首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five stations along a transect from the western shore of Biscayne Bay, Florida to the Florida Current were sampled monthly for one year. The variability and amount of seston particulate organic carbon, adenosine triphosphate, chlorophyll a, primary production and zooplankton decreased along the seaward transect. The greater inshore biomass and variability of seston were the result of the allochthonous input of detritus and inorganic nutrients via terrestrial runoff. Annual primary production in this subtropical coastal lagoon ranged from 13 to 46 g C m?2 yr?1. Chlorophyll a in the bay ranged from 1 to 3 mg chlorophyll a m?2. In contrast, chlorophyll a in the surface centimetre of the sediment ranged from 50 to 300 mg chlorophyll a m?2. In this clear, shallow (2 to 3 m), oligotrophic lagoon, over 90% of total primary production is by submerged macrophytes and benthic algae. The high zooplankton biomass in the bay is most likely sustained by macrophyte detritus and the resuspension of benthic diatoms by the high winds associated with summer squalls and winter cold fronts.  相似文献   

2.
Extracellular enzyme activities were compared among surface water, bottom water, and sediments of the Delaware Estuary using six fluorescently labeled, structurally distinct polysaccharides to determine the effects of suspended sediment transport on water column hydrolytic activities. Potential hydrolysis rates in surface waters were also measured for the nearby shelf. Samples were taken in December 2006, 6 months after a major flood event in the Delaware Basin that was followed by high freshwater run-off throughout the fall of 2006. All substrates were hydrolyzed in sediments and in the water column, including two (pullulan and fucoidan) that previously were not hydrolyzed in surface waters of the Delaware estuary. At the time of sampling, total particulate matter (TPM) in surface waters at the lower bay, bay mouth, and shelf ranged between 31 mg l−1 and 48 mg l−1 and were 2 to 20 times higher than previously reported. The presence of easily resuspended sediments at the lower bay and bay mouth indicated enhanced suspended sediment transport in the estuary prior to our sampling. Bottom water hydrolysis rates at the two sites affected by sediment resuspension were generally higher than those in surface waters from the same site. Most notably, fucoidan and pullulan hydrolysis rates in bay mouth bottom waters were 22.6 and 6.2 nM monomer h−1, respectively, and thus three and five times higher than surface water rates. Our data suggest that enhanced mixing processes between the sediment and the overlying water broadened the spectrum of water column hydrolases activity, improving the efficiency of enzymatic degradation of high molecular weight organic matter in the water with consequences for organic matter cycling in the Delaware estuary.  相似文献   

3.
In the coastal and estuarine waters of Goa, particulate organic carbon (POC) varied from 0.52 to 2.51 mg l?1 and from 0.28 to 5.24 mg l?1 and particulate phosphorus (PP) varied from 0.71 to 5.18 μg l?1 and from 0.78 to 20.34 μg l?1, respectively. The mean values of chlorophyll and primary productivity were 1.94 mg m?3 and 938.1 mg C m?2 day?1 in the coastal waters and 4.3 mg m?3 and 636.5 mg C m?1 day?1 in the estuarine waters, respectively.POCchl ratios were low in June and October even when POC values were quite high. The POC in surface waters was linearly correlated with the chlorophyll content. Also PP increased when chlorophyll and primary productivity remained high. The results suggest that the phytoplankton was sharply increasing and contributed to POC and PP content. The percentage of detritus calculated from the intercept values of chlorophyll on POC varied from 46 to 76% depending on season. Results indicate that the major portion of POC and PP during postmonsoon (October–January) is derived from phytoplankton production while the allochthonous matter predominate during monsoon (June–September).  相似文献   

4.
Settling particulate matter (SPM) was collected by using sediment traps at four stations in a survey section from Qingdao to Cheju-do, across the Huanghai Sea cold water mass (HSCWM), in August 2002. The sediment traps were planted in three layers: the upper layer of the thermocline (ULT) above the HSCWM, the lower layer of the thermocline (LLT), and the bottom layer of water column (BL). To determine the particle flux, the contents of organic carbon (POC), organic nitrogen (PON), total carbon (PC), and total phosphorous (PP) in SPM were analyzed, and two flux models (Ⅰ and Ⅱ) were improved to calculate the resuspension ratio, with an assumption in Model Ⅰ that the vertical flux of SPM in the LLT equals the net vertical flux of SPM in the whole water column. An X value, i.e., the fraction of the resuspension flux originating from the surficial sediments nearby the sampling station, was deduced from Model Ⅰ to estimate the contribution of lateral currents to the total resuspension flux. The results showed that inorganic particles, fecal pellets, and miscellaneous aggregates were the major types of SPM in the HSCWM, and the contents of POC, PON, PC, and PP all decreased with water depth. A great deal of fecal pellets found in the LLT indicates that the main space producing biogenic SPM is the thermocline, and especially the LLT, where the C/N ratio is lower than that in the ULT. The resuspension ratios, 90%-96% among stations, imply strong impact ofresuspension on particle flux in the BL. These values were not significantly different between the two flux models, suggesting that the hypothesis in Model Ⅰ that the flux in the LLT equaling the net flux to the bottom is acceptable for shallow waters with stratification like the HSCWM. The POC export ratio from the HSCWM ranges from 35% to 68%. It benefits from the short sinking distance in shallow water. The upwelling in the HSCWM enhanced the POC flux through the water mass, and the lateral currents provides up to being greater than 50% ofresuspension flux in the BL according to evaluation of the X value.  相似文献   

5.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

6.
2015年夏季开展了大亚湾悬浮颗粒有机物碳(POC)、氮含量(PN)及其同位素组成的研究,结果表明,δ13CPOC和δ15NPN的变化范围分别为-25.7‰~-17.4‰和-6.3‰~10.4‰,平均值分别为-20.2‰和8.2‰。大亚湾悬浮颗粒有机物含量及其碳氮同位素组成的空间变化反映了不同有机质来源的影响:喜洲岛附近海域表现出高POC、PN、δ13CPOC和δ15NPN的特征,指征着浮游植物水华的主导贡献;东北部范和港附近海域具有高POC、PN、低δ13CPOC和高δ15NPN的特征,反映了河流/河口水生有机物的影响;湾顶白寿湾附近海域的δ13CPOC和δ15NPN出现低值,体现了陆源有机质和人类污水排放的影响。借助δ13CPOC和δ15NPN的三端元混合模型,定量出海洋自生有机质、陆源有机质、河流/河口水生有机质等3个来源的贡献平均分别为70%、13%和17%,其中海洋自生有机质是夏季大亚湾悬浮颗粒有机物的最主要来源。从这3种来源颗粒有机物含量的空间变化看,海洋自生有机质含量由湾内向湾外减少,与初级生产力的空间变化相对应;河流/河口水生有机质含量在大亚湾东北部出现高值;陆源有机质含量在表、底层出现不同态势,表层陆源有机物含量在湾中部海域最低,而底层则呈现出自湾内向湾口增加的趋势,主要受控于离岸距离和珠江冲淡水、粤东沿岸上升流输送的影响。  相似文献   

7.
Mandovi estuary is a tropical estuary strongly influenced by the southwest monsoon. In order to understand, sources and fate of particulate organic nitrogen, suspended particulate matter (SPM) collected from various locations, was analyzed for particulate organic carbon (POC) and particulate organic nitrogen (PON), δ13CPOC, total hydrolysable amino acid enantiomers (l- and d- amino acids) concentration and composition. δ13CPOC values were depleted (−32 to −25‰) during the monsoon and enriched (−29.6 to −21‰) in the pre-monsoon season implying that OM was derived from terrestrial and marine sources during the former and latter season, respectively. The biological indicators such as C/N ratio, d-amino acids, THAA yields and degradation indices (DI) indicate that the particulate organic matter (POM) was relatively more degraded during the monsoon season. Conversely, during the pre-monsoon, the biological indicators indicated the presence of relatively fresh and labile POM derived from autochthonous sources. Amino acids such as alanine, aspartic acid, leucine, serine, arginine, and threonine in monsoon and glutamic acid, glycine, valine, lysine, and isoleucine in pre-monsoon were relatively abundant. Presence of bacterial biomarker, d-amino acids in the SPM of the estuary during both the seasons signifies important contribution of bacteria to the estuarine detrital ON pool. Based on d-amino acid yields, bacterial OM accounted for 16-34% (23.0 ± 6.7%) of POC and 29-75% (47.9 ± 18.7%) of PON in monsoon, and 30-78% (50.0 ± 15%) of POC and 34-79% (51.2 ± 13.3%) of the PON in pre-monsoon in the estuary. Substantial contribution of bacterial-N to PON indicates nitrogen (N) enrichment on terrestrial POM during the monsoon season. Transport of terrestrial POM enriched with bacterial OM to the coastal waters is expected to influence coastal productivity and ecosystem functioning during the monsoon season.  相似文献   

8.
The biogeochemistry of particulate organic matter was studied in the Great Ouse estuary draining to the North Sea embayement known as the Wash from March 1990 to January 1991. Eleven locations were sampled monthly on a 50 km transect across the shallow estuary from the tidal weir to the middle of the Wash. Particulate organic carbon (POC) and total carbohydrate, protein and lipid analyses were combined with the determination of stable carbon isotopes. δ13C often increased from −30‰ in the river to −22‰ in the tidal freshwater reach. The mixing zone between fresh and marine tidal waters displayed only a slight increase in δ13C to −19‰. The change in δ13C values in the freshwater tidal reach demonstrated that mixing of riverborne and marine suspended POC was not the only process affecting the carbon stable isotope composition. Complementary sources, interfering considerably with the two end-member sources, may be identified as autocthonous primary production and resuspension of sediment that may be transported upstream. The respective importance of these sources is subject to seasonal variation. From March to August, high concentrations in carbohydrate and protein through the whole estuary indicate that despite turbidity significant primary production occurred. The proportional importance of the uncharacterized fraction of POC, which is considered as complex organic matter, was high from September to January and low from March to August. During most of the year, the biochemical compositions of particulate organic matter in the turbidity maximum and the rest of the estuary were similar. This contradicted the principle that owing to the long residence times of particles degradation processes largely dominate the production processes within the turbidity maximum. The occurence of significant in situ production in such shallow water estuaries may partially compensate for the degradation of suspended particulate organics, resulting in a complex relationship between the biogeochemical cycling and the fate of nutrients.  相似文献   

9.
Water flows, concentrations of total (TOC), dissolved (DOC), and particulate (POC) organic carbon and seston were monitored for 52 diel periods in the single creek draining a 270-ha Spartina patens-Distichlis spicata marsh on the upper Texas coast. Rainfall, creek water flows, and water levels in the creek and on the marsh were measured by recording instruments.Rainfall accounted for most marsh flooding, and water outflow was significantly correlated with both rainfall and marsh water level. Creek flows were predominantly outward because microtopographic features and dense vegetation restricted overmarsh water flows and thereby reduced tidal flooding while extending the time of precipitation runoff. Concentrations of organic carbon in water leaving the marsh were highest in spring and summer and averaged 25·62, 21·41 and 3·35 mg l?1 of TOC, DOC and POC, respectively. These were 9·34, 9·93 and 0·04 mg l?1, respectively, higher than bay water. Most POC was 0·3–28 μm in diameter. Seston > 28μ leaving the marsh was 95% amorphous material; the rest was plankton, grass particles and fecal pellets. Loss of organic carbon was directly correlated with net water flux, and thus rainfall accounted for most carbon loss. Net carbon loss averaged 196 kg TOC, 150 kg DOC and 32 kg POC per day. Net annual loss was 2·4–5·5% of net aerial primary productivity (NAPP), or 21·55-30·09 g TOC m?2 year?1.Export from this marsh falls within the range found for other marshes and the data collectively indicate that coastal marshes are not losing as much organic carbon as has been suggested by indirect measurements. The discrepancy between potential and realized export is explained by the fact that export is not a simple removal of excess detritus by tidal action but is a more complicated process mediated by the interaction of additional factors such as rainfall, vegetation structure, microtopographic variation and decomposition, which can serve to reduce the amount and quality of NAPP exported.  相似文献   

10.
三峡截流后长江口秋季TSM、POC和PN的分布特征   总被引:2,自引:0,他引:2  
基于2004年11—12月长江口56个站位的悬浮体调查资料,分析了长江口区悬浮体总量(TSM)、颗粒有机碳(POC)和颗粒氮(PN)质量浓度的平面分布特征,探讨该区TSM及颗粒有机质的物质来源和三峡截流对长江三角洲的影响。结果表明,表、底层TSM与POC、PN质量浓度之间存在显著的正线性相关关系并都呈现出南高北低的格局,说明了长江悬浮颗粒物入海后主要沿东南方向输运。POC、PN质量分数与POC、PN的质量浓度不同,它们与TSM质量浓度对数有负相关关系。由于河口区底质再悬浮作用显著,TSM和POC、PN质量浓度呈现表层低、底层高的特点。长江口悬浮体主要来自长江径流和底质沉积物的再悬浮。与三峡截流前数据的对比表明,截流对目前长江口区的TSM和POC尚未造成明显的影响。  相似文献   

11.
The physical and chemical variability of the water column at subtidal station of an estuary in the Seto Inland Sea, Japan, was studied over a 24-hour period during a spring tide (tidal range ca. 2 m) in May 1995. Surface water and several depths through the water column were monitored every one and two hours, respectively. At each occasion, water temperature, salinity and dissolved oxygen concentration were measured and water samples were collected for the determination of nutrients and suspended particulate matter (SPM). Disruptive changes in the physical and chemical characteristics of the water was produced by the tidal cycle and the mixing of water masses of different origin. These changes were highly significant both spatially and temporally, yet with varying effects on physical parameters, nutrients and the different components of SPM. Significant differences in nutrient concentrations were also observed when the data-set was divided into ebb and flood components, irrespective of the depth. Nitrate and nitrite rose to 1.8 times higher during the flood. Spatial differences of SPM were less marked than those of nutrients, only particulate organic carbon (POC) being significantly higher at the surface than in the intermediate and the lower layer. Both POC and pheopigment concentrations increased markedly through the water column, being highest shortly before the lower low tide. In contrast, suspended solid (SS) content increased sharply after the lower low tide (>40 mg l−1) and this coincided with a marked decrease of the C/SS content (<20 mg g−1). The lagtime between POC and SS tidal transport was caused by particle resuspension from the exposed intertidal sediments as the tidal level rose, and particle transport selection in relation to the tidal state. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
A carbon flux study was carried out off the coast of Morocco, at 31°N, in a region characterized by the presence of a persistent cyclonic eddy. Two short-term (4 and 3 day) deployments of free-floating sediment traps were combined with water column sampling and rate process measurements as the ship followed the traps. For a period of 36 h between trap deployments, a hydrographic section was run along 31°30'N as part of a larger scale survey being carried out simultaneously on the R.V. A. von Humboldt. The first trap deployment was near the eastern margin of the eddy and the traps moved to the north and west in a frontal jet associated with its northern boundary. After the second deployment, which was at the recovery point of the first, the traps moved to the west and then to the southwest. Throughout the study, chlorophyll concentrations varied between 27 and 125 mg m−2 (0–100 m), with highest concentrations in the upwelled water nearest the coast and in upwelled water generated within the cyclonic eddy. Particulate organic carbon (POC) and particulate organic nitrogen (PON) concentrations were relatively uniform (13.6±1.8 and 1.63±28 g m−2 with phytoplankton carbon accounting for 16–85% of total POC. Bacterial carbon was 5% of total POC and mesozooplankton carbon concentrations were equivalent to 9% of total POC. Microzooplankton biomass was not assessed but POC:PON ratios in the water column were often high, suggesting there was sometimes a large detrital component in the POC. Primary production rates varied between 1.0 and 2.5 g C m−2 day−1. Bacterial consumption accounted for 50% of primary production. Metabolic rates suggested that copepods were ingesting more than 0.4 g C m−2 day−1. while filtration rates suggested that ingestion of phytoplankton carbon was only 0.2 g C m−2day−1, even when phytoplankton constituted 85% of the POC. f-ratios (based on uptake rates for 15N-nitrate and ammonia) were between 0.1 and 0.4, and excretion by mesozooplankton could account for 40% of the daily ammonium uptake by phytoplankton. HPLC pigment analysis showed that when chlorophyll biomass was high, diatoms were dominant, whereas when it was low, small prymnesiophytes, chlorophytes and diatoms were all important. The composition of the fluoresecent pigments in material in the sediment traps indicated that intact phytoplankton and copepod faecal pellets were the main sources but the relative rates of sedimentation of pigment, POC and PON for the two trapping periods did not reflect differences that were observed in the overlying water column. This was likely to be the result of spatial heterogeneity and strong horizontal currents heterogeneity and strong horizontal currents within the euphotic zone. Thus, material collected at 100 m probably did not originate in the water column immediately overlying the traps and trapping efficiencies might also have been variable.  相似文献   

13.
Water column concentrations of total suspended solids (TSS), particulate organic carbon (POC) and particulate nitrogen (PN) were measured at three different depths in four different locations bracketing the estuarine turbidity maximum (ETM) along the main channel of a temperate riverine estuary (Winyah Bay, South Carolina, USA). Measurements were carried out over full tidal cycle (over 24 h). Salinity, temperature, current magnitude and direction were also monitored at the same time throughout the water column. Tidally averaged net fluxes of salt, TSS, POC and PN were calculated by combining the current measurements with the concentration data. Under the extreme low river discharge conditions that characterized the study period, net landward fluxes of salt were measured in the lower part of the study area, suggesting that the landward transport through the main channel of the estuary was probably balanced by export out through the sides. In contrast, the net fluxes of salt in the upper reaches of the study area were near zero, indicating a closed salt balance in this part of the estuary. In contrast to salt, the net fluxes of TSS, POC and PN in the deeper parts of the water column were consistently landward at all four sites in Winyah Bay indicating the non-conservative behavior of particulate components and their active transport up the estuary in the region around the ETM.The carbon contents (%POC), carbon:nitrogen ratios (org[C:N]a) and stable carbon isotopic compositions (δ13CPOC) of the suspended particles varied significantly with depth, location and tidal stage. Tidally averaged compositions showed a significant increase up the estuary in the %POC and org[C:N]a values of suspended particles consistent with the preferential landward transport of carbon-rich particles with higher vascular plant debris content. The combination of tidal resuspension and flood-dominated flow appeared to be responsible for the hydrodynamic sorting of particles along the estuary that resulted in denser, organic-poor particles being transported landward less efficiently. The elemental and isotopic compositions indicated that vascular C3 plants and estuarine algae were the major sources of the particulate organic matter of all the samples, without any significant contributions from salt marsh C4 vegetation (Spartina alterniflora) and/or marine phytoplankton.  相似文献   

14.
福建罗源湾海水悬浮物的研究   总被引:1,自引:0,他引:1  
于1986年11月-1987年9月对福建罗源湾海水悬浮的含量的观测结果表明,水动力条件引起的再悬浮过程和生物活分别是罗源湾冬季和夏季悬浮物分布及性质变化的主要影响因素。底部沉积物的再悬浮对水体营养盐的再生和补充及有机碎屑的提供起重要的作用,夏季颗粒有机碳的学降能量一般占水柱浮游植物初级生产量的67-85%,大部分初级生产的有机碳沉降海底。  相似文献   

15.
《Oceanologica Acta》1999,22(4):397-412
Three cruises on the Wight-Cherbourg transect were undertaken during the FluxManche II Programme in order to study the origin, nature and behaviour of organic matter inputs to the waters of the English Channel. Suspended particulate material (SPM) collected from surface and deep waters at each station was analysed at elemental level for Particulate Organic Carbon and Particulate Organic Nitrogen (POC, PON), at molecular level for main classes of organic compounds using Pyrolysis-Gas Chromatography coupled with Mass Spectrometry (Py-GC-MS) and for phenolic compounds, particularly lignin-derived phenols, using High Performance Liquid Chromatography (HPLC). The SPM content increases from the French (south) to the English coast (north) with the lowest values being observed in the central waters of the Channel. This distribution is essentially linked to resuspension processes and the influence of terrigenous inputs from the Solent river inside English coastal waters. Py-GC-MS analyses show that organic material within French waters is usually marine in character and is more degraded than in English waters. Organic material in the central waters always shows the highest state of degradation, probably due to its long transit time in the “central water mass” from the Atlantic to the English Channel. Autochthonous and allochthonous organic tracers were positively identified through the use of HPLC analyses. Seasonal variations in the system lead to qualitative changes in terrigenous inputs (lignin-derived phenols). To our knowledge, it is the first time that phenolic compounds of autochthonous origin have been recorded in central Channel waters. Indeed, it is the study of the distribution and composition of hydroxybenzyl phenols which has allowed an estimate of the marine contribution to the particulate organic matter to be made. These compounds may originate from phytoplankton and macroalgae tissues developing in the coastal environments of the Channel.  相似文献   

16.
The role of zooplankton in the vertical mass flux in the Kara and Laptev seas was studied during cruise 63 of the R/V Akademik Mstislav Keldysh in August–October 2015. Mass fluxes were estimated using sediment trap samples. The maximum values of the total vertical flux (19600 mg m?2 day?1) and particulate organic carbon (POC) flux (464 mg C m?2 day?1) were measured close to the Lena River Delta in the Laptev Sea. In the Kara Sea, the total flux (80–2700 mg m?2 day?1) and the POC flux (17–130 mg C m?2 day?1) were substantially higher than the estimates published earlier. The fecal pellet flux varied from 2 to 92 mg C m?2 day?1 and made up 4–190% of the total organic carbon flux. The mineral composition of fecal pellets largely mirrored that of suspended particulate matter. Clay minerals in the fecal pellets were more abundant than in particulate matter in the areas with noticeable freshwater impact. The flux of zooplankton carcasses varied from 0.1 to 66.4 mg C m?2 day?1 and made up 0.2–72% of total POC flux. The results are discussed in relation to the abundance and composition of zooplankton, the concentration and composition of suspended particulate matter, hydrophysical conditions, and methods of sample preparation for analysis.  相似文献   

17.
To investigate organic matter source and reactivity in the Zhujiang River (Pearl River)Estuary and its adjacent areas, particulate organic carbon (POC), particulate hydrolysable amino acids (PHAA), and Chl a during two cruises in July 1999 and July 2000 were measured. The highest POC and PHAA concentration was observed in the waters with maximum Chl a. The spectra distribution,relative content (dry weight in milligram per gram), PHAA-C% POC and other indicators such as the ratios of amino acids vs. amino sugars (AA/AS) and glucosamine vs. galactosamine (Glum/Gal) suggested that particulate amino acids in the water column and sediments in the Zhujiang River Estuary were mainly derived from biogenic processes rather than transported from terrestrial erosion. In inner estuary where high turbidity was often observable, organic matter was mainly contributed by re-suspension of bottom sediments with revealed zooplankton, microbial reworked characteristics, which suggest that these organic matters were relatively “old“. In the estuarine brackish region, organic matter in water column is mainly contributed by relatively fresh, easily degradable phytoplankton derived organic matter.During physical - biological processes within the eastuary, organic matter derived from phytoplankton was subjected to alteration by zooplankton grazing and bacterial reworking.  相似文献   

18.
Concentrations of mercury were determined for the waters, suspended matter and sediments of the Tagus and of major French estuaries.The Tagus estuary is one of the most contaminated by mercury derived from the outfalls of a chloralkali plant and from other industrial sources. In deposited sediments the median level, 1·0 μg Hg g?1, is twenty times higher than the natural background and Hg contents depend on the sediment grain-size, age and the distance from waste-outfalls. Suspended matter is more regularly and highly contaminated (median value: 4·5 μg Hg g?1). In the French estuaries Hg levels in the suspended material decrease with salinity due to dilution and/or remobilization processes. In June 1982, in the Loire estuary, high values of Hg are observed in the middle estuary and attributed to urban and industrial sources.In the Tagus estuary, the general distribution of total dissolved Hg confirms the contamination: it increases seaward from 10 ng 1?1 in the river to 80 ng 1?1 in the estuary outlet. The dissolved Hg is almost totally organic in the river, inorganic in the middle estuary due to inorganic Hg effluents and again organic in the lower estuary. This variation is related to the dissolved organic carbon values. The dissolved Hg levels in the Loire Estuary (5–300 ng 1?1) are much higher than in the Gironde estuary (3–6 ng 1?1) and of the same order as those observed in the Tagus estuary.  相似文献   

19.
Suspended particulate matter was collected, from the water layer at 10 cm above the sediments, over a period of 13 months in the Golfo Marconi (Ligurian Sea, NW Mediterranean). Measurements of seston concentration as well as the elemental (particulate organic carbon and nitrogen; POC and PON, respectively) and biochemical composition (lipids, proteins, carbohydrates, DNA) of particulate organic matter were carried out to assess quality and quantity of food potentially available to benthic suspension-feeders. Particulate organic matter showed wide qualitative and quantitative variations during the sampling year. Seston concentrations and POC did not reflect the quantity and quality of the food available to benthic suspension-feeders. The biopolymeric fraction of particulate matter (C-BPF, i.e. the sum of lipid, protein and carbohydrate carbon) was mostly composed of phytoplankton (which accounted for about 60% of C-BPF). The ratio of C-BPF to POC was utilized as a measure of the fraction which had the potential to be more readily available to consumers. Suspended organic matter showed higher values of the C-BPF:POC ratio during spring, and lower values in summer and autumn–winter. Quantitative estimates of the energy content of the suspended particulate matter were obtained from its biochemical composition. Bacterial dynamics were significantly related to changes in phytoplankton biomass. Bacteria accounted for a significant fraction of the biopolymeric carbon pool (annual average about 15%) and of the total particulate DNA (21·5%), thus enhancing the nutritional value of the particulate organic matter. The results achieved in this study indicate that the biochemical composition of the particulate matter provides additional information on the origin, quality and characteristics of the seston more readily available to benthic suspension-feeders.  相似文献   

20.
The data on the isotopic composition of particulate organic carbon (δ13CPOC) in the Caspian Sea water in summer–autumn 2008, 2010, 2012, and 2013 are discussed in the paper. These data allowed as to reveal the predominant genesis of organic carbon in suspended particulate matter of the active seawater layer (from 0 to 40 m). The δ13CPOC =–27‰ (PDB) and δ13CPOC =–20.5‰ (PDB) values were taken as the reference data for terrigenous and planktonogenic organic matter, respectively. Seasonal (early summer, late summer, and autumn) variations in the composition of suspended particulate matter in the active sea layer were revealed. A shift of δ13CPOC towards greater values was seen in autumn (with a slight outburst in the development (bloom) of phytoplankton) in comparison with summer (with large accumulations and an extraordinary phytoplankton bloom confined to the thermocline area). The seasonal dynamics of autochthonous and allochthonous components in the suspended particulate matter of the Middle and Southern Caspian Sea was studied with the use of data on the concentration of particulate matter and chlorophyll a, the phytoplankton biomass and the POC content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号