首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
船舶螺旋桨尾流场的数值分析   总被引:16,自引:1,他引:16  
利用基于速度势的低阶面元法计算船舶螺旋桨的尾流场。采用计算较为简捷的关于扰动速度势的基本积分微分方程,并采用双曲面形状的面凶以消除面元间的缝隙。Newton-Raphson迭代过程被用来在桨叶随边满足压力Kutta条件,使桨叶面上表面的压力在随边有良好的一致性。在计算面元的影响系数时,应用了Morino导出的解析计算公式,加快了数值计算的速度。从解面元法的基本积分方程得到的偶极强度和源汇强度,直接求得尾流场的速度分布。  相似文献   

2.
3.
随着船舶推进技术的不断发展,动力定位船舶将更多地使用快速转向推进器以提高其定位性能。快速转向推进器的使用将引入大角度变化率,这会造成优化分配求解域明显的非凸性,给优化问题的求解带来了挑战。针对装备快速转向推进器的动力定位船舶,运用区域外切近似法对其推力分配的非凸性问题进行了凸化,采用增广拉格朗日乘子法对控制力进行了优化分配。仿真结果表明:推荐的凸化处理方法能有效地解决推力分配的非凸问题,分配算法可以充分利用快速转向推进器的机械性能优势,寻找更优的可行解,从而显著地减少动力定位船舶的能耗,提高其定位性能。  相似文献   

4.
导管桨的尾流不稳定性在其性能评价中非常重要,不但是其能否提供稳定推力的保证,而且也与螺旋桨的尾流噪声直接相关。为了改善导管桨的尾流,提高尾流稳定性,并优化导管桨的流场脉动,根据座头鲸鳍肢前缘结节的仿生原理,对导管桨叶片的导边进行改进,提出了两种仿生桨型,采用IDDES湍流模型对低进速系数下常规导管桨和仿生叶片导管桨进行数值模拟,探究叶片构型对导管桨性能和尾流不稳定性的影响。计算结果表明,前缘结节可以有效降低叶片受力波动的幅值和叶片所受合力的主频域峰值,具有较大结节的叶片对导管桨尾流有明显的优化作用,在尾流远场中扩大了流动稳定区,延后了尾流处涡破碎的发生,改善了能量谱密度的频域分布。进一步,大前缘结节叶片导管桨应用在低速工况下时,可以大量减少尾流泄涡区域的二次涡产生,这是由于前缘结节提升了相邻涡互感的强度,使得尾流更加稳定,而小结节叶片仿生桨型对导管桨尾流则无明显优化作用。研究方法和成果可为螺旋桨尤其是导管桨尾流不稳定性研究提供参考,不仅验证了前缘结节在导管桨叶片应用的合理性,而且揭示了其优化尾流稳定性的机理。  相似文献   

5.
All but the smallest classes of modern keelboats are fitted with inboard engines and consequently, when making way under sail, the craft experience parasitic drag due to trailing propellers and associated appendages. The variety of screw configurations used on sailing boats includes fixed-blade, feathering, and folding set-ups, with blades numbering two or three. Although the magnitude of the resultant drag is thought to have a significant influence on sailing performance, the published literature having regard to this problem is sparse. Here, the aim was to evaluate the drag effect of fixed-blade propellers of types commonly used on sailing craft. The results of towing tank tests on full-scale propellers are presented for the locked shaft condition; these are presented along with reconfigured data from the few previously published sources. For the case in which the propeller is allowed to rotate, tests were conducted on a typical screw with a range of braking torques being applied. It was hypothesised that the performance coefficients of the Wageningen B-Screw Series could be used to characterise adequately the types of screw of interest and that these could be extrapolated to enable prediction of the drag of a freewheeling propeller; an assessment of this formed part of the investigation.  相似文献   

6.
The hydrodynamic characteristics of a marine propeller operating in oblique inflow are investigated by using CFD method. Two propellers with different geometries are selected as the study subjects. RANS simulation is carried out for the propellers working at a wide range of advance coefficients and incidence angles. The effects of axial inflow and lateral inflow are demonstrated with the hydrodynamic force on the propeller under different working conditions. Based on the obtained flow field details, the hydrodynamic mechanism of propeller operating in oblique inflow is analyzed further. The trailing vortex wake of propeller is highly affected by the lateral inflow, resulting in the deflected development path and the circumferentially non-uniform structure, as well as the enhanced axial velocity in slipstream. Different flow patterns are observed on the propeller blade with the variation of circumferential position. Combined with the computed hydrodynamic forces and pressure distribution on propeller, the mechanism resulting in the increase of propulsive loads and the generation of propeller side force is explored. Finally, a systematic analysis is carried out for the propulsive loads and propeller side force as a function of axial and lateral advance coefficients. The major terms that play a dominant role in the modeling of propulsive loads and propeller side force are determined through the sensitivity analysis. This study provides a deeper insight into the hydrodynamic characteristics of propeller operating in oblique inflow, which is useful to the investigation of propeller performance during ship maneuvers.  相似文献   

7.
Surface Piercing Propellers (SPPs) are a particular kind of propellers which are partially submerged operating at the interface of air and water. They are more efficient than submerged propellers for the propulsion system of high-speed crafts because of larger propeller diameter, replacing cavitation with ventilation, decreasing the torque and higher efficiency. This study presents a reliable numerical simulation to predict SPP performance using Unsteady Reynolds-Averaged Navier–Stokes (URANS) method. A numerical study on 841-B SPP is performed in open water condition. The free surface is modeled by Volume of Fluid (VOF) approach and the sliding mesh technique is implemented to model the propeller rotational motion. The sliding mesh allows capturing the process of water entry and water exit of blades. The propeller hydrodynamic characteristics, the ventilation pattern and the time history of blade loads are validated through the comparison with available experimental data. For the studied case, it was found that the common grid independence study approach is not sufficient. The grid should be elaborately generated fine enough based on the flow pattern and turbulence modeling parameters in regions near the blade's tip, trailing and leading edges and over the suction side. Details of URANS simulations including optimal time-step size based on propeller revolution rate and the required number of propeller revolutions for periodical results are presented and discussed.  相似文献   

8.
A two-frame particle image velocimetry (PIV) technique is used to investigate the wake characteristics behind a marine propeller with 4 blades at high Reynolds number. For each of 9 different blade phases from 0° to 80°, 150 instantaneous velocity fields are measured. They are ensemble averaged to study the spatial evolution of the propeller wake in the region ranging from the trailing edge to one propeller diameter (D) downstream location. The phase-averaged mean velocity shows that the trailing vorticity is related to radial velocity jump, and the viscous wake is affected by boundary layers developed on the blade surfaces and centrifugal force. Both Galilean decomposition method and vortex identification method using swirling strength calculation are very useful for the study of vortex behaviors in the propeller wake region. The slipstream contraction occurs in the near-wake region up to about X/D=0.53 downstream. Thereafter, unstable oscillation occurs because of the reduction of interaction between the tip vortex and the wake sheet behind the maximum contraction point.  相似文献   

9.
A numerical method is proposed to predict the effective wake profiles of high speed underwater vehicles propelled by contra-rotating propellers (CRPs), in which the hydrodynamic effects of the CRPs are simulated by distributed body forces. First, Reynolds-averaged Navier-Stokes (RANS) simulations are conducted for identical body-force distributions in open-water and self-propulsion conditions. The effective wake profiles at the CRP disks are then obtained by subtracting the velocities induced by the body forces in the open water from those induced by the body forces in the self-propulsion condition. The effective wake profiles were then predicted for a generic underwater vehicle with an established CRP design. Next, the hydrodynamic performance of the CRPs in the effective wake was computed using an in-house vortex-lattice code. The potential-flow results agree well with those provided by the RANS simulation under the self-propulsion condition, indicating that the proposed method can predict the effective wake profiles for CRPs with reasonable accuracy. The influences of different wake components on the blade forces were investigated, determining that for CRPs, and especially for the aft propeller, the circumferential wake cannot be neglected in the design.  相似文献   

10.
A surface panel method is employed for the thin boundary layer calculation of heavily loaded marine propellers in steady state conditions. Employing the surface panel method, known as the “Morino Method”, the flow field around the propeller is represented by an unknown potential. The majority of the flow field is governed by the potential theory while the viscosity is assumed to be largely confined to thin shear layer on the propeller surface. The boundary layer calculations are performed by using Cebeci-Smith two dimensional model and the local skin friction coefficients and blowing velocities are obtained along the pre-computed on-body streamlines. It is shown that the prediction of torque of the propeller is improved when the boundary layer calculations are used instead of the boundary layer corrections based on the formulae established for the flat plates.  相似文献   

11.
12.
Based on the lifting-surface vortex lattice model, a numerical design method of wake-adapted contra-rotating propellers (CRPs) for high-speed underwater vehicles is proposed. According to the given radial circulation distribution, the method can use prescribed camber line shapes to design maximum cambers and pitches of blade sections by controlling circulation at the leading edge, which makes the chordwise distribution of blade loading similar to that of NACA a = 0.8. It also can be performed under prescribed chordwise circulation distributions, where camber line shape and blade section pitch are designed. The Newton–Raphson iterative algorithm is utilised in the design of the pitch and camber. The radial circulation distribution of a set of CRPs for an underwater vehicle is used to redesign CRPs by the proposed method, and the design results are then validated via numerical simulations by solving the Reynolds-averaged Navier-Stokes equations. The results indicate that the proposed method is suitable for the design of CRPs with tapered hubs and skewed blades, and it also exhibits good mesh convergence. The CRPs designed with the given camber line shape and the given chordwise loading distribution both have relatively uniform pressure distributions, with the latter being superior.  相似文献   

13.
This paper presents the results of a numerical performance analysis to demonstrate the worthiness of a recently patented new concept propulsor, the so-called “thrust-balanced propeller (TBP)”. The main advantage of this unconventional propulsor is its inherent ability to reduce the unsteady effect of blade forces and moments when it is operating in a non-uniform wake flow. The propulsor comprises a pair of diametrically opposed blades that are connected to one another and mounted so as to be rotatable together through a limited angle about their spindle axis. A quasi-hydrodynamic approach is described and applied to perform the numerical analysis using a state-of-the-art lifting surface procedure for conventional propellers. Performance comparisons with a conventional fixed-pitch propeller are made for the blade forces and moments, efficiency, cavitation extents and fluctuating hull pressures. Bearing in mind the quasi-static nature of the analyses, the results present favourable performance characteristics for the thrust-balanced propeller and support the worthiness of the concept. However, the concept needs to be proved through physical model tests, which are planned to take in a cavitation tunnel.  相似文献   

14.
In this paper, the flow-induced vibrations of marine propellers in cyclic inflows are investigated both experimentally and numerically. A Laser-Doppler velocimetry (LDV) system is used to measure the axial flow velocity distributions produced by the seven-cycle wake screen in the water tunnel. A customized underwater slip ring and a single axis accelerometer sealed by silicon sealant are employed to measure the acceleration responses of rotating propeller blade. Numerical simulations of pressure fluctuations on the blades are performed using large eddy simulation (LES), while the forced vibrations of the propeller blades are obtained by a combined finite element and boundary element method. Experimental and numerical results are presented for two model propellers with the same geometries and different flexible properties, which show that the propeller blade vibrates at a frequency which is seven times as large as the axial passing frequency (APF) in the seven-cycle inflow. Moreover, the propeller blades are observed to resonance when the 7 APF excitation frequency is equal to the fundamental frequency of the propellers. The results indicate that both the inflow feature and the modal characteristic of blades contribute to flow-induced vibrations of elastic propellers.  相似文献   

15.
The tip vortex cavitation (TVC) is an issue of increasing interest, because the TVC plays an important role in propeller radiated noise and cavitation erosion. The marine propeller with winglets, which is inspired by the winglets of airfoil, is numerically investigated in the present paper. The blade tip of newly designed propeller tilts toward the pressure side. The difference between six propellers is the change of the rake angle at r/R = 1.0. The pressure coefficient, TVC, axial velocity field and helicity are analyzed. The numerical results show that the winglets of newly designed propeller scarcely affect the efficiency of propeller. The thrust coefficient gradually decreases with the increase in rake angle. As for the suction side, the pressure coefficient (Cp) of winglets propellers is higher than the conventional propeller in general. In addition, the winglets are beneficial to generate less cavitation behavior when the rake angle is small. However, as the rake angle is further increased, the cavitation behavior of winglets propeller is also increased, even larger than the conventional propeller. Therefore, it can be deduced that the winglets can be used to effectively improve the TVC characteristics to some extent.  相似文献   

16.
A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.  相似文献   

17.
In this study, the flow around the pod unit is analysed and the performance characteristics of the propeller on the pod are investigated. The main objective of the present work is to further improve the original numerical method developed before for the prediction of performance of podded propellers and to further validate the earlier developed numerical model with a specific emphasis on the hydrodynamic interaction amongst the propulsor components. While in the earlier numerical method, the axial induced velocities by pod and strut parts were included into the calculations on the propeller disc plane, in the present method the tangential induced velocities on the propeller disc plane are included in the calculations as well. The flow domain around the podded propeller is mainly divided into three parts; the axisymmetric pod part, the strut part and the propeller part. While the pod and strut parts are modelled by a low-order boundary element method (BEM), the propeller is represented by a vortex lattice method (VLM). Coupling of the BEM and the VLM is carried out in an iterative manner to incorporate the effect of the pod on the propeller, and vice versa. The present numerical method is applied to two different podded propellers with zero yaw angles in order to compare the results with those of experimental measurements. The present numerical method is also validated in the case of 15° of yaw angle for a podded propulsor. The effect of pod and strut on the propeller and vice versa are discussed.  相似文献   

18.
The efficiency for a propeller is calculated by energy coefficients. These coefficients are related to four types of losses, i.e. the axial, the rotational, the frictional, and the finite blade number loss, and one gain, i.e. the axial gain. The energy coefficients are derived by use of the potential theory with the propeller modelled as an actuator disk. The efficiency based on the energy coefficients is calculated for a propeller series. The results show a good agreement between the efficiency based on the energy coefficients and the efficiency obtained by a vortex-lattice method.  相似文献   

19.
作者以8154型、8101型和876型拖网渔船为对象,根据全年生产情况,从快速性、拖曳性能和经济性能,综合研究其螺旋桨设计工况。由34种型桨的研究结果表明:采用普通桨的拖网渔船,拖网航速为最佳设计工况;采用导流管定距桨的渔船,5节航速为最佳设计工况。  相似文献   

20.
In practical maritime conditions, ship hulls experience heave motion due to the action of waves, which can further drive the ship’s propellers to oscillate relative to the surrounding water. In order to investigate the motion of a propeller working behind a surface vessel sailing in waves, a numerical simulation is conducted on a propeller impacted by heave motion in cavitating flow using the Reynolds-averaged Navier-Stokes (RANS) method. The coupling of the propeller’s rotation and translation is fulfilled using equations of motion defined for this purpose. The heave motion is simplified as a periodic motion based on a sinusoidal function. The numerical transmission of information from the unsteady flow field is achieved using the overset grid approach. In this manner, the unsteady thrust coefficient and torque coefficient of propellers in different periods of heave motion are analyzed. A comparative study is implemented on the unsteady cavitation performance and wake characteristics of propeller. With the propeller’s heave motion, the flow field non-uniformity constantly changes the load on the propeller during each revolution period and each heaving period, the propeller load and the wake field are closely related to the variation of heave motion period. The results obtained from the numerical simulation are expected to serve as a useful theoretical reference for the numerical analysis of a propeller in a heave motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号