首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
综合利用Argo温、盐度观测剖面资料,以及中国南极科学考察沿途获取的XBT温度剖面,分析探讨了苏拉威西海域(117~127°E,0~8°N)上表层的温度和盐度的气候态分布和变化特征。结果表明,苏拉威西海域的温度范围约为2.5~30°C,盐度约为33.2~35.1‰;与垂向变化相比,温、盐度水平梯度均较小,温度随深度的增加逐渐降低,而盐度则呈现先增后减再增,两低一高的分布特征,整个海域表层呈现出高温低盐的分布特征,次表层温度稍有降低,盐度增加,中层则表现为高温高盐,500 m以深,温、盐度趋于均匀,底层呈现低温高盐的特性;50~150 m深度处,存在明显的温跃层,夏季(7~9月)跃层深度小于90 m,冬季(1~3月)则平均约为110 m,而4月份的观测剖面上表现出的温跃层深度明显比11月份深,苏拉威西海域中部的温跃层相对也较深。  相似文献   

2.
综合利用Argo温、盐度观测剖面资料,以及中国南极科学考察时沿途获取的XBT温度剖面,分析探讨了苏拉威西海域(117°E—127°E,0°—8°N)上表层温度和盐度的气候态分布和变化特征。结果表明,苏拉威西海域的温度范围约为2.5℃~30℃,盐度约为33.2‰~35.1‰。与垂向变化相比,温、盐度水平梯度均较小,温度随深度的增加逐渐降低,而盐度则呈现先增后减再增,两低一高的分布特征。整个海域表层呈现出高温低盐的分布特征,次表层温度稍有降低,盐度增加,中层则表现为高温高盐,500 m以深区域温、盐度趋于均匀,底层呈现低温高盐的特性。50~150 m深度处,存在明显的温跃层,夏季(7—9月)跃层深度小于90 m,冬季(1—3月)跃层深度平均约为110 m,而4月份的观测剖面表现出的温跃层深度明显比11月份深,苏拉威西海域中部的温跃层相对也较深。  相似文献   

3.
利用全球海洋Argo网格数据集、SODA月平均海洋数据集和CCMP风场数据,通过EOF分析,揭示了阿拉伯海5、50、100、200 m层海温全年2次增温、2次降温的双峰变化特征.结果表明,5 m层温度变化双峰信号出现在第一模态,其方差贡献率为75.79%,该信号主要受风场、太阳辐射及风生环流影响;50 m层温度变化双峰信号出现在第三模态,其方差贡献率为11.95%,该信号主要受风生环流影响;100 m层温度变化双峰信号出现在第一模态和第三模态,其中第一模态方差贡献率为52.03%,第三模态方差贡献率为9.55%.由100 m层第一模态可知,100 m层温度变化幅度最大、变化范围最广,是由于100 m层处于海洋温度变化最为剧烈的温跃层中.100 m层海温变化主要受风应力旋度(方向:向上为正)影响,风应力旋度为负时,大气对海洋的强迫导致局地海水辐合,温跃层加深,100 m层部分海域温度升高;风应力旋度为正时,大气对海洋的抽吸导致局地海水辐散,海洋深处的冷水上升,100 m层部分海域温度降低.  相似文献   

4.
数据集整体的时空覆盖率制约了海洋科学研究的时空尺度,而海洋仪器的性能和观测方式直接决定了海洋数据的可靠性。以观测仪器作为主要衡量指标,结合数据集的时空覆盖率,对以温度和盐度为数据集主体的自持式拉格朗日环流剖面观测(Argo)数据集、全球温盐剖面数据集(GTSPP)、世界海洋数据集(WOD)进行分析和比对,确定了三者关系:Argo和GTSPP都是WOD的数据源,而GTSPP中包含了Argo实时数据的80%。在此基础上研究确定了目前温盐数据的主要观测仪器为Argo浮标、XBT和CTD,并对这三种仪器的误差来源和量级进行详细分析:由于全球自动观测与传输需求,Argo数据存在电子信号不稳定导致的随机误差,而且在高纬度强温跃层地带出现较强的虚假盐度尖峰,再是自由漂移的特性导致1%~2%盐度剖面漂移超过0.02 PSS-78;由于下降方程的不断演变,全球半数XBT数据提供者并未提供仪器型号,导致数据整体的可靠性下降;由于CTD基本采用船载观测,因此成本高、共享数据少且多集中近海。因此在对全球温盐数据进行应用时,应综合考虑观测仪器的可靠性和时空覆盖率,有效实现对资料本身误差和真实海洋现象的甄别。  相似文献   

5.
提出了一种以海表面温度为输入参数的海水温度分层模型。以2005—2012年的Argo气候态数据集与Argo浮标数据为基础,采用相对梯度法对海水温度垂向结构进行了分层,并据此获取了各层拟合方程所需的参数,包括:混合层深度、混合层梯度、温跃层上界深度、温跃层下界深度、深层大洋起始深度以及方程拟合系数。本文通过世界大洋数据库09版的CTD、XBT实测剖面数据对模型进行了检验。检验结果表明,该模型可以有效地对海水温度结构进行模拟,特别是400m以上的中上层大洋。模拟结果的总体均方根差(RMSE)为0.778℃,而在水深400m以上的中上层区域误差为0.494℃。  相似文献   

6.
亚丁湾海域是印度洋西部一个重要海洋运输通道,其海水性质变化多样,海水运动复杂,对航海等起着重要作用。利用了海浪-环流耦合模式建立的全球大洋环流预报系统2008年的预报结果,结合实时/准实时的Argo观测资料,针对亚丁湾海域进行了模拟与观测的对比研究。对比分析包括:不同季节代表月份的预报结果与Argo剖面的比较、预报结果与全年Argo观测温度误差的统计分析等。比较表明:该预报结果与Argo观测剖面吻合较好,温度预报在整体上具有较小的误差,在100 m以深的海洋下层有75%的温度误差分布在±1℃范围内,而100m以浅的海洋上层的温度误差在该范围占67%。比较结果也显示预报的上层混合作用仍略偏弱,剖面中的逆温现象没有在预报中反映出来等,其机制有待深入研究,可能受分辨率低的限制。这些结果为将来在该海域建立高分辨率的海洋环流预报系统有一定借鉴意义。  相似文献   

7.
走航式海洋多参数剖面测量系统(MVP)是一种集成程度和自动化程度都较高的海洋调查设备,能对多要素进行同时观测,获得高水平空间分辨率的数据资料。MVP由于温度和电导率传感器响应时间的不匹配,下放速度过快(峰值速度4m/s)而造成非常严重的盐度尖峰现象。本研究通过结合F法、GM法和Grose法提出的盐度尖峰订正方案,提出了一种新的方法Match conductivity and temperature response times法,对压力、温度和电导率传感器三者进行响应时间的匹配来减弱盐度尖峰。与SBE-9型CTD资料进行对比发现订正后的资料误差比订正前减小80%,与CTD盐度曲线互相关程度为0.917。对比35N断面修正前后的盐度资料发现订正后温盐跃层处出现的低盐区域消失,与CTD断面资料对比结果显示MVP资料比CTD资料在细结构上更具有优势。  相似文献   

8.
抛弃式温深计(XBT)是一种测量海洋垂直剖面温度的仪器。目前这种产品仅美国Sipican公司独家批量生产。1984年国家海洋局第三海洋研究所研制并通过设计定型鉴定的SZC7-2型XBT,其主要技术指标已达或接近了Sipican公司同类产品指标,但尚需进行中试,方能投产。它需解决如下问题:在确保仪器设计定型主要技术指标前提下,缩短整机时间常数,提高仪器稳定性、可靠性,完善并简化使用步骤,提高  相似文献   

9.
Argo浮标观测已成为全球海洋观测系统的重要支柱,但因缺乏表层观测,使得Argo观测资料在海洋和大气研究中的应用仍有一定的局限性。基于一个简化的海洋温度参数模型,由Argo剖面观测及气候态数据所确定的垂向海洋温度参数,得到表层与次表层温度的函数关系,进而利用太平洋海域的Argo次表层温度数据来推算表层温度场。其中,海温参数模型的相关参数采用最大角度法求得,利用此方法得到的混合层深度,温跃层梯度,温跃层下边界等参数较以往的迭代法更精确。与传统采用外插方式得到的表层温度场及卫星反演的SST相比,推算的Argo表层温度与GTSPP、Argo NST等实测资料的标准差有了显著地降低;与Argo NST现场观测数据的相关性分析也表明,推算的表层温度与实测资料有着更好地一致性;通过相关分析检验,在理论上验证了在太平洋海域利用海温参数模型推算海表温度的可行性。本研究为弥补当前Argo资料缺乏表层观测的缺陷,构建完备的Argo网格化温度数据集提供了新途径,具有重要的科学意义和应用价值。  相似文献   

10.
闽中渔场的温、盐跃层分布与亚硝酸盐的层化现象   总被引:1,自引:0,他引:1  
本文根据1982—1983年闽中渔场鱼类资源调查的资料,分析了本海区温、盐度跃层的强度及分布特征.结果表明:闽江口断面和平潭断面存在较强的跃层.温跃层一般出现在夏季.温跃层的强度可高达0.50℃/m,出现在牛山岛附近(水深10—20m).盐跃层一般出现在春季.盐跃层的强度可高达1.03/m,出现在闽江口白犬岛附近(水深0—10m).5月份处于丰水期,流量较大的闽江水排入海洋。由于其盐度低、比重小而浮于海水的上层,形成盐跃层现象.盐跃层最常出现的海区是在牛山岛附近.文中还探讨了闽中渔场的亚硝酸盐层化现象.3—8月,亚硝酸盐含量在水深0—20m层均较低,20m至底层含量则大幅度升高,亦出现明显的分层现象.  相似文献   

11.
The World Ocean Database 2005 as of May 2009 is used to estimate temperature and sample depth biases of expendable (XBT) and mechanical (MBT) bathythermographs by comparing bathythermograph temperature profiles with more accurate bottle and conductivity/temperature/depth (CTD) data. It is shown that the application of depth corrections estimated earlier from side-by-side XBT/CTD inter-comparisons, without accounting for a pure thermal bias, leads to even larger disagreement with the CTD and bottle reference temperatures. Our calculations give evidence for a depth-variable XBT fall-rate correction with the manufacturer-derived depth being underestimated in the upper 200 m and overestimated below this depth. These results are in agreement with side-by-side inter-comparisons and direct fall-rate estimates. Correcting XBT sample depths by a multiplicative factor which is constant with depth does not allow an effective elimination of the total temperature bias throughout the whole water column. The analysis further suggests a dependence of the fall rate on the water temperature which was reported earlier in the literature. Comparison among different correction schemes implies a significant impact of systematic biases on the estimates of the global ocean heat content anomaly.  相似文献   

12.
New CTD-XBT (T-7 probe) comparison data are analyzed, which provide additional evidence of XBT depth error and support previous results (Hanawa and Yoritaka, 1987; Hanawa and Yoshikawa, 1991). The depth difference between the corrected and uncorrected data is about 26 m at 750 m. In the present study, new data processing procedures by which the depth errors are automatically detected, are developed and adopted. In the new method, first, temperature gradients (TG) of XBT and CTD profiles are calculated. Then, 20 m segment of the XBT-TG profile which should fit to the CTD-TG profile of 20 m segment to be referred to is searched in the XBT-TG profile. Actually, this is achieved by shifting the XBT-TG profile of 20 m segment so as to minimize the area surrounded by both TG profiles. The shifted depth of XBT-TG profile for CTD-TG profile can be regarded as the XBT depth error. This processing is repeated at intervals of 5 m from 10 m to 790 m of CTD-TG profile. The relationship between the scatter of the quadratic depth-time equation coefficients and the depth error is also discussed. It is shown that when the two coefficients have a certain relationship, the depth differences between the plural depth-time equations are small, even if the two coefficients of those equations have apparently very different values.This paper was presented and discussed in the Ad Hoc Meeting of the IGOSS Task Team on Quality Control for Automated System, held in Marion, Massachusetts,U.S.A. in June 3–6, 1991.  相似文献   

13.
As reported in former studies, temperature observations obtained by expendable bathythermographs (XBTs) and mechanical bathythermographs (MBTs) appear to have positive biases as much as they affect major climate signals. These biases have not been fully taken into account in previous ocean temperature analyses, which have been widely used to detect global warming signals in the oceans. This report proposes a methodology for directly eliminating the biases from the XBT and MBT observations. In the case of XBT observation, assuming that the positive temperature biases mainly originate from greater depths given by conventional XBT fall-rate equations than the truth, a depth bias equation is constructed by fitting depth differences between XBT data and more accurate oceanographic observations to a linear equation of elapsed time. Such depth bias equations are introduced separately for each year and for each probe type. Uncertainty in the gradient of the linear equation is evaluated using a non-parametric test. The typical depth bias is +10 m at 700 m depth on average, which is probably caused by various indeterminable sources of error in the XBT observations as well as a lack of representativeness in the fall-rate equations adopted so far. Depth biases in MBT are fitted to quadratic equations of depth in a similar manner to the XBT method. Correcting the historical XBT and MBT depth biases by these equations allows a historical ocean temperature analysis to be conducted. In comparison with the previous temperature analysis, large differences are found in the present analysis as follows: the duration of large ocean heat content in the 1970s shortens dramatically, and recent ocean cooling becomes insignificant. The result is also in better agreement with tide gauge observations. On leave from the Meteorological Research Institute of the Japan Meteorological Agency.  相似文献   

14.
Two distinct layers usually exist in the upper ocean. The first has a near-zero vertical gradient in temperature (or density) from the surface and is called the isothermal layer (or mixed layer). Beneath that is a layer with a strong vertical gradient in temperature (or density), called the thermocline (or pycnocline). The isothermal layer depth (ILD) or mixed layer depth (MLD) for the same profile varies depending on the method used to determine it. Also, whether they are subjective or objective, existing methods of determining the ILD do not estimate the thermocline (pycnocline) gradient. Here, we propose a new exponential leap-forward gradient (ELG) method of determining the ILD that retains the strengths of subjective (simplicity) and objective (gradient change) methods and avoids their weaknesses (subjective methods are threshold-sensitive and objective methods are computationally intensive). This new method involves two steps: (1) the estimation of the thermocline gradient G th for an individual temperature profile, and (2) the computation of the vertical gradient by averaging over gradients using exponential leap-forward steps. Such averaging can filter out noise in the profile data. Five existing methods of determining the ILD (difference, gradient, maximum curvature, maximum angle, and optimal linear fitting methods) as well as the proposed ELG method were verified using global expendable bathythermograph (XBT) temperature and conductivity–temperature–depth (CTD) datasets. Among all the methods considered, the ELG method yielded the highest skill score and the lowest Shannon information entropy (i.e., the lowest uncertainty).  相似文献   

15.
The accuracy of temperature measurement by the expendable bathythermograph (XBT) is examined for five types of recorders by comparison with co-located CTD measurements and statistical analysis of temperature profiles including an isothermal layer. A positive temperature error increasing downward is occasionally detected for two types of Japanese recorder which have been commonly used among Japanese oceanographic institutions and marine observatories. This error resembles to that reported by Bailey et al. (1989) and Wright (1991) for a different type of recorders, although its cause is not clearly understood. The irregular occurrence of the error suggests that the problem is not solely due to the recorders but rather by some inconsistency of the whole measuring system including them, an XBT probe and sea water. The error is estimated to increase at a rate of O (0.1°C/100 m), and it could be close to 1°C at the deepest part of the profiles (760 m for Tsurumi T-7). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Comparison experiment between XBT of T-7 probe and CTD was conducted at 15 stations in the sea area centered on 29°N, 135°E in December 1985. There were systematic errors in XBT temperature profiles in comparison with CTD temperature profiles. The main cause of errors was attributed to an error in the free-fall speed of the XBT probes which was provided by the XBT maker. A previous equation for depth correction proposed by Heinmilleret al. (1983) could not give effective correction for our data. A new equation between the probe depth and the elapsed time from landing of the probe on the water was obtained by the method of adjusting temperature gradients of XBT profiles to those of CTD profiles. This equation agreed with the theoretical result given by Seaver and Kuleshov (1982) much better than that of Heinmilleret al. (1983). Systematic errors due to a scatter of values of the reference resistance and variation of B-constant of thermistors used in XBT also seemed to exist. After an adjustment using the temperature difference between XBT and CTD in the mixed layer with depths of about 100 m, the standard deviation of temperature difference between XBT and CTD from the surface to the depth of 750 m was 0.14°C.  相似文献   

17.
采用梯度依赖相关尺度方法构建了1套2004—2017年间,月平均的全球海洋(0~1 500 m)1°×1°的Argo数据集,并在对该数据集进行对比检验的基础上,将其初步应用于中西太平洋黄鳍金枪鱼的渔场分析研究。结果表明,所构建的Argo数据集与WOA13数据集的温、盐偏差在上表层(150 m)稍大,最大值分别约为0.5 ℃和0.1,且偏差均随深度的增加而逐渐减小;其与TAO浮标时间序列的温度偏差,2004—2017年间均小于1 ℃,最大盐度偏差则小于0.5,且大部分海域接近0。中西太平洋海域,黄鳍金枪鱼中心渔场多集中在 28~29 ℃ 等温线范围内,在 22 ℃以下的海域单位捕捞努力量渔获量(catch per unit effort,CPUE)值极小;中心渔场区温跃层上界深度范围在20~120 m之间,且中心渔场在各个深度上形成的频数大体呈正态分布,温跃层上界深度为90 m时,形成中心渔场的可能性达到最大。研究表明所构建的数据集在水文环境分析及资源评估中有一定的应用价值。  相似文献   

18.
The S/V Shoyo, of the Hydrographic Department, Japan Coast Guard, has conducted high-density expendable bathythermograph (XBT) measurements along the 32.5°N line in the North Pacific every year from 1990 to 1993 as a part of the Japanese-World Ocean Circulation Experiment (WOCE). These XBT data are analyzed here, focusing on year-to-year variations of the inventory and core layer temperature (CLT) of the North Pacific subtropical mode water (NPSTMW). Large year-to-year changes are found in the NPSTMW CLTs estimated in longitudes between 140°E and 160°E. CLT values were found of 17.4°C in 1990, 17.1°C in 1991, 17.3°C in 1992 and 17.6°C in 1993. Inspection of the wintertime westerlies over the formation area and sea surface temperature distribution revealed that this change in CLT can be qualitatively attributed to the strength of atmospheric cooling in the formation area in the previous winter. Although a large year-to-year variation of NPSTMW inventory was also found, it is hard to state any relationship between CLT and atmospheric forcing. There is a possibility that different observational seasons may affect the inventory. It has also been found that the thermocline depth in 1991 was shallower in the sea area east of 180° than in 1992 and 1993. Associated with this change, the North Pacific central mode water (NPCMW), characterized by thermostad with temperatures ranging from 14°C to 11°C, appears in the sea area east of 180° in the 1992 and 1993 cross sections. The 1993 cross section, which ranged from the Japanese coast to the west coast of North America, possessed another thermostad in the surface layer, with a temperature of about 17°C in the eastern part of the cross section, off California. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
A non-destructive temperature calibration system for expendable bathythermographs (XBT) is described. A transfer standard technique has been used to estimate XBT thermistor probe-to-probe temperature variability. One-point calibration results suggest that a standard deviation of 0.025°C is typical at 10°C. Additional calibration data from nine XBT thermistors suggest that probe-to-probe temperature variability is largest at 0°C (ca. 0.03°C) and decreases uniformly to a minimum at 30°C (ca. 0.01°C).  相似文献   

20.
中西太平洋鲣渔场与温盐垂直结构关系的研究   总被引:1,自引:0,他引:1  
根据我国某公司2009-2011年在中西太平洋海域鲣鱼围网生产数据和CATSAT系统渔场环境数据,采用K-S检验筛选出与渔获关系密切的环境变量,然后采用均值比较确定适宜的渔获环境范围。K-S检验认为,渔获量与0m、20m、30m、50m、75m、125m、150m、200m、250m、300m水温、温跃层深度、200m盐度等环境变量关系密切。选择中心渔场的适合环境因子及其范围为:0m水温29.9~31℃、20m水温30.1~31.4℃、30m水温30.3~31.3℃、50m水温30.1~31.7℃、75m水温29.8~31.7℃、150m水温22.8~27.1℃、200m水温15.3~21.8℃、250m水温12.5~15.4℃、300m水温9.6~11.7℃、温跃层深度71~140m、200盐度34.71~35.40。研究结果不仅可用于改进渔情预报工作,而且可直接用于指导渔业生产实践。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号