首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mean seasonal cycle of mixed layer depth (MLD) in the extratropical oceans has the potential to influence temperature, salinity and mixed layer depth anomalies from one winter to the next. Temperature and salinity anomalies that form at the surface and spread throughout the deep winter mixed layer are sequestered beneath the mixed layer when it shoals in spring, and are then re-entrained into the surface layer in the subsequent fall and winter. Here we document this ‘re-emergence mechanism’ in the North Pacific Ocean using observed SSTs, subsurface temperature fields from a data assimilation system, and coupled atmosphere–ocean model simulations. Observations indicate that the dominant large-scale SST anomaly pattern that forms in the North Pacific during winter recurs in the following winter. The model simulation with mixed layer ocean physics reproduced the winter-to-winter recurrence, while model simulations with observed SSTs specified in the tropical Pacific and a 50 m slab in the North Pacific did not. This difference between the model results indicates that the winter-to-winter SST correlations are the result of the re-emergence mechanism, and not of similar atmospheric forcing of the ocean in consecutive winters. The model experiments also indicate that SST anomalies in the tropical Pacific associated with El Niño are not essential for re-emergence to occur.The recurrence of observed SST and simulated SST and SSS anomalies are found in several regions in the central North Pacific, and are quite strong in the northern (>50°N) part of the basin. The winter-to-winter autocorrelation of SSS anomalies exceed those of SST, since only the latter are strongly damped by surface fluxes. The re-emergence mechanism also has a modest influence on MLD through changes in the vertical stratification in the seasonal thermocline.  相似文献   

2.
Using the outputs of projections under the highest emission scenario of the representative concentration pathways performed by Earth system models (ESMs), we evaluate the ocean acidification rates of subsurface layers of the western North Pacific, where the strongest sink of atmospheric CO2 is found in the mid-latitudes. The low potential vorticity water mass called the North Pacific Subtropical Mode Water (STMW) shows large dissolved inorganic carbon (DIC) concentration increase, and is advected southwestward, so that, in the sea to the south of Japan, DIC concentration increases and ocean acidification occurs faster than in adjacent regions. In the STMW of the Izu-Ogasawara region, the ocean acidification occurs with a pH decrease of ~0.004 year?1 , a much higher rate than the previously estimated global average (0.0023 year?1), so that the pH decreases by 0.3–0.4 during the twenty-first century and the saturation state of calcite (ΩCa) decreases from ~4.8 down to ~2.4. We find that the ESMs with a deeper mixed layer in the Kuroshio Extension region show a larger increase in DIC concentration within the Izu-Ogasawara region and within the Ryukyu Islands region. Comparing model results with the mixed layer depth obtained from the Argo dataset, we estimate that DIC concentration at a depth of ~200 m increases by 1.4–1.6 μmol kg?1 year?1 in the Izu-Ogasawara region and by 1.1–1.4 μmol kg?1 year?1 in the Ryukyu Islands region toward the end of this century.  相似文献   

3.
We report radiocarbon measurements of dissolved inorganic carbon (DIC) in surface water samples collected daily during cruises to the central North Pacific, the Sargasso Sea and the Southern Ocean. The ranges of Δ14C measurements for each cruise (11–30‰) were larger than the total uncertainty (7.8‰, 2-sigma) of the measurements. The variability is attributed to changes in the upper water mass that took place at each site over a two to four week period. These results indicate that variability of surface Δ14C values is larger than the analytical precision, because of patchiness that exists in the DIC Δ14C signature of the surface ocean. This additional variability can affect estimates of geochemical parameters such as the air–sea CO2 exchange rate using radiocarbon.  相似文献   

4.
A comparison between Japan-equator XBT sections along 150°E in late November 1989 and along 140°E in early December 1991 is made. The warmest surface water above 29°C diminished to the south of 2–4°N and the surface mixed layer noticeably decreased in thickness in the equatorial region in December 1991; besides, the North Equatorial Countercurrent was intensified. This is considered to be a manifestation of changes in the surface layer of the western equatorial Pacific in the mature phase of El Niño.  相似文献   

5.
The dissolved inorganic carbon (DIC) and related chemical species have been measured from 1992 to 2001 at Station KNOT (44°N, 155°E) in the western North Pacific subpolar region. DIC (1.3∼2.3 µ mol/kg/yr) and apparent oxygen utilization (AOU, 0.7∼1.8 µmol/kg/yr) have increased while total alkalinity remained constant in the intermediate water (26.9∼27.3σθ). The increases of DIC in the upper intermediate water (26.9∼27.1σθ) were higher than those in the lower one (27.2∼ 27.3σθ). The temporal change of DIC would be controlled by the increase of anthropogenic CO2, the decomposition of organic matter and the non-anthropogenic CO2 absorbed at the region of intermediate water formation. We estimated the increase of anthropogenic CO2 to be only 0.5∼0.7 µmol/kg/yr under equilibrium with the atmospheric CO2 content. The effect of decomposition was estimated to be 0.8 ± 0.7 µmol/kg/yr from AOU increase. The remainder of non-anthropogenic CO2 had increased by 0.6 ± 1.1 µmol/kg/yr. We suggest that the non-anthropogenic CO2 increase is controlled by the accumulation of CO2 liberated back to atmosphere at the region of intermediate water formation due to the decrease of difference between DIC in the winter mixed layer and DIC under equilibrium with the atmospheric CO2 content, and the reduction of diapycnal vertical water exchange between mixed layer and pycnocline waters. In future, more accurate and longer time series data will be required to confirm our results.  相似文献   

6.
本文利用World Ocean Atlas 2013(WOA2013)气候态的温盐资料和the Simple Ocean Data Assimilation (SODA v3.3.1)流场数据,分析印尼贯穿流东部源区马鲁古海和哈马黑拉海的水团垂向分布特征及其来源,特别是次表层、中层及深层水的来源和路径。结果表明,气候态下,马鲁古海次表层的高温高盐水来自于北太平洋,与北太平洋热带水性质接近,哈马黑拉海次表层主要是来自南太平洋热带水;中层水以低温低盐为特征,马鲁古海的中层水来自南太平洋,受南极中层水控制,哈马黑拉海的中层水可能是从马鲁古海而来的南太平洋水;对于次表层和中层之间的过渡层,马鲁古海与哈马黑拉海的水源为南、北太平洋的混合水,且两个海域之间也存在着水团交换;在深层,马鲁古海的水源更倾向于班达海北部及塞兰海,而与太平洋水无关,哈马黑拉海由于地形阻挡也难以与太平洋直接发生水团交换。  相似文献   

7.
Diel changes in vertical distribution and feeding conditions of the chaetognath Parasagitta elegans (Verill) were observed in three regions of the subarctic North Pacific in the summer of 1997. Samples were collected by repeated vertical hauls with a Vertical Multiple Plankton Sampler (VMPS) for 15–45 hours by demarcating the 0–500 m water column into four sampling layers. Integrated abundance through the entire water column and the proportion of juveniles were higher in the Bering Sea than the western and eastern subarctic Pacific. Juveniles always inhabited the surface layer in the western subarctic Pacific and Bering Sea, but they inhabited the underlying layer in the eastern subarctic Pacific. Stages I–III concentrated into the upper 150 m in the western subarctic Pacific but were distributed widely from 20–300 m in the Bering Sea. Among them, Stages II and III migrated rather synchronously over a wide vertical range in the eastern subarctic Pacific. The feeding rate of P. elegans was calculated to be 0.18 prey/chaetognath/day in the western subarctic Pacific, 0.27 prey/chaetognath/day in the Bering Sea and 0.07 prey/chaetognath/day in the eastern subarctic Pacific.  相似文献   

8.
In order to understand the actual formation process of the North Pacific Intermediate Water (NPIW), structure of subsurface intrusions of the Oyashio water and the mixing of the Oyashio and the Kuroshio waters in and around the Kuroshio Extension (KE) were examined on the basis of a synoptic CTD observation carried out in May-June 1992. The fresh Oyashio water in the south of Hokkaido was transported into KE region through the Mixed Water Region (MWR) in the form of subsurface intrusions along two main paths. The one was along the east coast of northern Japan through the First Branch of the Oyashio (FBO) and the other along the eastern face of a warm streamer which connected KE with a warm core ring through the Second Branch of the Oyashio (SBO). The fresh Oyashio water extended southward through FBO strongly mixed with the saline NPIW transported by the Kuroshio in the south of Japan (old NPIW) in and around the warm streamer. On the other hand, the one through SBO well preserved its original properties and extended eastward beyond 150°E along KE with a form of rather narrow band. The intrusion ejected Oyashio water lens with a diameter of 50–60 km southward across KE axis and split northward into the MWR involved in the interaction of KE and a warm core ring, which were supposed to be primary processes of new NPIW formation.  相似文献   

9.
Basing upon the total of 1,081 samples collected by a large plankton net (160 cm in mouth diameter) in the Pacific Ocean, the geographical and vertical distribution ofGonostoma gracile were studied. The species is distributed in the water masses of the Kuroshio, the Kuroshio Extension, the North Pacific Current, the Oyashio, the North Pacific Subarctic Water and the western North Pacific Central Water. The center of distribution lies in the Kuroshio area off Japan. Vertically, the species occurs between the depths of 200 and 1,000 m, mainly 300–700 m, both during daytime and at night. A part of population might come up to 0–200 m at night, although its biomass is negligibly small in comparison to that remaining in 300–700 m layer. Postlarvae are found in 300–700 m layer, mainly at 300–500 m, and apparently do not undertake diurnal vertical migration.  相似文献   

10.
As part of the 2002 Western Arctic Shelf–Basin Interactions (SBI) project, spatio-temporal variability of dissolved inorganic carbon (DIC) was employed to determine rates of net community production (NCP) for the Chukchi and western Beaufort Sea shelf and slope, and Canada Basin of the Arctic Ocean. Seasonal and spatial distributions of DIC were characterized for all water masses (e.g., mixed layer, halocline waters, Atlantic layer, and deep Arctic Ocean) of the Chukchi Sea region during field investigations in spring (5 May–15 June 2002) and summer (15 July–25 August 2002). Between these periods, high rates of phytoplankton production resulted in large drawdown of inorganic nutrients and DIC in the Polar Mixed Layer (PML) and in the shallow depths of the Upper Halocline Layer (UHL). The highest rates of NCP (1000–2850 mg C m−2 d−1) occurred on the shelf in the Barrow Canyon region of the Chukchi Sea and east of Barrow in the western Beaufort Sea. A total NCP rate of 8.9–17.8×1012 g for the growing season was estimated for the eastern Chukchi Sea shelf and slope region. Very low inorganic nutrient concentrations and low rates of NCP (<15–25 mg C m−2 d−1) estimated for the mixed layer of the adjacent Arctic Ocean basin indicate that this area is perennially oligotrophic.  相似文献   

11.
A monthly mean time series of the temperature profile in the recirculation gyre south of the Kuroshio Extension has been produced for the period 1971–2007 to examine temporal variations of the winter mixed layer. The winter mixed layer depth (MLD) shows both interannual and decadal variations and is significantly correlated with variation of the mean net surface heat flux in late autumn to early winter. There is also a close relation with the strength of pre-existing subsurface stratification, measured as vertical temperature gradients in the preceding summer. Linear multiple regression analysis shows that a significant fraction of the variations in the winter MLD is explained by the surface heat flux and the strength of the stratification. The contribution of the two factors is comparable.  相似文献   

12.
基于中国Argo实时资料中心发布的2004年1月至2017年12月Argo全球温盐资料,运用直线定位法和隶属关系,对吕宋岛以东海域(120°~140°E,10°~30°N)水团进行分析,划分出北太平洋次表层水团(NPSSW)和北太平洋中层水团(NPIW)的分布范围。次表层水团位于50~220 m深度,分布在10°~28°N范围内,温度16.61~27.60℃,盐度34.68~35.14,核心范围春夏季较大,秋冬季较小。中层水团位于280~900 m深度,分布在10~30°N范围内,温度3.67~16.55℃,盐度34.11~34.67,核心范围季节变化较弱,整体位于18°N以北。次表层与中层水团核心温盐具有一定的年际变化特征,次表层水团与气候变化相关性较好,核心温度和盐度均存在4 a的变化周期;而中层水团与气候变化相关性较差,核心温度和盐度则分别具有3.5 a和3 a的变化周期。  相似文献   

13.
Sinking particles collected from year-long time-series sediment traps at 1674, 4180, 5687 and 8688 m depths, the underlying bottom sediment at 9200 m depth, and suspended particles from surface and subsurface waters in the northwestern North Pacific off Japan were analyzed for long-chain alkenones and alkyl alkenoates (A&A) which are derived mainly from Gephyrocapsacean algae, especially Emiliania huxleyi and Gephyrocapsa oceanica. Alkenone temperature records in sediment trap samples at 1674 m were almost similar to observed sea surface temperatures (SST) with a time delay of one half to one full month. However, alkenone temperatures in trap samples were about slightly lower than measured SST in late spring to early fall. The lowering might be caused by formation of the seasonal thermocline. Nevertheless, these temperature drops observed in trap samples were smaller than those actually observed in a subsurface layer off central Japan. Vertical profiles of A&A concentrations and alkenone temperatures in suspended particles collected from the subsurface waters in early fall indicated that these compounds were produced mostly in a surface mixed layer above the depth of the chlorophyll maximum even in warm seasons. These results suggested that alkenone temperatures strongly reflected SST rather than the temperatures of thermocline waters in these study areas even in such a warm season. Pronounced maxima in A&A fluxes found in sediment trap samples at 1674 m in late spring to summer showed that A&A productions were highest during the periods of spring bloom, according to a time delay between alkenone temperatures and observed SST. Seasonal patterns of alkenone records in trap samples at 4180 and 5687 m could also preserve SST signals well, suggesting that A&A in deep sea waters were mainly derived from primary products in the surface layer. A&A fluxes tended to decrease with water depth, and the ratios of A&A to particulate organic carbon (POC) rapidly decreased in underlying bottom sediment. This clearly indicates that A&A were decomposed and diluted by other refractory organic materials in either the water column or the sediment–water interface. However, A&A compositions were consistently uniform between the trap samples and the underlying bottom sediments, so that A&A could not qualitatively alter during early diagenetic processes.  相似文献   

14.
The vertical distribution of reactive mercury has been measured at two stations in the eastern North Atlantic and one station in the southeast Atlantic in conjunction with the IOC Open Ocean Baseline Survey. The average concentrations of reactive Hg in vertical profiles ranged from 0.70 to 1.07 pM with the highest values found at the northeast Atlantic stations and the lowest at the southeast station. No significant concentration gradients were found below the surface mixed layer at the two stations in the eastern North Atlantic. At station 7, in the southeast Atlantic, an increase in reactive Hg was noted in the water adjacent to the mixed layer (35–200 m) which was coincident with an oxygen depletion, down to 20% saturation at 200 m. The concentration of reactive Hg in the North Atlantic Deep Water (0.48–1.34 pM), the Antarctic Intermediate Water (0.47 pM), the Antarctic Bottom Water (0.67–1.25 pM), and the Mediterranean Outflow Water (0.83–1.06 pM) were noted. The trends in Hg concentration in the water masses between stations showed the concentration decreasing with distance from the water mass source except for Hg in the Antarctic Bottom Water. The increase noted in this water mass was attributed to mixing with North Atlantic Deep Water and or release from bottom sediments.  相似文献   

15.
We investigated variability in the ocean surface-subsurface layer north of New Guinea using Triangle Trans-Ocean Buoy Network (TRITON) buoys at 2°N, 138°E and 0°N, 138°E during the period from October 1999 to July 2004. Both North and South Pacific waters were observed below the subsurface at these stations. The variability in the subsurface waters was particularly high at 2°N, 138°E. Clear interannual variability occurred near the surface; the water type differed before and after onset of the 2002–03 El Niño. Before summer 2001, water that appeared to be advected from the central equatorial Pacific occupied the near surface layer. After autumn 2001, waters advected by the New Guinea Coastal Current were observed near the surface. Intraseasonal and seasonal variations were also observed below the subsurface. With regard to seasonal variability, the salinity of the subsurface saline water, the South Pacific Tropical Water, was generally high during the boreal summer-autumn, when the New Guinea Coastal Undercurrent was strong. Intraseasonal fluctuations on a scale of 20 to 60 days were also seen and may have been associated with intrinsic oceanic variability, such as ocean eddies, near the stations. Ocean variability in the thermocline layer between 100 and 200 m greatly affects the surface dynamic height variability; water variability before 2001 and variability in the pycnocline depth after 2002 are important factors affecting the thermocline.  相似文献   

16.
Seasonal and interannual variations of the mixed layer properties in the Antarctic Zone (AZ) south of Tasmania are described using 7 WOCE/SR3 CTD sections and 8 years of summertime SURVOSTRAL XBT and thermosalinograph measurements between Tasmania and Antarctica. The AZ, which extends from the Polar Front (PF) to the Southern Antarctic Circumpolar Current Front (SACCF), is characterized by a 150 m deep layer of cold Winter Water (WW) overlayed in summer by warmer, fresher water mass known as Antarctic Surface Water (AASW). South of Tasmania, two branches of the PF divide the AZ into northern and southern zones with distinct water properties and variability. In the northern AZ (between the northern and southern branches of the PF), the mixed layer depth (MLD) is fairly constant in latitude, being 150 m deep in winter and around 40–60 m in summer. In the southern AZ, the winter MLD decreases from 150 m at the S-PF to 80 m at the SACCF and from 60 to 35 m in summer. Shallower mixed layers in the AZ-S are due to the decrease in the wind speed and stronger upwelling near the Antarctic Divergence. The WW MLD oscillates by ±15 m around its mean value and modest interannual changes are driven by winter wind stress anomalies.The mixed layer is on annual average 1.7 °C warmer, 0.06 fresher and 0.2 kg m−3 lighter in the northern AZ than in the southern AZ. The Levitus (1998) climatology is in agreement with the observed mean summer mixed layer temperature and salinity along the SURVOSTRAL line but underestimates the MLD by 10–20 m. The winter MLD in the climatology is also closed to that observed, but is 0.15 saltier than the observations along the AZ-N of the SR3 line. MLD, temperature and density show a strong seasonal cycle through the AZ while the mixed layer salinity is nearly constant throughout the year. During winter, the AZ MLD is associated with a halocline while during summer it coincides with a thermocline.Interannual variability of the AZ summer mixed layer is partly influenced by large scale processes such as the circumpolar wave which produces a warm anomaly during the summer 1996–1997, and partly by local mechanisms such as the retroflection of the S-PF which introduces cold water across the AZ-N.  相似文献   

17.
A water mass characterized by the pycnostad on the bottom of the ventilated portion in the central subtropical North Pacific is described through the comparison with the Subtropical Mode Wate (STMW). In this paper, this water mass is called the North Pacific Central Mode Water (CMW), because of its vertical homogeneity. The distribution of CMW is examined based on the climatological maps of annual mean potential vorticity. On the other hand, its formation area is examined based on the climatological winter temperature data set and the STD sections across the Kuroshio Extension in early spring of individual years. The main results are summarized as follows: 1) STMW is formed in the deep winter mixed layer south of the main path of the Kuroshio Extension (termed 12°C Front in this paper). On the other hand, CMW is formed in the deep winter mixed layer in the east-west band surrounded by a branch of the Kuroshio Extension (termed 9°C Front in this paper) and the boundary of two water masses representing the subtropical and subpolar gyres. 2) The winter mixed layer between the 12°C Front and the 9°C Front is shallower than that in the CMW and STMW formation areas. 3) These geographical features of the winter mixed layer depths near the subarcticsubtropical transition zone result in two pycnostads (STMW and CMW) in the main thermocline of the subtropical North Pacific through the advection caused by the subtropical gyre.  相似文献   

18.
The coastal upwelling has profound influence on the surrounding ecosystem by supplying the nutrient-replete water to the euphotic zone. Nutrient biogeochemistry was investigated in coastal waters of the eastern Hainan Island in summer 2015 and autumn 2016. From perspectives of nutrient dynamics and physical transport, the nutrient fluxes entered the upper 50 m water depth(between the mixed layer and the euphotic zone) arisen from the upwelling were estimated to be 2.5-5.4 mmol/(m2·d),...  相似文献   

19.
A four-dimensional variational data assimilation system has been applied to an experiment to describe the dynamic state of the North Pacific Ocean. A synthesis of available observational records and a sophisticated ocean general circulation model produces a dynamically consistent dataset, which, in contrast to the nudging approach, provides realistic features of the seasonally-varying ocean circulation with no artificial sources/sinks for temperature and salinity fields. This new dataset enables us to estimate heat and water mass transports in addition to the qualification of water mass formation and movement processes. A sensitivity experiment on our assimilation system reveals that the origin of the North Pacific Intermediate Water can be traced back to the Sea of Okhotsk and the Bering Sea in the subarctic region and to the subtropical Kuroshio region further south. These results demonstrate that our data assimilation system is a very powerful tool for the identification and characterization of ocean variabilities and for our understanding of the dynamic state of ocean circulation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
More than 14,000 measurements of surface water xCO2 were obtained during two cruises, 3 weeks apart in June 2000, along 155°E between 34 and 44°N in the western North Pacific Ocean. Based on the distributions of salinity and sea surface temperature (SST), the region has been divided into 6 subregions; Oyashio, Oyashio front, Transition, Kuroshio front, and Kuroshio extension I and II zones, from north to south. The surface waters were always undersaturated with respect to atmospheric CO2. The Oyashio water was the least undersaturated: its xCO2 decreased slightly by 7 ppm, while SST increased by 2°C. The xCO2 normalized to a constant temperature decreased considerably. In the two frontal zones, a large drawdown of 30–40 ppm was observed after 18–19 days. In the Kuroshio extension zones, the xCO2 increased, but the normalized xCO2 decreased considerably. The Transition zone water may be somewhat affected by mixing with the subsurface water, as indicated by the smallest SST rise, an undecreased PO4 concentration, and a colder and less stable surface layer than the Oyashio front water. As the uncertainty derived from the air-sea CO2 flux was not large, the xCO2 data allowed us to calculate the net biological productivity. The productivities around 60 mmol C m−2d−1 outside the Transition zone indicate that the northwestern North Pacific, especially the two frontal zones, can be regarded as one of the most productive oceans in the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号