首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Release of methane from the seafloor throughout the world's oceans and the biogeochemical processes involved may have significant effects on the marine sedimentary environment. Identification of such methane release events in marine sediment records can hence provide a window into the magnitude of ancient seeps. Here, we report on analysis of the geochemical composition of samples in a 12.3 m long sediment core (DH-5) collected from a seep site in the South China Sea (SCS). Our aim has been to investigate whether the evidence for the presence of methane release event within sediments is discernible from solid-phase sediment geochemistry. We show that sedimentary total sulfur (TS), δ34S values of chromium reducible sulfur (δ34SCRS) along with total organic carbon (TOC) and total inorganic carbon (TIC) content can be used to infer the presence of methane release events in cold seep settings. At least three methane release events were identified in the studied core (Unit I at 400–550 cm, Unit II at 740–820 cm, and Unit III at 1000–1150 cm). According to the characteristic of redox-sensitive elements (eg., Mo, U and Mn), we suggest that methane flux has been changed from relatively high (Unit I) to low (Unit II and III) rates. This inference is supported by the coupled occurrence of 34S-enriched sulfides in Unit II and III. AMS 14C dates from planktonic foraminifera in Unit I suggest that high methane flux event occurred at ∼15.4–24.8 kyr BP, which probably resulted in locally-focused aerobic methane oxidation. Overall, our results suggest that TS, TOC, TIC and δ34SCRS have potential for identifying present and fossil methane release events in marine sediments.  相似文献   

2.
Systematic analyses have been carried out on two gas hydrate-bearing sediment core samples, HYPV4, which was preserved by CH4 gas pressurization, and HYLN7, which was preserved in liquid-nitrogen, recovered from the BPXA-DOE-USGS Mount Elbert Stratigraphic Test Well. Gas hydrate in the studied core samples was found by observation to have developed in sediment pores, and the distribution of hydrate saturation in the cores imply that gas hydrate had experienced stepwise dissociation before it was stabilized by either liquid nitrogen or pressurizing gas. The gas hydrates were determined to be structure Type I hydrate with hydration numbers of approximately 6.1 by instrumentation methods such as powder X-ray diffraction, Raman spectroscopy and solid state 13C NMR. The hydrate gas composition was predominantly methane, and isotopic analysis showed that the methane was of thermogenic origin (mean δ13C = −48.6‰ and δD = −248‰ for sample HYLN7). Isotopic analysis of methane from sample HYPV4 revealed secondary hydrate formation from the pressurizing methane gas during storage.  相似文献   

3.
We studied specific lipid biomarkers of archaea and bacteria, that are associated with the anaerobic oxidation of methane (AOM) in a cold seep environment as well as the origin of sedimentary organic matter on the continental slope off NE Sakhalin in the Sea of Okhotsk. The organic geochemical parameters demonstrated that most of the sedimentary organic matter containing hydrate layers could be derived from marine phytoplankton and bacteria, except for a station (LV39-29H) which was remarkably affected by terrestrial vascular plant. Specific methanotrophic archaea biomarkers was vertically detected in hydrate-bearing cores (LV39-40H), coinciding with the negative excursion of the δ13Corg at core depths of 90–100 cm below the seafloor. These results suggest that methane provided from gas hydrates are already available substrates for microbes thriving in this sediment depth. In addition, the stable isotope mass balance method revealed that approximately 2.77–3.41% of the total organic carbon (or 0.036–0.044% dry weight sediment) was generated by the activity of the AOM consortium in the corresponding depth of core LV39-40H. On the other hand, the heavier δ13C values of archaeol in the gas hydrate stability zone may allow ongoing methanogenesis in deeper sediment depth.  相似文献   

4.
《Marine and Petroleum Geology》2012,29(10):1884-1898
We studied specific lipid biomarkers of archaea and bacteria, that are associated with the anaerobic oxidation of methane (AOM) in a cold seep environment as well as the origin of sedimentary organic matter on the continental slope off NE Sakhalin in the Sea of Okhotsk. The organic geochemical parameters demonstrated that most of the sedimentary organic matter containing hydrate layers could be derived from marine phytoplankton and bacteria, except for a station (LV39-29H) which was remarkably affected by terrestrial vascular plant. Specific methanotrophic archaea biomarkers was vertically detected in hydrate-bearing cores (LV39-40H), coinciding with the negative excursion of the δ13Corg at core depths of 90–100 cm below the seafloor. These results suggest that methane provided from gas hydrates are already available substrates for microbes thriving in this sediment depth. In addition, the stable isotope mass balance method revealed that approximately 2.77–3.41% of the total organic carbon (or 0.036–0.044% dry weight sediment) was generated by the activity of the AOM consortium in the corresponding depth of core LV39-40H. On the other hand, the heavier δ13C values of archaeol in the gas hydrate stability zone may allow ongoing methanogenesis in deeper sediment depth.  相似文献   

5.
We have implemented a 2-dimensional numerical model for simulating gas hydrate and free gas accumulation in marine sediments. The starting equations are those of the conservation of the transport of momentum, energy, and mass, as well as those of the thermodynamics of methane hydrate stability and methane solubility in the pore-fluid. These constitutive equations are then integrated into a finite element in space, finite-difference in time scheme. We are then able to examine the formation and distribution of methane hydrate and free gas in a simple geologic framework, with respect to the geothermal heat flow, fluid flow, the methane in-situ production and basal flux. Three simulations are performed, leading to the build up of hydrate emplacements largely linear through time. Models act primarily as free gas accumulators and are relatively inefficient with respect to hydrate emplacements: 26–33% of formed methane are converted to hydrate. Seepage of methane across the sea-floor is negligible for fluid flow below 2. 10−11 kg/m2/s. At 5.625 10−11 kg/m2/s however, 9.7% of the formed methane seeps out of the model. Moreover, along strike variation arising in the 2-dimensional model are outlined. In the absence of focused flow, the thermodynamics of hydrate accumulation are primarily one-dimensional. However, changes in free methane compressibility (density) and methane solubility (the intrinsic dissolved methane flux) subtlety impact on the formation of a free gas zone and the distribution of the hydrate emplacements in our 2-dimensional simulations.  相似文献   

6.
Cold seeps are pervasive along the continental margin worldwide,and are recognized as hotspots for elemental cycling pathway on Earth.In this study,analyses of pore water geochemical compositions of one-400 cm piston core(S3) and the application of a mass balance model are conducted to assess methane-associated biogeochemical reactions and uncover the relationship of methane in shallow sediment with gas hydrate reservoir at the Makran accretionary wedge off Pakistan.The results revealed that approximately 77% of sulfate is consumed by the predominant biogeochemical process of anaerobic oxidation of methane.However,the estimated sulfate-methane interface depth is-400 cm below sea floor with the methane diffusive flux of 0.039 mol/(m~2·a),suggesting the activity of methane seepage.Based on the δ~(13)C_(DIC) mass balance model combined with the contribution proportion of different dissolved inorganic carbon sources,this study calculated the δ~(13)C of the exogenous methane to be-57.9‰,indicating that the exogenous methane may be a mixture source,including thermogenic and biogenic methane.The study of pore water geochemistry at Makran accretionary wedge off Pakistan may have considerable implications for understanding the specific details on the dynamics of methane in cold seeps and provide important evidence for the potential occurrence of subsurface gas hydrate in this area.  相似文献   

7.
Authigenic carbonates are frequently associated with methane cold-seep systems, which extensively occur in various geologic settings worldwide. Of interest is the relation between the fluids involved in their formation and the isotopic signals recorded in the carbonate cements. Along the Northern Apennines foothills (Italy), hydrocarbons and connate waters still seeping nowadays are believed to be the primary sources for the formation of fossil authigenic carbonate found in Plio-Pleistocene marine sediments. Four selected outcrops of dolomitic authigenic carbonates were analysed to compare signature of seeping fluids with fractionation of stable carbon and oxygen isotopes recorded in the carbonate.Along the foothills, deep methane-rich fluids spontaneously rise to the surface through mud volcanoes or are exploited in wells drilled nearby to the fossil Plio-Pleistocene authigenic carbonates. The plumbing system providing fluids to present-day cold seeps was structurally achieved in Late Miocene and Plio-Pleistocene. δ13C values of methane, which vary from −51.9 to −43.0‰ VPDB, indicate that gas composition from the deep hydrocarbon reservoirs is relatively uniform along the foothills. On the contrary, δ13C in fossil authigenic carbonates strongly varies among different areas and also within the same outcrop.The different carbon sources that fed the investigated carbonates were identified and include: thermogenic methane from the deep Miocene reservoirs, 13C-enriched CO2 derived from secondary methanogenesis and microbial methane from Pliocene successions buried in the Po Plain. The δ13C variability documented among samples from a single outcrop testifies that the authigenic carbonates might represent a record of varying biogeochemical processes in the hydrocarbon reservoirs. The sources of stable oxygen isotopes in authigenic carbonates are often ascribed to marine water. Oxygen isotopic fractionation in the dolomite cements indicates that marine pore water couldn't be the sole source of oxygen. δ18O values provide a preliminary evidence that connate waters had a role in the carbonates precipitation. The concomitant occurrence of active cold seepages and fossil record of former plumbing systems suggests that generation and migration of hydrocarbons are long-lasting and very effective processes along the Northern Apennines foothills.  相似文献   

8.
《Marine and Petroleum Geology》2012,29(10):1856-1869
We have implemented a 2-dimensional numerical model for simulating gas hydrate and free gas accumulation in marine sediments. The starting equations are those of the conservation of the transport of momentum, energy, and mass, as well as those of the thermodynamics of methane hydrate stability and methane solubility in the pore-fluid. These constitutive equations are then integrated into a finite element in space, finite-difference in time scheme. We are then able to examine the formation and distribution of methane hydrate and free gas in a simple geologic framework, with respect to the geothermal heat flow, fluid flow, the methane in-situ production and basal flux. Three simulations are performed, leading to the build up of hydrate emplacements largely linear through time. Models act primarily as free gas accumulators and are relatively inefficient with respect to hydrate emplacements: 26–33% of formed methane are converted to hydrate. Seepage of methane across the sea-floor is negligible for fluid flow below 2. 10−11 kg/m2/s. At 5.625 10−11 kg/m2/s however, 9.7% of the formed methane seeps out of the model. Moreover, along strike variation arising in the 2-dimensional model are outlined. In the absence of focused flow, the thermodynamics of hydrate accumulation are primarily one-dimensional. However, changes in free methane compressibility (density) and methane solubility (the intrinsic dissolved methane flux) subtlety impact on the formation of a free gas zone and the distribution of the hydrate emplacements in our 2-dimensional simulations.  相似文献   

9.
Multidisciplinary surveys were conducted to investigate gas seepage and gas hydrate accumulation on the northeastern Sakhalin continental slope (NESS), Sea of Okhotsk, during joint Korean–Russian–Japanese expeditions conducted from 2003 to 2007 (CHAOS and SSGH projects). One hundred sixty-one gas seeps were detected in a 2000 km2 area of the NESS (between 53°45′N and 54°45′N). Active gas seeps in a gas hydrate province on the NESS were evident from features in the water column, on the seafloor, and in the subsurface: well-defined hydroacoustic anomalies (gas flares), side-scan sonar structures with high backscatter intensity (seepage structures), bathymetric structures (pockmarks and mounds), gas- and gas-hydrate-related seismic features (bottom-simulating reflectors, gas chimneys, high-amplitude reflectors, and acoustic blanking), high methane concentrations in seawater, and gas hydrates in sediment near the seafloor. These expressions were generally spatially related; a gas flare would be associated with a seepage structure (mound), below which a gas chimney was present. The spatial distribution of gas seeps on the NESS is controlled by four types of geological structures: faults, the shelf break, seafloor canyons, and submarine slides. Gas chimneys that produced enhanced reflection on high-resolution seismic profiles are interpreted as active pathways for upward gas migration to the seafloor. The chimneys and gas flares are good indicators of active seepage.  相似文献   

10.
程俊  王淑红  黄怡  颜文 《海洋科学》2019,43(5):110-122
综述了天然气水合物赋存区甲烷渗漏活动的地球化学响应指标的研究进展,分析了应用单一指标识别甲烷渗漏活动各自所存在的问题,包括浅表层沉积物孔隙水中CH_4、SO_4~(2–)、Cl~–等离子浓度随深度的变化;浅层沉积物全岩W_(TOC)(W表示质量分数,TOC表示总有机碳)和W_(TS)(TS表示总硫)之间的相关性及比值;自生碳酸盐岩δ~(13)C和δ~(18)O;自生矿物重晶石、黄铁矿、自生石膏的δ~(34)S;有孔虫壳体和生物标志化合物的δ~(13)C等。结果表明孔隙水中的CH_4、SO4_~(2–)浓度及溶解无机碳的碳同位素组成可以用来识别目前正在发生的甲烷渗漏活动;而沉积物中的WTS、自生矿物的δ~(34)S、钡含量及其异常峰值和生物标志化合物的δ~(13)C等指标的联合使用可以更真实准确地反映地质历史时期天然气水合物赋存区的甲烷渗漏活动。因此,在实际研究过程中,可将孔隙水和沉积物两种介质的多种指标相结合。随着非传统稳定同位素(Fe、Ca、Mg等)和沉积物氧化还原敏感元素(Mo、V、U等)等研究的发展,甲烷渗漏活动地球化学响应指标的研究也将得到拓展,而多种地球化学指标的联合使用将为天然气水合物勘探及其形成分解过程识别研究提供重要的科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号