首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Numerical simulation of dam-break wave, as an imitation of tsunami hydraulic bore, with a hump of different slopes is performed in this paper using an in-house code, named a Constrained Interpolation Profile (CIP)-based model. The model is built on a Cartesian grid system with the Navier Stokes equations using a CIP method for the flow solver, and employs an immersed boundary method (IBM) for the treatment of solid body boundary. A more accurate interface capturing scheme, the Tangent of hyperbola for interface capturing/Slope weighting (THINC/SW) scheme, is adopted as the interface capturing method. Then, the CIP-based model is applied to simulate the dam break flow problem in a bumpy channel. Considerable attention is paid to the spilling type reflected bore, the following spilling type wave breaking, free surface profiles and water level variations over time. Computations are compared with available experimental data and other numerical results quantitatively and qualitatively. Further investigation is conducted to analyze the influence of variable slopes on the flow features of the tsunami-like bore.  相似文献   

2.
In this study,the water entry of wedges in regular waves is numerically investigated by a two-dimensional in-house numerical code.The numerical model based on the viscous Navier?Stokes(N?S)equations employs a high-order different method—the constrained interpolation profile(CIP)method to discretize the convection term.A Volume of Fluid(VOF)-type method,the tangent of hyperbola for interface capturing/slope weighting(THINC/SW)is employed to capture the free surface/interface,and an immersed boundary method is adopted to treat the motion of wedges.The momentum source function derived from the Boussinesq equation is applied as an internal wavemaker to generate regular waves.The accuracy of the numerical model is validated in comparison with experimental results in the literature.The results of water entry in waves are provided in terms of the impact force of wedge,velocity and pressure distributions of fluid.Considerable attention is paid to the effects of wave parameters and the position of wedge impacting the water surface.It is found that the existence of waves significantly influences the velocity and pressure field of fluid and impact force on the wedges.  相似文献   

3.
A fully nonlinear numerical model based on a time-domain higher-order boundary element method (HOBEM) is founded to simulate the kinematics of extreme waves. In the model, the fully nonlinear free surface boundary conditions are satisfied and a semi-mixed Euler-Lagrange method is used to track free surface; a fourth-order Runga-Kutta technique is adopted to refresh the wave elevation and velocity potential on the free surface at each time step; an image Green function is used in the numerical wave tank so that the integrations on the lateral surfaces and bottom are excluded. The extreme waves are generated by the method of wave focusing. The physical experiments are carried out in a wave flume. On the horizontal velocity of the measured point, numerical solutions agree well with experimental results. The characteristics of the nonlinear extreme-wave kinematics and the velocity distribution are studied here.  相似文献   

4.
In this paper, a numerical model is established. A modified N-S equation is used as a control equation for the wave field and porous flow area. The control equations are discreted and solved by the finite difference method. The free surface is tracked by the VOF method. The pressure field and velocity field of the whole flow area are solved by the reiterative iteration method. Finally, compared with the physical model test results of wave flume, the numerical model established in the present study is validated.  相似文献   

5.
A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large eddy simulation(LES) approach is employed to model the turbulence by using the Smagorinsky Sub-Particle Scale(SPS)closure model. This paper uses MPS-FSI method with LES to simulate the interaction between free surface flow and a thin elastic baffle in sloshing. Then, the numerical model is validated, and the numerical solution has good agreement with experimental data for sloshing in a tank with elastic baffles. Furthermore, under external excitations,the MPS is applied to viscous laminar flow and turbulent flow, with both the deformation of elastic baffles and the wave height of the free surface are compared with each other. Besides, the impact pressure with/without baffles and wave height of free surface are investigated and discussed in detail. Finally, preliminary simulations are carried out in the damage problem of elastic baffles, taking the advantage of the MPS-FSI method in computations of the fluid–structure interaction with large deformation.  相似文献   

6.
Simulation of solitary wave run-up on a vertical circular cylinder is carried out in a viscous numerical wave tank developed based on the open source codes Open FOAM. An incompressible two-phase flow solver naoe-FOAM-SJTU is used to solve the Reynolds-Averaged Navier–Stokes(RANS) equations with the SST k ?? turbulence model. The PISO algorithm is utilized for the pressure-velocity coupling. The air-water interface is captured via Volume of Fluid(VOF) technique. The present numerical model is validated by simulating the solitary wave run-up and reflected against a vertical wall, and solitary wave run-up on a vertical circular cylinder. Comparisons between numerical results and available experimental data show satisfactory agreement. Furthermore, simulations are carried out to study the solitary wave run-up on the cylinder with different incident wave height H and different cylinder radius a. The relationships of the wave run-up height with the incident wave height H, cylinder radius a are analyzed. The evolutions of the scattering free surface and vortex shedding are also presented to give a better understanding of the process of nonlinear wave-cylinder interaction.  相似文献   

7.
This is a numerical study on the time development of surface waves generated by a submerged body moving steadily in a two-layer fluid system, in which a layer of water is underlain by a layer of viscous mud. The fully nonlinear Navier–Stokes equations are solved on FLUENT with the Volume-of-Fluid (VOF) multiphase scheme in order to simulate the free surface waves as well as the water–mud interface waves as functions of time. The numerical model is validated by mimicking a reported experiment in a one-layer system before it is applied to a two-layer system. It is found that the presence of bottom mud in a water layer can lead to large viscous damping of the surface waves. To investigate the problem systematically, the effects of the Froude number and the mud layer thickness, density and viscosity relative to those of water are evaluated and discussed in detail.  相似文献   

8.
A Coupling Model of Nonlinear Wave and Sandy Seabed Dynamic Interaction   总被引:3,自引:1,他引:2  
In the paper,a weak coupling numerical model is developed for the study of the nonlinear dynamic interaction between water waves and permeable sandy seabed.The wave field solver is based on the VOF(Volume of Fluid)method for continuity equation and the two-dimensional Reynolds Averaged Navier Stokes(RANS)equations with a k-ε closure.The free surface of cnoidal wave is traced through the PLIC-VOF(Piecewise Linear Interface Construction).Biot's equations have been applied to solve the sandy seabed,and the u-p finite element formulations are derived by the application of the Galerkin weighted-residual procedure.The continuity of the pressure on the interface between fluid and porous medium domains is considered.Laboratory tests were performed to verify the proposed numerical model,and it is shown that the pore-water pressures and the wave heights computed by the VOF-FEM models are in good agreement with the experimental results.It is found that the proposed model is effective in predicting the seabed-nonlinear wave interaction and is able to handle the wave-breakwater-seabed interaction problem.  相似文献   

9.
A two-dimensional numerical wave flume based on SA-MPLS method   总被引:1,自引:0,他引:1  
A spatially adaptive(SA) two-dimensional(2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set(MPLS) method is proposed to solve the problem of interface tracking,in which common intersection may be traversed by multiple interfaces.By using the adaptive mesh technique and the MPLS method,mesh resolution is updated automatically with time according to flow characteristics in the modeling process with higher resolution around the free surface and the solid boundary and lower resolution in less important area.The model has good performance in saving computer memory and CPU time and is validated by computational examples of small amplitude wave,second-order Stokes wave and cnoidal wave.Computational results also indicate that standing wave and wave overtopping are also reasonably simulated by the model.  相似文献   

10.
This paper,with a finite element method,studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations.With this fully coupled model,the rigid structure is taken as "fictitious" fluid with zero strain rate.Both fluid and structure are described by velocity and pressure.The whole domain,including fluid region and structure region,is modeled by the incompressible Navier-Stokes equations which are discretized with fixed Eulerian mesh.However,to keep the structure's rigid body shape and behavior,a rigid body constraint is enforced on the "fictitious" fluid domain by use of the Distributed Lagrange Multiplier/Fictitious Domain(DLM/FD) method which is originally introduced to solve particulate flow problems by Glowinski et al.For the verification of the model presented herein,a 2D numerical wave tank is established to simulate small amplitude wave propagations,and then numerical results are compared with analytical solutions.Finally,a 2D example of fluid-structure interaction under wave dynamic forces provides convincing evidences for the method excellent solution quality and fidelity.  相似文献   

11.
Submerged horizontal plate can be considered as a new concept breakwater. In order to reveal the wave elimination mechanism of this type breakwater, boundary element method is utilized to investigate the velocity field around plate carefully. The flow field analysis shows that the interaction between incident wave and reverse flow caused by submerged plate will lead to the formation of wave elimination area around both sides of the plate. The velocity magnitude of flow field has been reduced and this is the main reason of wave elimination.  相似文献   

12.
The wave period probability densities in non-Gaussian mixed sea states are calculated by utilizing a transformed Gaussian process method. The transformation relating the non-Gaussian process and the original Gaussian process is obtained based on the equivalence of the level up-crossing rates of the two processes. A saddle point approximation procedure is applied for calculating the level up-crossing rates in this study. The accuracy and efficiency of the transformed Gaussian process method are validated by comparing the results predicted by using the method with those predicted by the Monte Carlo simulation method.  相似文献   

13.
The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to ensure the safety of the pipe-laying operation and the normal operation of the pipelines. In this paper, the non-linear governing differential equation for getting the two parameters during J-lay installation is proposed and solved by use of singular perturbation technique, from which the asymptotic expression of stiffened catenary is obtained and the theoretical expression of its static geometric configuration as well as axial tension and bending moment is derived. Finite element results are applied to verify this method. Parametric investigation is conducted to analyze the influences of the seabed slope, unit weight, flexural stiffness, water depth, and the pipe-laying tower angle on the maximum tension and moment of pipeline by this method, and the results show how to control the installation process by changing individual parameters.  相似文献   

14.
The Suzhou Creek Sluice is currently the largest underwater plain gate in the world, with a single span of 100 m. It is located in a tidal estuary at the junction of the Huangpu River and Suzhou Creek in Shanghai, China. In this study, physical and 2D vertical mathematical models were used to investigate and distinguish the mechanism of siltation downstream of an underwater plain gate from that of other gates types. According to quantitative data obtained by site investigation and the application of the physical hydrodynamic models, it was found that the characteristics of the tidal estuary as well as the fact that the sluice span is equal to the creek width are the major reasons contributing to siltation. A possible desiltation treatment system is proposed for the underwater plain gate. The system includes selection of a suitable location that allows the determination of a reasonable top elevation of the sluice floor, reserving sufficient space under the gate to accommodate siltation, setting up a mechanical desiltation system, and flushing silt along with overflow over the top of the gate. Furthermore, on-site hydraulic silt flushing experiments and a topography survey were conducted. These results showed that the measurement system is effective, and by maintaining this scheduled operation once a month, the downstream riverbed has been maintained in a good condition.  相似文献   

15.
Owing to the intensive human activities, the Modaomen Estuary has been significantly modified since 1950s, which has resulted in considerable changes of hydrodynamics and morphodynamics in the area. In this paper, the effects of the anthropogenic activities on the hydrodynamics and morphological evolution in the estuary at different stages are systematically assessed based on the detailed bathymetric data and field survey. The results show that the human activities have caused the channelization of the enclosed sea area in the Modamen Estuary;fast seaward movement of the mouth bar with high siltation;expansion of the channel volume due to channel deepening. The paper also highlights the main hydrodynamic changes in the estuary, including the rise of the water level;the distinguishing changes of tidal range before and after the 1990s (decrease and increase respectively); as well as the increase of the divided flow ratio. It is found that reclamation is the main factor promoting the transition of nature of the estuary from runoff dominant to runoff and wave dominant, and sand mining activities are mainly to strengthen the tidal dynamic and to low the water level. The results provide useful guidance for better planning of the future developments in the estuary and further research in the area.  相似文献   

16.
By taking the Yong River for example in this paper, based on the multiple measured data during 1957 to 2009, the change process of runoff, tide feature, tidal wave, tidal influx and sediment transport are analyzed. Then a mathematical model is used to reveal the influence mechanism on hydrodynamic characteristics and sediment transport of the wading engineering groups such as a tide gate, a breakwater, reservoirs, bridges and wharves, which were built in different periods. The results showed the hydrodynamic characteristics and sediment transport of the Yong River changed obviously due to the wading engineering groups. The tide gate induced deformation of the tidal wave, obvious reduction of the tidal influx and weakness of the tidal dynamic, decrease of the sediment yield of flood and ebb tide and channel deposition. The breakwater blocked estuarine entrances, resulting in the change of the tidal current and the reduction of the tidal influx in the estuarine area. The large-scale reservoirs gradually made the decrease of the Yong River runoff. The bridge and wharf groups took up cross-section areas, the cumulative affection of which caused the increase of tidal level in the tidal river.  相似文献   

17.
If the upstream boundary conditions are prescribed based on the incident wave only, the time-dependent numerical models cannot effectively simulate the wave field when the physical or spurious reflected waves become significant. This paper describes carefully an approach to specifying the incident wave boundary conditions combined with a set sponge layer to absorb the reflected waves towards the incident boundary. Incorporated into a time-dependent numerical model, whose governing equations are the Boussinesq-type ones, the effectiveness of the approach is studied in detail. The general boundary conditions, describing the down-wave boundary conditions are also generalized to the case of random waves. The numerical model is in detail examined. The test cases include both the normal one-dimensional incident regular or random waves and the two-dimensional oblique incident regular waves. The calculated results show that the present approach is effective on damping the reflected waves towards the incident wave boundary.  相似文献   

18.
This paper studies the continuous evolution of breaking wave for the surface water waves propagating on a sloping beach. A Lagrangian asymptotic solution is derived. According to the solution coupled with the wave breaking criteria and the equations of water particles motion, the wave deformation and the continuous wave breaking processes for the progressive water waves propagating on a sloping bottom can be derived. A series of experiments are also conducted to compare with the theoretical solution. The results show that the present solution can reasonably describe the plunging or spilling wave breaking phenomenon.  相似文献   

19.
While passing through a lock, a ship usually undergoes a steady forward motion at low speed. Owing to the size restriction of lock chamber, the shallow water and bank effects on the hydrodynamic forces acting on the ship may be remarkable, which may have an adverse effect on navigation safety. However, the complicated hydrodynamics is not yet fully understood. This paper focuses on the hydrodynamic forces acting on a ship passing through a lock. The unsteady viscous flow and hydrodynamic forces are calculated by applying an unsteady RANS code with a RNG k-ε turbulence model. User-defined function(UDF) is compiled to define the ship motion. Meanwhile, the grid regeneration is dealt with by using the dynamic mesh method and sliding interface technique. Numerical study is carried out for a bulk carrier ship passing through the Pierre Vandamme Lock in Zeebrugge at the model scale. The proposed method is validated by comparing the numerical results with the data of captive model tests. By analyzing the numerical results obtained at different speeds, water depths and eccentricities, the influences of speed, water depth and eccentricity on the hydrodynamic forces are illustrated. The numerical method proposed in this paper can qualitatively predict the ship-lock hydrodynamic interaction. It can provide certain guidance on the manoeuvring and control of ships passing through a lock.  相似文献   

20.
A two-dimensional flow numerical model of the tidal reaches, which total length is more than 700 km, is established from Datong to the Yangtze River estuary. The tidal levels, velocities, diversion ratios and dynamic axes before and after the separate regulation of each reach and combined regulation of all reaches are obtained. The comparative analysis shows that the regulation project of a separate reach basically has no impact on velocity distributions and variations of diversion ratios of upper and lower reaches, the variations of dynamic axes are only within the local scope of the project. The regulation project of a separate reach also has less impact on the water level in the lower adjacent reaches, but will make the water levels in the upper reaches rise. After the implementation of the regulation projects for all reaches, the rise of water level in the upstream reaches will have a cumulative impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号