind interactions stimulate extraordinary mid-ocean plankton blooms, Science, accepted]. The high chlorophyll was associated with anomalously high concentrations of diatoms and with a maximum in the vertical profile of 14C primary productivity. Here we report tracer measurements of the vertical advection and turbulent diffusion of deep-water nutrients into this chlorophyll layer. Tracer released in the chlorophyll layer revealed upward motion relative to isopycnal surfaces of about 0.4 m/d, due to solar heating and mixing. The density surfaces themselves shoaled by about 0.1 m/d. The upward flux of dissolved inorganic nitrogen, averaged over 36 days, was approximately 0.6 mmol/m2/d due to both upwelling and mixing. This flux is about 40% of the basin wide, annually averaged, nitrogen flux required to drive the annual new production in the Sargasso Sea, estimated from the oxygen cycle in the euphotic zone, the oxygen demand below the euphotic zone, and from the 3He excess in the mixed layer. The observed upwelling of the fluid was consistent with theoretical models [Dewar, W.K., Flierl, G.R., 1987. Some effects of wind on rings. Journal of Physical Oceanography 17, 1653–1667; Martin, A.P., Richards, K.J., 2001. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Research II 48, 757–773] in which eddy surface currents cause spatial variations in surface stress. The diapycnal diffusivity at the base of the euphotic zone was 3.5±0.5×10−5 m2/s. Diapycnal mixing was probably enhanced over more typical values by the series of storms passing over the eddy during the experiment and may have been enhanced further by the trapping of near-inertial waves generated within the eddy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号