首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
埕岛海域粉土地震液化分区   总被引:4,自引:0,他引:4  
结合几年来的野外和室内实验资料,运用不同的液化分析方法,对埕岛海域粉土在地震作用下的液化可能性进行了综合评价,并对7度、8度、9度地震作用下该土层的液化情况进行分区,为本区海上工程勘察和基础设计提供科学依据。  相似文献   

2.
Ding  Hong-yan  Li  Jing-yi  Le  Cong-huan  Pan  Chen  Zhang  Pu-yang 《中国海洋工程》2022,36(6):849-858

As the offshore wind turbine foundation, the four-bucket jacket foundation has a large stiffness and the structure is difficult to be damaged under seismic load. Nevertheless, the saturated subsoil of the four-bucket jacket foundation tends to be liquefied under earthquake, which greatly affects the safety of offshore wind turbine. Therefore, the seismic performance of four-bucket jacket foundation is mainly reflected in the anti-liquefaction capacity of foundation soil. In this paper, the liquefaction resistance of sandy soil of four-bucket jacket foundation for offshore wind turbine is studied. The liquefaction and dynamic response of sandy soil foundation of four-bucket jacket foundation under seismic load are obtained by carrying out the shaking table test, and the influence mechanism of four-bucket jacket foundation on the liquefaction resistance of sandy soil foundation is analyzed.

  相似文献   

3.
The wave transmission, reflection and energy dissipation characteristics of ‘’-type breakwaters were studied using physical models. Regular and random waves in a wide range of wave heights and periods and a constant water depth were used. Five different depths of immersion (two emerged, one surface flushing and two submerged conditions) of this breakwater were selected. The coefficient of transmission, Kt, and coefficient of reflection, Kr, were obtained from the measurements, and the coefficient of energy loss, Kl was calculated using the law of balance of energy. It was found that the wave transmission is significantly reduced with increased relative water depth, d/L, whether the vertical barrier of the breakwater is surface piercing or submerged, where ‘d’ is the water depth and ‘L’ is the wave length. The wave reflection decreases and energy loss increases with increased wave steepness, especially when the top tip of the vertical barrier of this breakwater is kept at still water level (SWL). For any incident wave climate (moderate or storm waves), the wave transmission consistently decreases and the reflection increases with increased relative depth of immersion, Δ/d from −0.142 to 0.142. Kt values less than 0.3 can be easily obtained for the case of Δ/d=+0.071 and 0.142, where Δ is the height of exposure (+ve) or depth of immersion (−ve) of the top tip of the vertical barrier. This breakwater is capable of dissipating wave energy to an extent of 50–80%. The overall performance of this breakwater was found to be better in the random wave fields than in the regular waves. A comparison of the hydrodynamic performance of ‘’-type and ‘T’-type shows that ‘T’-type breakwater is better than ‘’-type by about 20–30% under identical conditions.  相似文献   

4.
The primary aim of the study is to experimentally investigate the stability performance of antifer units on the trunk section of breakwaters under the effect of regular and irregular waves in case of irregular placement. The stability performance tests were conducted for different slopes, i.e. cot α=1.25, 1.5, 2.0, 2.5, under irregular waves and for cot α=2.5 under regular waves. Hudson’s formula was employed in order to characterize the stability performance of antifer units for the irregular placement technique. Different representative wave height parameters, i.e. Hs, H1/10 and Hmax, were examined to determine the one best characterizing breakwater stability. Furthermore, the effects of wave period and wave steepness on the stability of the breakwater were explored.  相似文献   

5.
In this study, a mathematical integrated model is developed to investigate the wave-induced sloping seabed response in the vicinity of breakwater. In the present model, the wave model is based on the Volume-Averaged/Reynolds Averaged Navier–Stokes (VARANS) equations, while Biot's consolidation equation is used to govern the soil model. The influence of turbulence fluctuations on the mean flow with respect to the complicated interaction between wave, sloping seabed and breakwater are obtained by solving the Volume-Averaged k  ϵ model. Unlike previous investigations, the phase-resolved absolute shear stress is used as the source of accumulation of residual pore pressure, which can link the oscillatory and residual mechanisms simultaneously. Based on the proposed model, parametric studies regarding the effects of wave and soil characteristics as well as bed slopes on the wave-induced soil response in the vicinity of breakwater are investigated. Numerical results indicate that wave-induced seabed instability is more likely to occur in a steep slope in the case of soil with low relative density and low permeability under large wave loadings. It is also found that, the permeability of breakwater significantly affect the potential for liquefaction, especially in the region below the breakwater.  相似文献   

6.
双消浪室局部开孔沉箱防波堤具有低反射、结构受力小、适宜较大水深和工程造价低等优点。为明确双消浪室局部开孔沉箱水动力特性的主要影响因素,采用理论分析和物理模型试验相结合的方法,对规则波和不规则波作用下双消浪室局部开孔沉箱防波堤的反射特性进行研究。基于势流理论,建立规则波和不规则波对局部开孔沉箱防波堤作用的三维解析解,采用二次压力损失边界条件考虑沉箱开孔墙对波浪运动的影响,利用周期性边界条件考虑防波堤结构沿长度方向的周期性变化。开展相应规则波和不规则波物理模型试验,验证理论模型的合理性。通过算例分析,研究不同波浪要素和结构参数对防波堤反射特性的影响。研究表明:双消浪室局部开孔沉箱相对消浪室宽度取值为0.08~0.20,沉箱前墙开孔率大于后墙开孔率时,防波堤在较大波浪频率范围内消波效果显著;当前后墙的开孔率相等时,防波堤反射系数的最小值随着开孔率增大而减小。  相似文献   

7.
Coastal protective structures, such as composite breakwaters, are generally vulnerable to earthquake. It was observed that breakwaters damage mainly due to failure of their foundations. However, the seismically induced failure process of breakwater foundation has not been well understood. This study describes failure mechanism of breakwater foundation as well as a newly developed reinforcing model for breakwater foundation that can render resiliency to breakwater against earthquake-related disasters. Steel sheet piles and gabions were used as reinforcing materials for foundation. The experimental program consisted of a series of shaking table tests for conventional and reinforced foundation of breakwater. Numerical analyses were conducted using finite difference method, and it was observed that the numerical models were capable to elucidate the seismic behavior of soil–reinforcement–breakwater system. This paper presents an overview of the results of experimental and numerical studies of the seismic response of breakwater foundation. Overall, the results of these studies show the effectiveness of the reinforced foundation in mitigating the earthquake-induced damage to the breakwater. Moreover, numerical simulation was used for parametric study to determine the effect of different embedment depths of sheet piles on the performance of breakwater foundation subjected to seismic loading.  相似文献   

8.
《Ocean Engineering》2004,31(5-6):561-585
The evaluation of the wave-induced seabed instability in the vicinity of a breakwater is particularly important for coastal and geotechnical engineers involved in the design of coastal structures. In this paper, an analytical solution for three-dimensional short-crested wave-induced seabed instability in a Coulomb-damping porous seabed is derived. The partial wave reflection and self-weight of breakwater are also considered in the new solution. Based on the analytical solution, we examine (1) the wave-induced soil response at different location; (2) the maximum liquefaction and shear failure depth in coarse and fine sand; (3) the effects of reflection coefficients; and (4) the added stresses due to the self-weight of the breakwater.  相似文献   

9.
Wave interaction with T-type breakwaters   总被引:1,自引:0,他引:1  
The wave transmission, reflection and energy dissipation characteristics of partially submerged ‘T'-type breakwaters (Fig. 1) were studied using physical models. Regular and random waves, with wide ranges of wave heights and periods and a constant water depth were used. Five different depths of immersions of the ‘T'-type breakwater were selected. The coefficient of transmission, Kt, coefficient reflection, Kr, were obtained from the measurements and the coefficient of energy loss, Kl is calculated using the law of conservation of energy. It is found that the coefficient of transmission generally reduces with increased wave steepness and increased relative water depth, d/L. This breakwater is found to be effective closer to deep-water conditions. Kt values less than 0.35 is obtained for both normal and high input wave energy levels, when the horizontal barrier of the T type breakwater is immersed to about 7% of the water depth. This breakwater is also found to be very efficient in dissipating the incident wave energy to an extent of about 65% (i.e. Kl>0.8), especially for high input wave energy levels. The wave climate in front of the breakwater is also measured and studied.
Full-size image (12K)
Fig. 1. Schematic view of the T-type breakwater.  相似文献   

10.
Numerical prediction of performance of submerged breakwaters   总被引:1,自引:0,他引:1  
The results of a numerical model study on the transmission characteristics of a submerged breakwater are presented. Study aimed to determine the effect of depth of submergence, crest width, initial wave conditions and material properties on the transmission characteristics of the submerged breakwater. The results highlight the optimum crest width of the breakwater and optimum clear spacing between two breakwaters. A submerged permeable breakwater with ds/d=0.5, p=0.3 and f=1.0, reduces the transmission coefficient by about 10% than the impermeable breakwater. The results indicates an optimum width ratio of B/d=0.75 for achieving minimum transmission. By restricting the effective width ratio of the series of breakwaters to 0.75, studies were conducted to determine the effect of clear spacing between breakwaters on transmission coefficient, suggesting an optimum clear spacing of w/b=2.00 to obtain Kt below 0.6.  相似文献   

11.
The paper presents the results from model scale experiments on the study of forces in the moorings of horizontally interlaced, multi-layered, moored floating pipe breakwaters. The studies are conducted with breakwater models having three layers subjected to waves of steepness Hi/L (Hi is the incident wave height and L the wavelength) varying from 0.0066 to 0.0464, relative width W/L (W is the width of breakwater) varying from 0.4 to 2.65, and relative spacing S/D (S is the spacing of pipes and D the diameter of pipe) of 2 and 4. The variation of measured normalized mooring forces on the seaward side and leeward side are analyzed by plotting non-dimensional graphs depicting f/γW2 (f is the force in the mooring per unit length of the breakwater, γ the weight density of sea water) as a function W/L for various values of Hi/d (d is the depth of water). It is found that the force in the seaward side mooring increases with an increase in Hi/L for d/W values ranging between 0.081 and 0.276. The experimental results also reveal that the forces in the seaward side mooring decrease as W/L increases, up to a value of W/L=1.3, and then increases with an increase in W/L. It is also observed that the wave attenuation characteristics of breakwater model with relative spacing of 4 is better than that of the model with relative spacing of 2. The maximum force in the seaward side mooring for model with S/D=4 is lower compared to that for the breakwater model with S/D=2. A multivariate non-linear regression analysis has been carried out for the data on mooring forces for the seaside and leeside.  相似文献   

12.
Response of a porous seabed around breakwater heads   总被引:1,自引:0,他引:1  
J. Li  D.-S. Jeng   《Ocean Engineering》2008,35(8-9):864-886
The evaluation of wave-induced pore pressures and effective stresses in a porous seabed near a breakwater head is important for coastal engineers involved in the design of marine structures. Most previous studies have been limited to two-dimensional (2D) or three-dimensional (3D) cases in front of a breakwater. In this study, we focus on the problem near breakwater heads that consists of incident, reflected and diffracted waves. Both wave-induced oscillatory and residual liquefactions will be considered in our new models. The mistake in the previous work [Jeng, D.-S., 1996. Wave-induced liquefaction potential at the tip of a breakwater. Applied Ocean Research 18(5), 229–241] for oscillatory mechanism is corrected, while a new 3D boundary value problem describing residual mechanism is established. A parametric study is conducted to investigate the influences of several wave and soil parameters on wave-induced oscillatory and residual liquefactions around breakwater heads.  相似文献   

13.
为使防波堤同时具有良好的掩护效果和水体交换能力,提出了两种带有透浪通道的新型直立式防波堤。基于Fluent求解器建立了三维数值波浪水槽,通过与试验结果对比,验证了该数值水槽求解波浪与透空堤作用具有较高的精度。对两种防波堤在规则波作用下的透浪特性进行了研究,结果表明:透射系数K_t与透空率呈正线性相关,且可通过调整透浪通道间距,使相同透空率下K_t降低20%~30%。对同一结构,K_t随相对波长的增大而显著增大,但受相对波高的影响较小。在透空率大于0.16后,异型沉箱防波堤的消浪性能明显优于错位沉箱。基于数值计算结果,给出了以上两种透空堤波浪透射系数的经验公式。  相似文献   

14.
Experimental data of equilibrium shorelines behind a detached breakwater obtained by previous investigators were collected and re-reviewed to investigate the major parameters affecting the shoreline shapes. The result shows that the equilibrium shorelines depend not only on the breakwater length B and the distance of the breakwater from the initial shoreline S, but also on the incident wave steepness H0/L0, beach slope Sb and the sand size D50. Most of equilibrium shorelines behind a detached breakwater could be approximately described by a couple of elliptic curves as proposed by McCormick (Ports, Coastal & Ocean Engineering ASCE 119, 1993, p. 657). However, after re-examination, this paper shows that the dimensionless semiminor axis b/S and the dimensionless distance G/b in the McCormick’s elliptic-curve model should be modified, as compared with the available experimental data. The modified expressions of b/S and G/b were proposed, and the performances of the modified expressions were also detaily examined in this paper.  相似文献   

15.
《Ocean Engineering》2004,31(11-12):1577-1589
The basic principle involved in the design of S-shaped breakwater is the provision of a wide berm at or around the water level with smaller size armor stones than that used in conventional design, which are allowed to reshape till an equilibrium slope is achieved. An attempt is made to assess the influence of wave height, wave period, and berm width on the stability of S-shaped breakwater with reduced (30% reduction in armor stone weight) armor unit weight. From the investigation, it is found that the berm breakwater with 30% reduced armor weight would be stable for the design wave height if the berm width is 60 cm and wave period 1.2 s. For higher wave periods studied, zero damage wave height reduces by 20–40% of the design wave height. Wave period has large influence on the stability of berm breakwaters. The runup increases with decrease in weight up to Wo/W=0.9.  相似文献   

16.
The simple, yet versatile numerical technique particularly suitable for investigating the problem of the wave attenuation by moored floating breakwater was recently developed by the author. In order to verift the theory, nearly full scale model tests were conducted in a large wave tank (3.6 m wide × 4.5 m high × 106 m long). Both random waves and monochromatic waves were used to compare the results. A breakwater with a rectangular cross-section and a hydrodynamically shaped «three-cycle cylinderå breakwater were tested. Incident wave spectra were successfully decomposed from the multi-reflected sea spectra. Frequency response functions of transmitted wave, sway, heave and roll motions of the breakwater as well as mooring forces were all experimentally determined and compared with the theory. Generally, excellent agreements between the theory, the random wave tests and the monochromatic wave tests were obtained for the hydrodynamically shaped breakwater. Except near the modal frequencies of body motion generally good agreement between theory and experiment was obtained for the rectangular breakwater. Near the modal frequencies, the body motion was damped by the flow separation at the sharp corners of the rectangular breakwater. Generation of higher harmonics in wave, body motion and mooring forces was observed and measured, but was generally small. The slow drift oscillation and its effects on the performance of the spring moored breakwaters were also small. From the comaprisons of the small scale test and the large scale tests, it was found that the scale effects were negligibly small on the performance of the spring-moored breakwaters.  相似文献   

17.
This article presents a laboratory study of static behavior of silty-sand soils. The objective of this laboratory investigation is to study the effect of initial confining pressures and fines content on the undrained shear strength (known as liquefaction resistance) response, pore pressure, and hydraulic conductivity of sand–silt mixtures. The triaxial tests were conducted on reconstituted saturated silty-sand samples at initial relative density Dr = 15% with fines content ranging from 0 to 50%. All the samples were subjected to a range of initial confining pressures (50, 100, and 200 kPa). The obtained results indicate that the presence of low plastic fines in sand–silt mixture leads to a more compressible soil fabric, and consequently to a significant loss in the soil resistance to liquefaction. The evaluation of the data indicates that the undrained shear strength can be correlated to fines content (Fc), inter-granular void ratio (eg), and excess of pore pressure (Δu). The undrained shear strength decreases with the decrease of saturated hydraulic conductivity and the increase of fines content for all confining pressures under consideration. There is a relatively high degree of correlation between the peak shear strength (qpeak) and the logarithm of the saturated hydraulic conductivity (ksat) for all confining pressures.  相似文献   

18.
Abstract

Liquefaction is a phenomenon developed in loose and saturated layers of sands subjected to dynamic or seismic loading, and often leads to excessive settlement and subsequent failures in structures. Several methods have been proposed to improve soil resistance against liquefaction, among which use of stone columns is one of the most applicable methods. In this research, the effect of stone columns with different geometries and arrangements on the liquefaction behaviour of loose and very loose saturated sands subjected to vibration is investigated using shaking table. Results of the experiments show that when using stone columns in sand layers, the level of maximum settlement is significantly reduced. Further, the presence of stone columns significantly reduces pore water pressure ratio. This further indicates that stone columns have a positive effect and reasonable performance, even in relatively strong earthquakes, provided that the number and cross-section of the columns are sufficient. In addition, stone columns reduce the pore water pressure dissipation time. Moreover, by increasing cross-sectional area and the number of columns, both pore water pressure and settlement decrease. Stone columns in loose sand have a greater effect on the reduction of pore water pressure compared to that of very loose sand.  相似文献   

19.
Dong-Soo Hur   《Ocean Engineering》2004,31(10):83-1311
This study investigates the wave deformation of multi-directional random waves passing over an impermeable submerged breakwater installed on the slope. Experiments were conducted in a three-dimensional wave basin equipped with a multi-directional random wave generator. Measurements of the free surface elevations around an impermeable submerged breakwater were carried out using 19 capacitance-type wave gages. In addition, a numerical model is proposed in three-dimensional random wave field. It is shown that the numerical results reproduce the general trend of the experimental results well. Investigations are made to study the effect of the spreading parameter Smax and bottom topography (bottom slope and submerged breakwater) on the wave deformation. It is pointed out that concentration of wave energy with larger values of the spreading parameter Smax is located within narrow limits in onshore side of the submerged breakwater. Furthermore, the supplementary discussion is made by means of numerical results.  相似文献   

20.
本实验于2014年9月—2015年6月选用同一批次的墨西哥湾扇贝选育系F_7和对照系贝苗,在广西北部湾海域进行生长对比养殖实验。将出池稚贝在海上保苗过渡,长至10mm进入中培期,长至30mm进入养成期,再投放到广西北海、钦州、防城港3个养殖海域,采用网笼吊养方式养殖,对各时期的墨西哥湾扇贝选育系F_7和对照系的生长性能及在3个海域生长进行评估。结果表明,墨西哥湾扇贝选育系F_7的各生长指标都优于同日龄对照系(P0.05)。在北海海域,选育系和对照系的壳长、壳宽、壳高、体质量、软体质量、肉柱重等各生长指标具有显著差异(P0.05);在钦州海域,选育系和对照系的以上各生长指标都具有显著差异(P0.05),但233日龄除外;在防城港海域,232日龄的选育系和对照系的壳长、壳高差异显著(P0.05)。在150日龄,墨西哥湾扇贝选育系F_7的壳长、壳高表现为北海钦州防城港,墨西哥湾扇贝选育系F_7的壳宽、体质量、肉柱重表现为北海防城港钦州。水质测量结果显示,北海的盐度、温度、pH、溶解氧的变化最为稳定,钦州、防城港的水质变化较大。浮游植物统计分析结果表明,浮游植物藻属的种类从大到小依次为钦州北海防城港,而浮游植物数量从大到小依次为北海防城港钦州。墨西哥湾扇贝选育系F_7的生长性状明显高于对照系,以北海生长最为突出,具有明显的生长优势和发展潜力。研究结果为墨西哥湾扇贝选育系F_7在广西北部湾的推广养殖及进一步选育提供基础资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号