首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We study the interactions between a non-breaking solitary wave and a submerged permeable breakwater experimentally and numerically. The particle image velocimetry (PIV) technique is employed to measure instantaneous free surface displacements and velocity fields in the vicinity of a porous dike. The porous medium, consisting of uniform glass spheres, is mounted on the seafloor. Due to the limited size of each field of view (FOV) for high spatial resolution purposes, four FOVs are set in order to form a continuous flow field around the structure. Quantitative mean properties are obtained by ensemble averaging 30 repeated instantaneous measurements. The Reynolds decomposition method is then adopted to separate the velocity fluctuations for each trial to estimate the turbulent kinetic energy. In addition, a highly accurate two-dimensional model with the volume of fluid interface tracking technique is used to simulate an idealized volume-averaged porous medium. The model is based on the Volume-Averaged Reynolds Averaged Navier–Stokes equations coupled with the non-linear kε turbulence closure solver. Comparisons are performed between measurements and numerical results for the time histories of the free surface elevation recorded by wave gauges and the spatial distributions of free surface displacement with the corresponding velocity and turbulent kinetic energy around the permeable object imaged by the PIV system. Fairly good agreements are obtained. It is found that the measured and modeled turbulent intensities on the weather side are much larger than those on the lee side of the object, and that the magnitude of the turbulent intensity increases with increasing wave height of a solitary wave at a constant water depth. The verified numerical model is then used to estimate the energy reflection, transmission and dissipation using the energy integral method by varying the aspect ratio and the grain size of the permeable obstacle.  相似文献   

2.
Incompressible SPH flow model for wave interactions with porous media   总被引:1,自引:0,他引:1  
The paper presents an Incompressible Smoothed Particle Hydrodynamics (ISPH) method to simulate wave interactions with a porous medium. The SPH method is a mesh free particle modeling approach that is capable of tracking the large deformation of free surfaces in an easy and accurate manner. The ISPH method employs a strict incompressible hydrodynamic formulation to solve the fluid pressure and the numerical solution is obtained by using a two-step semi-implicit scheme. The ISPH flow model solves the unsteady 2D Navier–Stokes (NS) equations for the flows outside the porous media and the NS type model equations for the flows inside the porous media. The presence of porous media is considered by including additional friction forces into the equations. The developed ISPH model is first validated by the solitary and regular waves damping over a porous bed and the solitary wave interacting with a submerged porous breakwater. The convergence of the method and the sensitivity of relevant model parameters are discussed. Then the model is applied to the breaking wave interacting with a breakwater covered with a layer of porous materials. The computational results demonstrate that the ISPH flow model could provide a promising simulation tool in coastal hydrodynamic applications.  相似文献   

3.
Wave transformation over submerged permeable breakwater on porous bottom   总被引:1,自引:0,他引:1  
A numerical model is presented in this study to investigate the wave transformation over a submerged permeable breakwater on a porous slope seabed. For this purpose, the time-dependent mild-slope equation is newly derived for waves propagating over two layers of porous medium. This new mild-slope equation involves the parameters of the porous medium, and it is a type of hyperbolic differential equation, therefore numerically efficient. The validity of the present model is verified based on the comparisons with the previous experiments. The effects of the permeable properties of both the porous seabed and the submerged permeable breakwater are discussed in detail. The geometry of the submerged permeable breakwater to the wave transformation is also investigated based on the numerical solutions.  相似文献   

4.
为了研究波浪与抛石潜堤相互作用过程中大自由表面变形和堤内渗流等强非线性紊流运动问题,利用改进的MPS法,建立了模拟波浪与抛石潜堤相互作用的MPS法数值计算模型。模型将抛石潜堤假定为均质多孔介质,采用Drew的二相流运动方程描述多孔介质内外的流体运动;通过在动量方程中增加非线性阻力项,并引入亚粒子尺度紊流模型,模拟波浪与可渗结构物相互作用过程中的紊流运动。选取“U”型管中多孔介质内渗流过程和孤立波与可渗潜堤相互作用两个典型的渗流问题,通过将数值计算结果与理论解和实测值的对比分析,对所提出的MPS法紊流渗流模型的模拟精度进行验证。结果表明:基于改进的MPS法构建的垂向二维紊流渗流模型可以很好地再现“U”型管中多孔介质内渗流以及波浪作用下可渗潜堤内外的复杂流场,显著缓解流-固界面处的压力震荡与粒子分布不均匀问题,实现了较高的模拟精度。  相似文献   

5.
In this study,we investigated wave transformation and wave set-up between a submerged permeable breakwater and a seawall.Modified time-dependent mild-slope equations,which involve parameters of the porous medium,were used to calculate the wave height transformation and the mean water level change around a submerged breakwater.The numerical solution is verified with experimental data.The simulated results show that modulations of the wave profile and wave set-up are clearly observed between the submerged breakwater and the seawall.In contrast to cases without a seawall,the node or pseudo-node of wave height evolution can be found between the submerged breakwater and the seawall.Higher wave set-up occurs if the nodal or pseudo-nodal point appears near the submerged breakwater.We also examined the influence of the porosity and friction factor of the submerged permeable breakwater on wave transformation and set-up.  相似文献   

6.
In this study, we investigated wave transformation and wave set-up between a submerged permeable breakwater and a seawall. Modified time-dependent mild-slope equations, which involve parameters of the porous medium, were used to calculate the wave height transformation and the mean water level change around a submerged breakwater. The numerical solution is verified with experimental data. The simulated results show that modulations of the wave profile and wave set-up are clearly observed between the submerged breakwater and the seawall. In contrast to cases without a seawall, the node or pseudo-node of wave height evolution can be found between the submerged breakwater and the seawall. Higher wave set-up occurs if the nodal or pseudo-nodal point appears near the submerged breakwater. We also examined the influence of the porosity and friction factor of the submerged permeable breakwater on wave transformation and set-up.  相似文献   

7.
A smoothed particle hydrodynamic (SPH) model is developed to simulate wave interaction with porous structures. The mean flow outside the porous structures is obtained by solving Reynolds Averaged Navier–Stokes (RANS) equations and the turbulence field is calculated by a large eddy simulation (LES) model. The porous flow is described by the spatially averaged Navier–Stokes type equations with the resistance effect of the porous media being represented by an empirical frictional source term. The interface boundaries between the porous flow and the outside flow are modeled by means of specifying a transition zone along the interface. The model is validated against other available numerical results and experimental data for wave damping over porous seabed with different levels of permeability. The validated model is then employed to investigate wave breaking over a submerged porous breakwater and good agreements between the SPH model results and the experimental data are obtained in terms of free surface displacement. In addition the predicted velocity, vorticity and pressure fields near the porous breakwater and in the breaking wave zone are also analyzed.  相似文献   

8.
Modelling of the transformation and interaction of regular wave trains with submerged permeable structures is carried out. The existing literature, is summarized relevant theories presented, and theoretical results are compared with existing laboratory data. Special attention is paid to wave reflection. The influence of wave characteristics including oblique incidence, structure geometry and porous material properties on the kinematics and dynamics over and inside the breakwater is considered. Two different models are presented: an eigenfunction expansion 3-D model and a 2-D model based on a mild-slope equation for porous media to account for breakwater slope.  相似文献   

9.
In the present study, wave interaction with a fixed, partially immersed breakwater of box type with a plate attached (impermeable-permeable) at the front part of the structure is investigated numerically and experimentally. The large scale laboratory experiments on the interaction of regular waves with the special breakwater were conducted in the wave flume of Laboratori d’Enginyeria Marνtima (LIM) at Universitat Politecnica de Catalunya (UPC) in Barcelona. Experimental results are compared with numerical results obtained with the use of the Cornell breaking Wave and Structures (COBRAS) wave model. The effects of an impermeable as well as a permeable plate attached to the bottom of the breakwater on its hydrodynamic characteristics (wave transmission, reflection, dissipation, velocity and turbulence kinetic energy) are investigated. Computed velocities and turbulence kinetic energy in the vicinity of the structure indicate the effects of the breakwater with the attached (impermeable/permeable) plate on the flow pattern and the turbulence structure. The attached impermeable plate at the front part of the breakwater enhances significantly the efficiency of the structure in attenuating the incident waves. The permeable plate reduces the efficiency of the structure since wave energy is transmitted through the porous body of the plate. Based on the hydrodynamic characteristics it is inferred that the breakwater with an impermeable plate attached to its bottom is more efficient. The comparison of horizontal and vertical forces acting on the breakwater for all cases examined reveals that plate porosity influences slightly vertical force and severely horizontal force acting on the structure, reducing maximum values in both cases.  相似文献   

10.
This paper presents numerical solutions for the wave reflection from submerged porous structures in front of the impermeable vertical breakwater. A new time-dependent mild-slope equation involves the parameters of the porous medium including the porosity, the friction factor and the inertia coefficient, etc. is derived for solving the boundary value problem. A comprehensive comparison between the present model and the existing analytical solution for the case of simple rectangular geometries of the submerged structure is performed first. Then, more complicated cases such as the inclined and trapezoidal submerged porous structures in front of the vertical breakwater with sloping bottom are considered. This study also examines the effects of the permeable properties and the geometric configurations of the porous structure to the wave reflection. It is found that the submerged porous structure with trapezoidal shape has more efficiency to reduce the wave reflection than that of triangular shape. The numerical results show that the minimum wave reflection is occurred when the breakwater is located at the intermediate water depth.  相似文献   

11.
This paper presents a numerical model for simulating wave interaction with porous structures. Incompressible smoothed particle hydrodynamics in porous media (ISPHP) method is introduced in this study as a mesh free particle approach that is capable of efficiently tracking the large deformation of free surfaces in a Lagrangian coordinate system. The developed model solves two porous and pure fluid flows simultaneously by means of one equation that is equivalent to the unsteady 2D Navier–Stokes (NS) equations for the flows outside the porous media and the extended Forchheimer equation for the flows inside the porous media. Interface boundary between pure fluid and porous media is effectively modeled by the SPH integration technique. A two-step semi-implicit scheme is also used to solve the fluid pressure satisfying the fluid incompressibility criterion.The developed ISPHP model is then validated via different experimental and numerical data. Fluid flow pattern through porous dam with different porosities is studied and regular wave attenuation over porous seabed is investigated. As a practical case, wave running up and overtopping on a caisson breakwater protected by a porous armor layer are modeled. The results show good agreements between numerical and laboratory data in terms of free surface displacement, overtopping rate and pressure distribution. Based on this study, ISPHP model is an efficient method for simulating the coastal applications with porous structures.  相似文献   

12.
This work presents a simple method to evaluate the performance of a porous breakwater when it is impinged with normal incidence by a non-breaking monochromatic wave train. It is based on: 1) a potential flow model for wave interaction with permeable structures and 2) a set of experimental tests on a rectangular porous structure with uniform granular distribution. A characteristic friction diagram is obtained considering wave energy balance in a control volume, minimising the error between the numerical model and the experimental results for the wave transmission coefficient. Results show that, for large breakwater widths, the reflection process reaches a saturation regime before the waves exit the structure at a distance from the seaside between the interval 0.2 < x/< 0.45. For larger breakwater widths, the reflection coefficient is almost constant (except for “resonant” conditions) and wave transmission decreases exponentially. Under such conditions, the wave propagation through the porous medium depends on the relative diameter D/L and the porosity of the material; the dependence on the relative breakwater width B/L and the ratio diameter wave height D/H is weak. This diagram intends to be useful for preliminary engineering studies of breakwater's efficiency and performance and as an adequate selection criteria of the experimental stone diameter to minimize scale effects in laboratory studies.  相似文献   

13.
A parabolic wave model was developed to simulate wave transformation over porous structures in the surf zone including wave-breaking and energy dissipation. This model is verified through experimental data for waves passing over a submerged permeable structure with porosities. The numerical results have shown good agreement with the results of laboratory experiments. The model is also applied to the real case of waves propagating over a porous submerged breakwater on a complicated bathymetry.  相似文献   

14.
基于非静压数值计算模型,本文系统研究了聚焦波作用下透水潜堤的消波特性,通过设置合理的计算工况,详细分析了波高、堤顶水深、谱峰周期、孔隙率以及堤顶宽度5种因素对透水潜堤消波特性的影响。与此同时,本文将透水潜堤的计算结果同不透水潜堤的计算结果进行了对比分析。计算结果表明:透水潜堤对聚焦波的消减作用要强于不透水潜堤,从而说明,透水潜堤能更有效地降低畸形波对海岸基础设施的影响;波高和堤顶水深是影响潜堤消波特性的重要因素,随入射波高增加、堤顶水深减小,透水潜堤对波浪的消减作用逐渐增强。透水潜堤对长周期波浪的消波效果较差。在本文考虑的孔隙率范围内,孔隙率越大,透水潜堤消波效果越好;当孔隙率为0.4,堤顶宽度为0.612 5 m时,透水潜堤可消减54%的入射波能,比不透水潜堤对入射波能的消减增加36.1%。本文研究结果可为进一步认识透水潜堤的消波特性和海岸防护工程设计提供相应的参考。  相似文献   

15.
This paper presents an analytical solution for scattering of oblique incident, small amplitude, monochromatic wave trains by a stationary rigid multi-layered objects with rectangular cross-section. The object is infinite long and consists of multilayers, which can be either solid or permeable. This paper extends the previous work by Hu and Liu [1] from normal incident wave condition with a special object configuration to oblique incident waves with multi-layered object. The present model is validated with several existing solutions for normal/oblique waves interacting with a single object; excellent agreement is observed. New numerical results are presented to investigate the effects of incidence angle on reflection, transmission and energy loss coefficients for a combined floating and bottom-mounted permeable breakwater. A new floating board-cage breakwater is developed from the present model and its solutions are discussed in detail. A computer program, AWAS-P, has been updated so that it is applicable for both oblique and normal incident waves, while the object is multi-layered.  相似文献   

16.
To improve the current understanding of the reduction of tsunami-like solitary wave runup by the pile breakwater on a sloping beach, we developed a 3D numerical wave tank based on the CFD tool OpenFOAM in this study. The Navier Stokes equations were applied to solve the two-phase incompressible flow, combined with an LES model to solve the turbulence and a VOF method to capture the free surface. The adopted model was firstly validated with existing empirical formulas for solitary wave runup on the slope without the pile structure. It is then validated using our new laboratory observations of the free surface elevation, the velocity and the pressure around a row of vertical slotted piles subjected to solitary waves, as well as the wave runup on the slope behind the piles. Subsequently, a set of numerical simulations were implemented to analyze the wave reflection, the wave transmission, and the shoreline runup with various offshore wave heights, offshore water depths, adjacent pile spaces and beach slopes. Finally, an improved empirical equation accounting for the maximum wave runup on the slope was proposed by taking the presence of the pile breakwater into consideration.  相似文献   

17.
The coupling numerical model of wave interaction with porous medium is used to study waveinduced pore water pressure in high permeability seabed.In the model,the wave field solver is based on the two dimensional Reynolds-averaged Navier-Stokes(RANS) equations with a k-ε closure,and Forchheimer equations are adopted for flow within the porous media.By introducing a Velocity-Pressure Correction equation for the wave flow and porous flow,a highly efficient coupling between the two flows is implemented.The numerical tests are conducted to study the effects of seabed thickness,porosity,particle size and intrinsic permeability coefficient on regular wave and solitary wave-induced pore water pressure response.The results indicate that,as compared with regular wave-induced,solitary wave-induced pore water pressure has larger values and stronger action on seabed with different parameters.The results also clearly show the flow characteristics of pore water flow within seabed and water wave flow on seabed.The maximum pore water flow velocities within seabed under solitary wave action are higher than those under regular wave action.  相似文献   

18.
The objective of the present study is to develop a volume of fluid (VOF)-based two-phase flow model and to discuss the applicability of the model to the simulation of wave–structure interactions. First, an overview of the development of VOF-type models for applications in the field of coastal engineering is presented. The numerical VOF-based two-phase flow model has been developed and applied to the simulations of wave interactions with a submerged breakwater as well as of wave breaking on a slope. Numerical results are then compared with laboratory experimental data in order to verify the applicability of the numerical model to the simulations of complex interactions of waves and permeable coastal structures, including the effects of wave breaking. It is concluded that the two-phase flow model with the aid of the advanced VOF technique can provide with acceptably accurate numerical results on the route to practical purposes.  相似文献   

19.
双平板式透空堤具有较为优越的消浪性能备受专家学者关注。目前关于其消浪性能的评价多采用透射波高法开展,仅考虑波高一个参数。本文采用透射波高法、波浪能量法和波能流法分别对平板式透空堤的消能效果进行评价,结果表明,综合考虑波高、水深和周期三个参数的波能流法更加全面与深入。探讨了双平板式透空堤迎浪向与背浪向处波能流的主要影响因素,结果表明,相对板宽、位置参数和波高大小对波能流的影响较板间距和潜深更加显著。  相似文献   

20.
《Coastal Engineering》2006,53(5-6):395-417
This paper is the second part of the work presented by Garcia et al. [Garcia, N., Lara, J.L., Losada, I.J., 2004. 2-D numerical analysis of near-field flow at low-crested breakwaters. Coastal Engineering 51 (10), 991–1020]. In the mentioned paper, flow conditions at low-crested rubble-mound breakwaters under regular wave attack were examined, using a combination of measured data of free surface, bottom pressure and fluid velocities from small-scale experiments and numerical results provided by a VOF-type model (COBRAS) based on the Reynolds-Averaged Navier–Stokes (RANS) equations. This paper demonstrates the capability of the COBRAS model to reproduce irregular wave interaction with submerged permeable breakwaters. Data provided by the numerical model are compared to experimental data of laboratory tests, and the main processes of wave–structure interaction are examined using both experimental and numerical results. The numerical model validation is carried out in two steps. First, the procedure of irregular wave generation is verified to work properly, comparing experimental and numerical data of different cases of irregular wave trains propagating over a flat bottom. Next, the validation of the numerical model for wave interaction with submerged rubble-mound breakwaters is performed through the simulation of small-scale laboratory tests on different incident wave spectra. Results show that the numerical model adequately reproduces the main aspects of the interaction of random waves with submerged porous breakwaters, especially the spectral energy decay at the structure and the spectrum broadening past the structure. The simulations give good results in terms of height envelopes, mean level, spectral shape, root-mean-square height for both free surface displacement and dynamic pressure inside the breakwater. Moreover, large-scale simulations have been conducted, on both regular and irregular incident wave conditions. The overall pattern of the wave interaction with a large-scale submerged breakwater is adequately reproduced by the numerical model. The processes of wave reflection, shoaling and breaking are correctly captured. The good results achieved at a near prototype scale are promising regarding the use of the numerical model for design purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号