首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
珠江口地区台风风暴潮的数值模拟试验   总被引:1,自引:0,他引:1  
本文选取了3个珠江口对造成严重风暴潮灾害的南海西北向路径的台风作为个例,利用国家海洋环境预报中心建立的业务化的台风风暴潮模式进行风暴潮后报检验.将结果与珠江口地区三个验潮站实际观测资料进行对比发现:模式的后报效果比较理想,对业务预报中最为关心的最大风暴增水值模拟较好,说明该模式对模拟这类型路径台风引起的风暴增水有较好的预报适用性.并且进一步发现:强度越大的台风,增水峰值模拟效果越好;该地区各验潮站的最大增水通常发生在台风中心距离验潮站最短的几个小时内.  相似文献   

2.
台风暴潮沿珠江河道上溯分析   总被引:5,自引:0,他引:5  
利用所收集的1957-1998年这40年期间在珠江口纵深一线引起较大增水的56次热带风暴(含台风)及其增水的资料,分析了台风暴潮沿珠江河道上溯运动的问题。一文从这些风暴登陆的地点及频率、在珠江口纵深引起最大增水的时刻、这些风暴路径爽珠江口的距离、珠江口纵深各站的最大增水比较,这些风暴增水和登陆时的风暴最大风速及中心气压的关系等方面讨论了有关的问题,得出了台风暴潮沿河道上溯情况的概貌,为进一步深入分  相似文献   

3.
宁德地区是我国受风暴潮影响较为严重的区域之一,同时也是宁德核电站等众多沿海大型工程所在地.鉴于该区域特殊的地理位置和海洋灾害的严重性,以宁德核电站为中心,对该区域所面临风暴潮风险的特征参数进行全面、综合的定量评估,包括潮汐特征、平均海平面变化、台风和风暴潮基本特征,特别是可能最大风暴潮的计算.研究结果表明,该区域10%超越频率的天文潮高、低潮位分别为355、-341 cm;平均海平面变化速率为0.162 cm/a;千年一遇的台风中心气压约为895h Pa,该气压时的最大台风风速半径为40 km.在进行大量敏感性实验的基础上,对台风移速、移向和风暴增水/减水的关系,以及增水和减水的差异就行了详细的研究,得出:台风增水主要是由移向在305°左右(295°~315°)、路过核电站下方(核电站以南)的台风引起,且增水随台风移速增大而增大;可能最大台风风暴增水由路径经过核电厂址南40 km的台风(移向295°、移速28 km/h)引起,最大台风增水值为526.8 cm;对于可能最大台风减水而言,最有利于台风风暴减水的移向在355°~360°和0°~15°之间,其中可能最大台风减水为-301.9 cm,由移向5°、移速30 km/h、路径经过核电厂址南30 km(0.75台风最大风速半径)的台风引起.  相似文献   

4.
随着滨海核电厂址的开发利用日趋饱和,选取海岛作为核电厂址成为一种新思路。针对海岛厂址易受台风灾害影响的问题,本文通过对天文高潮位、海平面上升、可能最大风暴潮增水和最大台风浪四个增水因子的研究来确定厂址的设计基准洪水位。结果表明:该区域10%超越概率的天文高潮位为3.14 m,未来80 a海平面上升幅度为0.31 m。基于MIKE21数值模型,以可能最大热带气旋参数为基础构建了多种假想台风路径,发现:当台风移动方向为NW向,距离厂址中心左侧0.5R(R为台风最大风速半径)时,风暴潮增水达到最大,增水最大值为2.99 m;当台风移动方向为W向,且距离厂址左侧R处时,台风浪波高达到最大,厂址前沿H1/100波高最大值达到了8.02 m;岛屿东侧遭受的风暴潮和波浪威胁较其他方向更为严重。各水位影响因子组合叠加后海岛核电厂址设计基准洪水位可达11.25 m。相对于其他滨海厂址,海岛厂址的风暴潮增水相对偏小,但受波浪的影响更为显著。  相似文献   

5.
珠江河口区水网密布,水动力条件复杂,风暴潮增水过程存在明显非线性叠加特征。本文运用ADCIRC(AdvancedCirculationHydrodynamicmodel)与SWAN(SimulatingWavesNearshore)模型,以1713号台风“天鸽”为实例,构建了珠江河口区风暴潮增水数值模拟模型,研究了珠江河口区风暴潮增水非线性叠加特征,得出如下结论:(1)在台风强度不变的情况下,在珠江口西岸登陆台风带来的增水最大,在伶仃洋西岸超过2 m。(2)风暴潮在珠江口西岸、东岸、河口区登陆,在高低潮和低低潮登陆带来的非线性效应水位较高,最高超过1 m。在高高潮和高低潮期登陆带来的非线性效应水位较低,最低非线性水位接近0 m。在珠江口西岸登陆的台风,其风暴潮-天文潮的非线性效应最大。  相似文献   

6.
一个高分辨率的长江口台风风暴潮数值预报模式及其应用   总被引:13,自引:1,他引:13  
利用河口海岸海洋模式(ECOM-Si)建立了一个适用于长江口区风暴潮的数值预报模式.该模式采用对岸线有较好拟合能力的自然正交水平坐标系统和能分辨较复杂海底地形的垂直σ坐标系统.模式考虑了长江口径流量对风暴潮的影响,部分地考虑了天文潮和风暴潮非线性相互作用对风暴增水的影响.风暴潮预报的大气强迫场用模型气压场和模型风场.利用所建立的模式对长江口区台风风暴潮进行了8个个例模拟,模拟增水与实测增水的峰值相比较,平均绝对误差不足10cm.利用本研究建立的模式,就气象因子对风暴潮位的敏感性进行了数值试验.试验结果表明,台风中心气压降低(升高)20hPa可导致约100cm的风暴潮位升高(或降低).台风最大风速半径误差对台风增水的变化影响也较显著.试验还表明,长江径流量增加1倍(减半),可以造成风暴潮的平均增加25cm(减小13cm).天文潮位相变化对风暴增水的影响数值试验表明,当台风暴潮与天文潮在不同位相相互作用,可使风暴潮位最大增加达70cm或减小90cm.  相似文献   

7.
基于FVCOM海洋模式对珠江口伶仃洋内及周边海域的风暴潮增水传播过程进行研究。首先,建立珠江口风暴潮模型,采用超强台风“山竹”作为典型案例进行风暴潮过程模拟,并对模型的计算结果进行验证,发现模拟结果和测站潮位结果比较吻合;然后,对伶仃洋在“山竹”登陆前后的风暴潮增水过程的时空分布及变化特征进行分析。从伶仃洋湾口到湾顶选取12个点进行时间序列分析,发现除了因距离外海远近不同导致的相位差异外,基本特征相似,符合国际上类似海湾内的风暴潮增水波动特征,可分为初振段、主振段和余振段。为了进一步研究台风参数差异对伶仃洋风暴潮增水的影响,本文基于“山竹”超强台风的特征参数,设计了一系列变化条件下的数值试验,结果发现:(1)台风的登陆时间会影响到风暴潮增水和天文潮之间的相位关系,进而影响到增水的大小。如果风暴潮增水极值正好在天文潮高潮位,风暴潮增水就会削弱,而风暴潮增水正好在天文潮低潮位,风暴潮增水就会增强。(2)台风中心压差决定了台风风力的大小,从而影响风暴潮增水。但是在同一海湾内的影响在空间上并不相同,在较浅区域影响大而较深区域影响小。(3)台风路径会对风暴潮增水产生较大影响。基于“山竹”的路径,...  相似文献   

8.
本文以福建罗源湾海域为重点研究区域,结合台风风暴潮数值模式,对不同强度、不同方向台风引起的风暴潮增(减) 水规律进行了数值模拟研究。通过对影响罗源湾海域的历史台风分析,确定了影响该区域的两种典型台风路径,即东南-西北移动 (NW-SE) 和南-北移动 (N-S) 路径。文中结果表明:在两种典型路径台风到达罗源湾海域时,罗源湾内的风暴增水达到极值,在超强台风 (中心气压及最大风速:945 hPa,55 km/h) 作用下,NW-SE 和 N-S 路径下增水极值分别为3.9 m 和 3.67 m。随着两种典型台风路径从湾外向湾内平移,湾内不同岸段的风暴增水表现出不同的规律:北岸和西岸增水逐渐增大且在典型台风路径过湾顶向西平移约 15 km 处达到最大;湾内南岸区域增水逐渐减小且在台风路径过湾口向湾外平移约 15 km 处达到最大;湾口站点增水极值随路径平移无明显变化。对于 N-S 典型路径方向,台风中心过罗源湾后有明显减水现象,且越靠近湾内的站点减水程度越大,超强台风作用下湾内西北角站点减水达 2.80m,而 NW-SE 路径的台风风暴减水现象不明显。  相似文献   

9.
广东省风暴潮时空分布特征及重点城市风暴潮风险研究   总被引:1,自引:0,他引:1  
收集、整理、分析1949年以来广东省10个典型验潮站的近500站次台风风暴潮过程,开展了广东省台风风暴潮和超警戒风暴潮时空分布特征研究。结果表明:广东省台风风暴潮主要发生时间为7—9月,其中7月最多、9月次之,雷州半岛东岸无论发生次数还是强度都明显偏多、偏强,其次为阳江;风暴潮灾害则主要发生在7—10月,以7月最多;风暴潮灾害频发区依次为珠江口、雷州半岛东岸、阳江和汕头,风暴潮灾害严重区依次为汕头、阳江和雷州半岛东岸,阳江和雷州半岛东岸为风暴潮灾害频发区和严重区。选取受台风风暴潮影响频繁和严重的典型区域阳江市。利用业务化的台风风暴潮模式开展了不同等级台风影响下阳江市的最大风暴潮风险研究,中心最低气压为970hPa的台风在最有利路径下产生的风暴潮为185cm,约20a一遇,940hPa的台风产生的风暴潮为310cm,约为500a一遇。  相似文献   

10.
以BP人工神经网络可有效描述非线性问题的特性应用于短期风暴潮增水预报,利用风暴潮增水与各项影响因素的关系,建立厦门沿海的风暴潮增水预报的人工神经网络模型。该模型将以台风中心最低气压、最大风速,七级大风半径、台风中心距测站位置的距离和测站当地气压、当地风速、天文潮位及增水值、作为主要的输入因子,预测未来1 h、2 h、3 h及6 h风暴潮增水值。分别探讨厦门沿海的风暴潮増水在3种代表性热带气旋路径的影响下的模型应用情况,由预报结果的分析显示:该BP神经网络模型所预报的风暴潮增水较好的拟合了实际变化趋势,表明本模型对于厦门沿海风暴潮増水的预报具有相当不错的成效。  相似文献   

11.
基于海洋自动观测站实测连续的水文气象数据,对1713号台风“天鸽”和1822号台风“山竹”影响期间广州近岸及珠江口水文气象特征进行了分析,并对海洋灾害影响动力因素进行了探讨。研究结果表明:(1)在台风影响期间,各观测站风速由平时的1~4级增至7~8级,风速均在受台风七级风圈影响6~7 h左右达到最大;潮位均超红色警戒潮位,最大增水2~3 m;波高由平时的1~2级增至3~4级;余流受风速影响先降后增,台风登陆当日余流值最低,台风使余流发生转向;海表温度下降1~2 ℃,海表盐度增大4~12。(2)对台风的响应由快至慢为:风速、余流、波浪、潮位、水温和盐度,波浪比风速晚1 h达到峰值,最高潮位出现在台风登陆1~2 h后,水温和盐度比风速对台风的响应晚5~6 h。(3)对波浪影响较大的因素主要为台风风圈半径、强台风持续时间、台风级别、移动速度等;对风暴增水影响较大的因素为台风强度和风圈半径,天文大潮、上游流量、地形等对潮位抬升也有一定影响,此外,波浪陡增对风暴增水具有较大影响,相关系数达0.7。(4)“山竹”登陆地点较“天鸽”远74 km且非天文大潮期,但引起的灾害较“天鸽”更严重,引起的最大增水较“天鸽”高30~50 cm,风暴潮等级Ⅱ级以上增水历时较“天鸽”长2.5 h,受4级海况影响时间较“天鸽”长11 h,主要原因是“山竹”的风圈半径远远大于“天鸽”,向陆移动过程中强台风持续时间远远长于“天鸽”。  相似文献   

12.
福建省沙埕港百年一遇台风风暴潮的计算   总被引:2,自引:0,他引:2  
研究了福建省沙埕港风暴潮状况,根据收集的沙埕验潮站连续50a(1956-2005)的台风过程增水资料以及西北太平洋57 a 的台风资料,采用皮尔逊Ⅲ统计法和数值法分别计算了沙埕港的100a一遇台风暴潮和 100a一遇最大台风暴潮,并得到了产生这两种台风增水的台风路径及强度等台风参数.沙埕港100a一遇台风暴潮为198 cm,100a一遇最大台风暴潮为243 cm,其中产生100a一遇台风暴潮的台风移向为NW方向,移速为19km/h,路径位于沙埕港南12km;产生100a一遇最大台风暴潮的台风移向为 NW 方向,移速为19 km/h,路径位于沙埕港南24km.计算结果为福建沿海海洋工程项目的建设提供了重要参考依据.  相似文献   

13.
文章利用沧州海洋站观测资料对本次台风风暴潮过程进行分析,发现天文高潮时沧州沿海出现了远超警戒潮位的高潮位,而后"达维"中心带来的东北大风使沧州沿海风暴增水值达到最大。对建国以来6次北上影响沧州的致灾台风进行了路径相似分析,获取影响台风风暴潮强度的重要因素,可为研究本地区台风风暴潮规律,提高预警报准确度,减少风暴潮灾害带来的损失提供经验和参考。  相似文献   

14.
利用FVCOM模式建立了珠江口区域的天文潮和风暴潮数值模型,采用调和分析方法得到该区域K_1、O_1、M_2、S_24个主要分潮的等振幅线和等迟角线的分布特征,并选取典型台风对影响珠江口附近海域的台风暴潮过程进行了模拟计算,验证了模型的准确性,并基于该模型模拟了1993—2013年影响珠江口附近海域的共48场台风过程;利用Gumbel分布,计算了百年一遇的风暴潮极值增水,珠江口门外西侧的极值增水大于东侧,其中该区域百年一遇风暴增水的最大值出现在赤溪镇和三灶镇中间的海域为3.19 m,可为珠江口沿岸地区的风暴潮防护和海岸工程设计提供参考。  相似文献   

15.
利用1991~2013年西沙海洋站实测的潮位、气压、风资料,统计分析发生在西沙永兴岛的台风风暴潮特征.统计结果为以后的台风风暴潮增水预报工作提供一定借鉴.统计分析发现:发生在永兴岛的台风风暴潮过程年最大增水值基本在34cm处上下波动,最高预警级别仅为蓝色;最大增水有明显的年际变化特征,预计接下来10a左右发生在永兴岛的台风风暴增水值大体逐年递减;最大增水若与极大天文潮相叠加,在永兴岛可能出现灾害性高潮位;年最大增水有明显的季节特征,在夏季最强,其次为秋季,冬季和春季最弱;台风中心经过时由负压引起的增水较为明显,单峰型、双峰型和振荡型的增水曲线形态均有出现;影响西沙永兴岛的热带气旋的年最大风速年际与季节性变化是导致永兴岛台风风暴潮特征的主要成因之一.  相似文献   

16.
《海洋预报》2021,38(2)
基于ADCIRC模式和Holland台风模型,建立精细化珠江口风暴潮数学模型。针对2018年台风"山竹"在该区域的灾难性影响,模拟其在珠江河网引起的风暴增水过程,并着重分析了八大口门水道增水的时空分布特征和成因。结果表明:珠江口外海最大增水和2 m以上增水整体由外海向口门、东南向西北增大,最大增水范围为0.5~3.0 m;八大口门水道均出现超2.3 m的风暴增水,且在虎门、蕉门、洪奇门、横门、磨刀门等口门及水道出现超百年一遇增水;2 m以上增水历时0~5 h以上,由口门向西北干流递增;最大增水出现时间由口门向西北干流为台风登陆前2 h至登陆后10 h不等;河道口门走势和台风期径流对河网增水影响显著,在河网风暴潮预报和工程设计中应给予考虑。  相似文献   

17.
选择20个对舟山海域有较大影响的历史台风案例,开展定海站实测潮位数据的分析与归纳,总结得出20个台风中风暴潮过程增水最大值为5612号台风的207.1 cm,风暴潮高潮位最大值为9711号台风的283.7 cm。同时,在三维斜压水动力模型SELFE的基础上加入台风气压场和风场模块,建立了一个采用非结构三角形网格的天文潮-风暴潮耦合模型,模拟表明定海站的斜压效应较为明显,非线性耦合作用相对较弱,但两潮耦合风暴潮增水结果仍优于风暴潮单因子增水结果,与实际增水更为接近。在此基础上,以一定间隔在5612号台风原路径南北两侧各设计了2条平行路径,分别模拟两潮耦合风暴潮增水,结果表明5612号台风参数沿其原路径偏南1个最大风速半径距离的S1路径运动时可模拟得到定海站可能最大风暴潮增水为243.9 cm。最后,在S1路径下模拟可能最大风暴潮增水分别遭遇天文高、中、低潮位时的风暴潮高潮位,结果表明天文潮高潮时可得到可能最大风暴潮高潮位约为400 cm,天文中潮时次之,而天文低潮时风暴潮高潮位最低。  相似文献   

18.
1409号"威马逊"台风是1949年以来登陆我国华南地区的最强台风。本文首先以铁山港海域的潮位站和气象站实测资料为基础,对铁山港海域的风暴增水特征进行了初步分析,结果表明:铁山港湾内最大风暴增水值要大于湾口处,通过对历史增水值进行重现期推算可知1409号台风造成的最大增水强度达到了200年一遇。台风登陆期间铁山港海域发生先减水后增水的现象,是因为铁山港海域的风向发生了转变,先是吹离岸风,后改为向岸风。然后基于MIKE21和Holland台风风场建立二维风暴潮数学模型分析了1409号台风的最大增水空间分布规律,模型结果显示地形与风暴潮增水的关系十分密切,铁山港内部湾顶位置处最大风暴增水超过了3.2 m,比铁山港口门处增加了1.2 m,因此需要格外重视铁山港湾顶处的风暴潮防灾减灾工作。  相似文献   

19.
2010年连续三个台风在福建漳浦县登陆,创造了一年登陆当地台风个数的新纪录,并引发了严重风暴潮灾害.本文对比分析了三个台风风暴潮特征,结果表明:(1)三个台风风暴潮都具有开阔海域增水特征,最大增水出现在右半圆,并向两边递减;最大增水时空分布与台风移动路径和海岸地形相关,在南路“鲇鱼”和“狮子山”登陆后的偏南风作用下,湾口朝南的浮头湾出现过程最大增水,出现时间在台风登陆后;东路“凡亚比”台风在穿过台湾岛靠近沿海过程中,持续增强的偏东风,使湾口朝东的九龙江口出现最大增水,出现时间为台风登陆时刻;最大增水与台风登陆时的强度成正比;(2)东路的台风引发的增水出现在台风进入台湾海峡后,各站最大增水峰出现时间集中且明显;南路台风引发增水出现时间较早,持续时间长,最大增水峰不明显,过程最大增水出现在台风登陆后的局部区域.  相似文献   

20.
本文基于ADCIRC构建适用于长江口的台风暴潮模型,对1979–2019年间长江口台风增水过程进行数值重构;结合非平稳广义极值分布和状态空间模型,构建适用于刻画长江口极端增水非平稳变化的频率统计模型,研判非平稳变化引起的极端增水量值调整情况。结果表明,长江口各验潮站处极端增水的非平稳广义极值分布时变位置参数在2008年前表现为波动特征,2008年后呈现逐渐增大趋势。2008–2019年间各验潮站处极端增水时变位置参数的线性上升率介于0.8~1.2 cm/a之间。基于上述变化趋势,考虑极端增水非平稳变化时长江口各验潮站处百年一遇增水均大于基于平稳假定的推算结果,二者差值介于8~15 cm之间。经分析,2008年后北上到长江口附近海域再转向外海的热带气旋强度有明显增强趋势,致使长江口各验潮站处年第二和第三大值增水增大,这是导致各验潮站处风暴增水极值分布位置参数出现趋势性增大的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号