首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
By use of the hydrodynamic model,the harmonic constants of 8 principal tidal constituents(Q_1,O_1,P_1,K_1,N_2,M_2,S_2andK_2)are obtained for the East China Sea,and the harmonic constant ofS_a is calculated by two-dimensional interpolation.The calculated results agree well with the observed dataaround the sea.The harmonic constants can be used to predict the tide in the East China Sea.The cotidalcharts of the 9 tidal constituents reveal their distribution.  相似文献   

2.
Based ourself mainly on the harmonic constant in the tide table (English-edition), we acquire data from 320 tidal observatories, calculate the different tidal ranges and cotidal hours of the South China Sea, and by the contour line method, draw the M_2, S_2. K_1, O_1 constituent charts, thus better showing the tide distribution in the South China Sea and presenting tide characteristics in the area more accurately.  相似文献   

3.
In order to discuss the content distributions and fluxes of heavy metals in suspended matters during a tidal cycle in the turbidity maximum around the Changjiang(Yangtze) Estuary,the contents of heavy metals(Zn,Pb,Cd,Co and Ni) have been analyzed.During a tidal cycle,the average contents of heavy metals are in the order of ZnNiPbCo àCd.The average contents in ebb tide are generally higher than that in flood tide.However,at the inshore Sta.11,influenced by the contamination from the nearby waste treatment plant,the average contents of Zn and Ni in flood tide are higher than those in ebb tide and at the offshore Sta.10,the content of Cd in flood tide higher than that in ebb tide due to marine-derived materials.The five heavy metals,mainly terrigenous,are transported towards east-northeast,and settle down with suspended matters in the area between Sta.11 and Sta.10.Influenced by marine-derived materials,the flux value of Cd does not alter significantly with obviously changing in flux direction towards northwest.The source of heavy metals,the salinity of water and the concentration of suspended matters are the main factors controlling the content distributions of heavy metals during a tidal cycle.There is a positive correlation between the contents of heavy metals(Zn,Pb,Co and Ni) and the salinity of water,while the opposite correlation between the contents and the concentrations of suspended matters.Because of marine-derived materials,the content of Cd is not correlated with the concentration of suspended matters and the salinity of water.  相似文献   

4.
The effects of tidal currents (i.e., barotropic and internal tides) are important in the biogeochemistry of a coastal shelf sea. The high-frequency of currents and near-bottom temperatures collected in three consecutive southwest monsoon seasons (May, June, July and August of 2013 until 2015) is presented to reveal the role of the tidal currents to the temperature variability in the coastal shelf sea of the east coast of Peninsular Malaysia (ECPM), south of the South China Sea (SCS). The results of a spectral density and harmonic analysis demonstrate that the near-bottom temperature variability and the tidal currents are influenced by diurnal (O1 and K1) and semidiurnal (M2) tidal currents. The spectral density of residual currents (detided data) at 5, 10 and 16 m depth also shows significant peaks at the diurnal tidal frequency (K1) and small peaks at the semidiurnal tidal frequency (M2) indicating the existence of internal tides. The result of the horizontal kinetic energy (HKE) shows a strong intermittent energy of internal tides in the ECPM with the strongest energy is found at 16 m depth during a sporadic cooling event in June and July. A high horizontal cross-shore heat flux (16 m) also indicates strong intrusions of cooler water into the ECPM in June and July. During the short duration of cold pulse water observed in June and July, a cross-wavelet analysis also reveals the strong relationship between the near-bottom temperatures and the internal tidal currents at the diurnal tidal frequency. The intrusion of this cooler water is probably related to the monsoon-induced upwelling in June. It is loosely interpreted that the interaction between the strong barotropic tides and the steep slope in the central basin of the SCS under the stratified condition in southwest monsoon has generated these internal tides. The dissipation of internal tides from the slope area probably has driven the cold-upwelled water into the ECPM coastal shelf sea when the upwelling intensity is the highest in June and July.  相似文献   

5.
During June 1997 cruise by R/V Science No.l, observations on temporal and spatialvariations of the size-fractionated phytoplankton standing stock and primary production were carried out in the Bohai Sea. The size-fractionated chlorophyll a (Chl a) and primary production, photosynthet-ically available radiation (PAR), as well as the related physico-oceanographic and zooplanktonic parameters were measured at five time-series observation stations representing sub-areas of the sea. Results obtained show that there were the marked features of spatial zonation of Chl a and primary production in the Bohai Sea. The values in the Laizhou Bay, the Liaodong Gulf and the Bohai Gulf were high and showed close relation with tidal fluctuations, i.e. high Chl a concentration occurred during high tide in the Laizhou Bay, and during low tide in the Liaodong Gulf and the Bohai Gulf. In the strait and the central region of the Bohai Sea, the values were relatively low and no relationship with tidal fluctuation could be foun  相似文献   

6.
The performance of a z-level ocean model, the Modular Ocean Model Version 4(MOM4), is evaluated in terms of simulating the global tide with different horizontal resolutions commonly used by climate models. The performance using various sets of model topography is evaluated. The results show that the optimum filter radius can improve the simulated co-tidal phase and that better topography quality can lead to smaller rootmean square(RMS) error in simulated tides. Sensitivity experiments are conducted to test the impact of spatial resolutions. It is shown that the model results are sensitive to horizontal resolutions. The calculated absolute mean errors of the co-tidal phase show that simulations with horizontal resolutions of 0.5° and 0.25° have about 35.5% higher performance compared that with 1° model resolution. An internal tide drag parameterization is adopted to reduce large system errors in the tidal amplitude. The RMS error of the best tuned 0.25° model compared with the satellite-altimetry-constrained model TPXO7.2 is 8.5 cm for M_2. The tidal energy fluxes of M_2 and K_1 are calculated and their patterns are in good agreement with those from the TPXO7.2. The correlation coefficients of the tidal energy fluxes can be used as an important index to evaluate a model skill.  相似文献   

7.
Accurate determination of flushing time is crucial for maintaining sustainable production in fish culture zones(FCZs),as it represents the physical self-purification capability via tidal exchange with clean water in the outer sea.However,owing to the temporal and spatial complexity of the coastal flushing process,existing methods for determining flushing time may not be generally applicable.In this paper,a systematic method for determining the flushing time in FCZs is presented,in which bathymetry,runoff,tidal range and stratification are properly accounted for.We determine the flushing time via numerical tracer experiments,using robust 3D hydrodynamic and mass transport models.For FCZs located in sheltered and land-locked tidal inlets,the system boundary can be naturally defined at the connection with the open sea.For FCZs located in open waters,hydrodynamic tracking is first used to assess the extent of tidal excursion and thus delimit the initial boundary between clean water and polluted water.This general method is applied to all designated marine FCZs in Hong Kong for both the dry and wet seasons,including 20 sheltered FCZs(in semi-enclosed waters of Tolo Harbour,Mirs Bay,and Port Shelter) and 6 FCZs in open waters.Our results show that flushing time is the longest in inner Port Shelter(about 40 days in dry season),and the shortest for the FCZs in open waters(less than one week in dry season).In addition,the flushing time in dry season is commonly longer than that in wet season:20%~40% for most well-sheltered FCZs;2.6~4 times for the others.Our results indicate a positive correlation between the flushing time and distance to open boundary,supporting the view that the flushing time of a FCZ is closely related to its location.This study provides a solid basis for mariculture management such as the determination of carrying capacity of FCZs.  相似文献   

8.
The rise of tidal level in tidal reaches induced by sea-level rise has a large impact on flood control and water supply for the regions around the estuary.This paper focuses on the variations of tidal level response along the tidal reaches in the Yangtze Estuary,as well as the impacts of upstream discharge on tidal level response,due to the sea-level rise of the East China Sea.Based on the Topex/Poseidon altimeter data obtained during the period 1993~2005,a stochastic dynamic analysis was performed and a forecast model was run to predict the sea-level rise of the East China Sea.Two-dimensional hydrodynamic numerical models downscaling from the East China Sea to estuarine areas were implemented to analyze the rise of tidal level along the tidal reaches.In response to the sea-level rise,the tidal wave characteristics change slightly in nearshore areas outside the estuaries,involving the tidal range and the duration of flood and ebb tide.The results show that the rise of tidal level in the tidal reaches due to the sea-level rise has upstream decreasing trends.The step between the stations of Zhangjiagang and Shiyiwei divides the tidal reaches into two parts,in which the tidal level response declines slightly.The rise of tidal level is 1~2.5 mm/a in the upper part,and 4~6 mm/a in the lower part.The stations of Jiangyin and Yanglin,as an example of the upper part and the lower part respectively,are extracted to analyze the impacts of upstream discharge on tidal level response to the sea-level rise.The relation between the rise of tidal level and the upstream discharge can be fitted well with a quadratic function in the upper part.However,the relation is too complicated to be fitted in the lower part because of the tide dominance.For comparison purposes,hourly tidal level observations at the stations of Xuliujing and Yanglin during the period 1993~2009 are adopted.In order to uniform the influence of upstream discharge on tidal level for a certain day each year,the hourly tidal level observations are corrected by the correlation between the increment of tidal level and the increment of daily mean upstream discharge.The rise of annual mean tidal level is evaluated.The resulting rise of tidal level at the stations of Xuliujing and Yanglin is 3.0 mm/a and 6.6 mm/a respectively,close to the rise of 5 mm/a according to the proposed relation between the rise of tidal level and the upstream discharge.  相似文献   

9.
The tidal current is generally predominant in China's offshore areas. The vertical structure of the observedtidal current is quite complicated with the presence of seasonal thermocline. The observed tidal current may be divided into two parts, an averaged barotropic tide current and a variation tide current. A method for studying the vertical structure of tidal current is developed from the constitution and distribution of energy, and the vertical structure of the observed tide current in the North Huanghai Sea is studied on the basis of the method. The result shows that the reason why the energy of the tidal current is concentrated on the neighbourhood of the thermocline mainly lies in the internal tides i under certain conditions, the fact that the direction of the internal tide current above the thermocline is opposite to the one below the thermocline will be able to cause the rotary directions of the observed tidal current above and below the thermocline to be in opposite. The interaction between th  相似文献   

10.
Based on the recent research results on dry and wet deposition of nutrient elements and sulphate,we estimate the atmospheric flux of nutrient elements and sulphate to the southern Yellow Sea and the East China Sea in each season.The results suggest that the concentrations of nutrient elements and sulphate in aerosol and precipitation show an apparent seasonal cycle with the maximum values in winter and the minimum values in summer.Depositions of nitrate and sulphate are dominated by wet deposition,while the deposition for phosphate is mainly dry deposition.Moreover,compared with the riverine inputs,the atmospheric deposition may be the main source of dissolved inorganic nutrients in the southern Yellow Sea and the East China Sea.  相似文献   

11.
印度尼西亚海域潮波的数值研究   总被引:1,自引:1,他引:0  
基于ROMS模式构建了模拟区域为(15.52°S-7.13°N,110.39°~134.15°E)水平分辨率为2′的潮波数值模式,分别模拟了印尼海域M2、S2、K1、O1四个主要分潮。模拟结果与29个卫星高度计交叠点上的调和常数进行比较,符合较好。M2分潮的振幅均方根差为3.4cm,迟角均方根差为5.9°;S2分潮的振幅均方根差为1.7cm,迟角均方根差为6.3°;K1分潮振幅均方根差为1.1cm,迟角均方根差为5.8°;O1分潮振幅均方根差为1.2cm,迟角均方根差为4.4°。M2、S2、K1、O1分潮向量均方根差分别为3.8cm、2.4cm、1.9cm和1.3cm,模拟结果的相对偏差在10%左右。根据计算结果分析了印尼海域的潮汐特征及潮能传播规律,结果显示:爪哇海以外的印尼海域主要为不规则半日潮区;全日潮潮能主要由太平洋传入印尼海域,而半日潮潮能则是从印度洋传入印尼海域。  相似文献   

12.
We adopt a parameterized internal tide dissipation term to the two-dimensional (2-D) shallow water equations, and develop the corresponding adjoint model to investigate tidal dynamics in the South China Sea (SCS). The harmonic constants derived from 63 tidal gauge stations and 24 TOPEX/Poseidon (T/P) satellite altimeter crossover points are assimilated into the adjoint model to minimize the deviations of the simulated results and observations by optimizing the bottom friction coefficient and the internal tide dissipation coefficient. Tidal constituents M2, S2, K1 and O1 are simulated simultaneously. The numerical results (assimilating only tidal gauge data) agree well with T/P data showing that the model results are reliable. The co-tidal charts of M2, S2, K1 and O1 are obtained, which reflect the characteristics of tides in the SCS. The tidal energy flux is analyzed based on numerical results. The strongest tidal energy flux appears in the Luzon Strait (LS) for both semi-diurnal and diurnal tidal constituents. The analysis of tidal energy dissipation indicates that the bottom friction dissipation occurs mainly in shallow water area, meanwhile the internal tide dissipation is mainly concentrated in the LS and the deep basin of the SCS. The tidal energetics in the LS is examined showing that the tidal energy input closely balances the tidal energy dissipation.  相似文献   

13.
Numerical study of baroclinic tides in Luzon Strait   总被引:6,自引:1,他引:5  
The spatial and temporal variations of baroclinic tides in the Luzon Strait (LS) are investigated using a three-dimensional tide model driven by four principal constituents, O1, K1, M2 and S2, individually or together with seasonal mean summer or winter stratifications as the initial field. Barotropic tides propagate predominantly westward from the Pacific Ocean, impinge on two prominent north-south running submarine ridges in LS, and generate strong baroclinic tides propagating into both the South China Sea (SCS) and the Pacific Ocean. Strong baroclinic tides, ∼19 GW for diurnal tides and ∼11 GW for semidiurnal tides, are excited on both the east ridge (70%) and the west ridge (30%). The barotropic to baroclinic energy conversion rate reaches 30% for diurnal tides and ∼20% for semidiurnal tides. Diurnal (O1 and K1) and semidiurnal (M2) baroclinic tides have a comparable depth-integrated energy flux 10–20 kW m−1 emanating from the LS into the SCS and the Pacific basin. The spring-neap averaged, meridionally integrated baroclinic tidal energy flux is ∼7 GW into the SCS and ∼6 GW into the Pacific Ocean, representing one of the strongest baroclinic tidal energy flux regimes in the World Ocean. About 18 GW of baroclinic tidal energy, ∼50% of that generated in the LS, is lost locally, which is more than five times that estimated in the vicinity of the Hawaiian ridge. The strong westward-propagating semidiurnal baroclinic tidal energy flux is likely the energy source for the large-amplitude nonlinear internal waves found in the SCS. The baroclinic tidal energy generation, energy fluxes, and energy dissipation rates in the spring tide are about five times those in the neap tide; while there is no significant seasonal variation of energetics, but the propagation speed of baroclinic tide is about 10% faster in summer than in winter. Within the LS, the average turbulence kinetic energy dissipation rate is O(10−7) W kg− 1 and the turbulence diffusivity is O(10−3) m2s−1, a factor of 100 greater than those in the typical open ocean. This strong turbulence mixing induced by the baroclinic tidal energy dissipation exists in the main path of the Kuroshio and is important in mixing the Pacific Ocean, Kuroshio, and the SCS waters.  相似文献   

14.
内潮耗散与自吸-负荷潮对南海潮波影响的数值研究   总被引:1,自引:0,他引:1  
利用非结构三角形网格的FVCOM海洋数值模式,在其传统二维潮波方程中加入参数化的内潮耗散项和自吸-负荷潮项,计算了南海及其周边海域的M_2、S_2、K_1和O_1分潮的分布。与实测值的比较表明,引入这两项对模拟准确度的提高有明显效果。根据模式结果本文计算分析了研究海域的潮能输入和耗散。能量输入计算表明,能通量是潮能输入的最主要构成部分,通过吕宋海峡断面进入南海的M_2和K_1分潮能通量分别为38和29GW;半日周期的自吸-负荷潮能量输入以负值居多,而全日周期的自吸-负荷潮能量输入以正值居多,因而自吸-负荷潮减弱了南海的半日潮,并加强了南海的全日潮。引潮力的作用也减弱了半日潮而加强了全日潮,但其作用要小于自吸-负荷潮。潮能耗散的分析显示底摩擦耗散在沿岸浅水区域起主导作用,内潮耗散则主要发生在深水区域。内潮耗散的最大值出现在吕宋海峡,且位于南海之外的海峡东部的耗散量大于位于南海之内的海峡西部的耗散量。对M_2和K_1分潮吕宋海峡的内潮耗散总值分别达到16和23GW。  相似文献   

15.
珠江三角洲径潮相互作用下潮能的传播和衰减   总被引:2,自引:2,他引:0  
因径流潮汐相互作用,三角洲各水道的能通量包含径流引起的净通量及潮汐引起的潮能通量。本文利用珠江三角洲多断面实测水位及流量的同步测量数据,建立基于径潮耦合的调和分析模型,剥离径流信号,计算出各站的总潮能及M2、K1及高频浅水分潮的潮能,对珠江三角洲潮能的沿程传播及衰减进行研究。结果表明,通过虎门进入珠江三角洲的潮波能量约占51.2%,而通过崖门、蕉门、磨刀门传入三角洲的潮能约占37%;同时,因地形摩擦、径流耗能效应,三角洲各水道的总能量损耗为148.33 MW。潮波能量按汇聚型和分散型两大类型沿三角洲不同位置传播并沿程衰减。虎门狮子洋及珠江正干、崖门至潭江石咀两大水道体系,其潮能沿程分散传入不同汊道,断面总潮能的衰减幅度大于单宽潮能通量的衰减,单宽潮动能沿程平均衰减速率大于潮势能,半日分潮的潮能衰减速率大于全日分潮。虎门狮子洋因其形态影响,M2分潮振幅(或势能)的衰减最小,虎门至泗盛围段增加,平均每千米约增加0.77%。西四口门潮能汇聚于西海水道天河断面,总潮能的衰减速率小于磨刀门水道单宽潮能衰减速率。沿横门、洪奇门、蕉门进入的潮波多次交汇、分散,自横门至小榄、南华,南沙至海尾、荣奇,其单宽潮动能及M2、K1分潮动能的衰减速率小于潮势能,高频分潮势能沿程增加。  相似文献   

16.
成山头海域潮流能资源可开发量评估   总被引:1,自引:0,他引:1  
武贺  王鑫  韩林生 《海洋与湖沼》2013,44(3):570-576
针对潮流能资源较丰富的成山头外海域,利用FVCOM数值模式,在良好模拟该海域潮流场的基础上,运用能量耗散原理,对该海域的潮流能资源可开发量进行了评估。结果表明,在转换装置的拖拽系数为0.07时,面积为27km2的成山头近岸海域的可开发潮流能资源约为17.9MW,其中大潮期间的可开发量高达37.7MW,而小潮期间则为7.3MW。在此条件下,该海域大潮期间涨急和落急时刻的流速分别减小了40%和38%,但发电装置对潮汐的影响较小,在成山头顶端的高潮潮位仅下降了4cm。  相似文献   

17.
The tidal volume transport in the Seto Inland Sea is calculated. The cross-section where the volume transport of the M2 tide is zero, is located around the western part of Bisan Strait. The tidal energy dissipation of the M2 tide by friction is 6.30×1016 ergs s–1 in the Seto Inland Sea. The quality factorQ for the M2 tide is 20.2. The total energy dissipation of the M2, S2, K1 and O1 tides is 7.99×1016 ergs s–1.  相似文献   

18.
The global distributions of eight principal tidal constituents, M2 , S2 , K1 , O1 , N2 , K2 , P1 , and Q1 , are derived using TOPEX/Poseidon and JASON-1(T/P-J) satellite altimeter data for 16 a. The intercomparison of the derived harmonics at 7000 subsatellite track crossover points shows that the root mean square (RMS) values of the tidal height differences of the above eight constituents range from 1.19 cm to 2.67 cm, with an average of about 2 cm. The RMS values of the tidal height differences between T/P-J solutions and the harmonics from ground measurements at 152 tidal gauge stations for the above constituents range from 0.34 cm to 1.08 cm, and the relative deviations range from 0.031 to 0.211. The root sum square of the RMS differences of these eight constituents is 2.12 cm, showing the improvement of the present model over the existing global ocean tidal models. Based on the obtained tidal model the global ocean tidal energetics is studied and the global distribution of the tidal power input density by tide-generating force of each constituent is calculated, showing that the power input source regions of semidiurnal tides are mainly concentrated in the tropical belt between 30 S and 30 N, while the power input source regions of diurnal tides are mainly concentrated off the tropic oceans. The global energy dissipation rates of the M2 , S2 , K1 , O1 , N2 , P1 , K2 and Q1 tides are 2.424, 0.401, 0.334, 0.160, 0.113, 0.035, 0.030 and 0.006 TW, respectively. The total global tidal dissipation rate of these eight constituents amounts to 3.5 TW.  相似文献   

19.
渤海M2分潮的伴随模式数值实验   总被引:18,自引:0,他引:18  
根据渤海海域内M2潮汐调和常数的实测值,采用伴随方法来反演出开边界处的潮汐调和常数.为了取得较好的数值模拟结果,同时对给定的底摩擦系数进行了校正并对水深进行了微调.做了4个实验,并分别计算出调和常数的实测值与模拟值之差的绝对平均值:(1)只用19个验潮站的潮汐调和常数;振幅差为2.4cm,迟角差为5.0°.(2)只用37个观测点的高度计资料;振幅差为4.4cm,迟角差为5.7°.(3)同时利用19个验潮站的潮汐调和常数和37个观测点的高度计资料;振幅差为5.5cm,迟角差为8.5°.(4)同时利用19个验潮站的潮汐调和常数和14个观测点的高度计资料;振幅差为3.3cm,迟角差为5.6°.4个实验结果都较好地体现了渤海M2潮波的特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号