首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
The Lower Devonian Jauf Formation in Saudi Arabia is an important hydrocarbon reservoir. However, in spite of its importance as a reservoir, published studies on the Jauf Formation more specifically on the reservoir quality (including diagenesis), are very few. This study, which is based on core samples from two wells in the Ghawar Field, northeastern Saudi Arabia, reports the lithologic and diagenetic characteristics of this reservoir. The Jauf reservoir is a fine to medium-grained, moderate to well-sorted quartz arenite. The diagenetic processes recognized include compaction, cementation (calcite, clay minerals, quartz overgrowths, and a minor amount of pyrite), and dissolution of the calcite cements and of feldspar grains. The widespread occurrences of early calcite cement suggest that the Jauf reservoir lost a significant amount of primary porosity at a very early stage of its diagenetic history. Early calcite cement, however, prevented the later compaction of the sandstone, thus preserving an unfilled part of the primary porosity. Based on the framework grain–cement relationships, precipitation of the early calcite cement was either accompanied or followed by the development of part of the pore-lining and pore-bridging clay cement. Secondary porosity development occurred due to partial to complete dissolution of early calcite cements and feldspar. Late calcite cement occurs as isolated patches, and has little impact on reservoir quality of the sandstones.In addition to calcite, several different clay minerals including illite and chlorite occur as pore-filling and pore-lining cements. While the pore-filling illite and chlorite resulted in a considerable loss of porosity, the pore-lining chlorite may have helped in retaining the porosity by preventing the precipitation of syntaxial quartz overgrowths. Illite, which largely occurs as hair-like rims around the grains and bridges on the pore throats, caused a substantial deterioration to permeability of the reservoir. Diagenetic history of the Jauf Formation as established here is expected to help better understanding and exploitation of this reservoir.  相似文献   

2.
The preservation of good petrophysical properties (high porosity/high permeability) at great depth in carbonate rocks may lead to the existence of a deeply buried reservoir (DBR), a target of interest for the oil industry. One of the key processes controlling diagenesis of the burial environment is Pressure Solution Creep (PSC), an efficient compaction process responsible for the evolution of porosity and permeability in many carbonate reservoirs. In this experimental study, we examine the effect of i) the presence of oil in the pore space and ii) its timing of injection on the PSC process and the petrophysical properties of a carbonate rock. The experiments were performed using a flow-through high-pressure cell, allowing the simulation of the pressure/stresses and temperature conditions of a DBR. Multi-disciplinary data (mechanical, chemical, petrographical and petrophysical) demonstrate that, without oil in the pore space, the main diagenetic process is the PSC, a process reducing by three the initial porosity but having no influence on intrinsic water permeability. An early injection of oil prior to water circulation causes the inhibition of PSC by the coating of the grains, leading to the preservation of porosity. Conversely, a late injection of oil does not preserve initial porosity. The dataset obtained from these experiments show the importance of the timing of oil charging in a reservoir in the preservation of initial porosity at great depth by the inhibition of PSC. However, the coating of grains by hydrocarbons may also inhibit further diagenetic processes leading to a creation of secondary porosity at depth.  相似文献   

3.
Diagenesis is of decisive significance for the reservoir heterogeneity of most clastic reservoirs. Linking the distribution of diagenetic processes to the depositional facies and sequence stratigraphy has in recent years been discipline for predicting the distribution of diagenetic alterations and reservoir heterogeneity of clastic reservoirs. This study constructs a model of distribution of diagenetic alterations and reservoir heterogeneity within the depositional facies by linking diagenesis to lithofacies, sandstone architecture and porewater chemistry during burial. This would help to promote better understanding of the distribution of reservoir quality evolution and the intense heterogeneity of reservoirs. Based on an analogue of deltaic distributary channel belt sandstone in Upper Triassic Yanchang Formation, 83 sandstone plug samples were taken from 13 wells located along this channel belt. An integration of scanning electron microscopy, thin sections, electron microprobe analyses, rate-controlled porosimetry (RCP), gas-flow measurements of porosity and permeability, and nuclear magnetic resonance (NMR) experiments, together with published data, were analysed for the distribution, mineralogical and geochemical characteristics of detrital and diagenetic components and the distribution of reservoir quality within the distributary channel belt.Distribution of diagenetic alterations and reservoir heterogeneity within the distributary channel belt sandstones include (i) formation of high quality chlorite rims in the middle part of thick sandstones with coarser grain sizes and a lower content of ductile components resulted from the greater compaction resistance of these sandstones (providing larger pore spaces for chlorite growth), leading to formation of the intergranular pore – wide sheet-like throat and intergranular pore - intragranular pore – wide sheet-like throat (Φ>15%, k>1mD) in the middle part of thick sandstones; (ii) formation of thinner chlorite rims in the middle part of thinner sandstones is associated with the intergranular pore - intragranular pore – narrow sheet-like throat (9%<Φ<14%, 0.2mD<k<0.8mD); (iii) strong cementation by kaolinite in the more proximal sandstones of distributary channel owing to the strong feldspar dissolution by meteoric water, resulting in the intragranular pore - group of interstitial cement pores – narrow sheet-like throat/extremely narrow sheet-like throat (8%<Φ<11%, 0.1mD<k<0.3mD) due to the pore-filling kaolinite occluding porosity; (iv) formation of dense ferrocalcite zones (δ18OVPDB = −23.4‰ to −16.6‰; δ13 CVPDB = −4.0‰ to −2.3‰) favoured in the top and bottom of the channel sandstone which near the sandstone-mudstone bouding-surface, destroying pore space (Φ<8%, k<0.1mD); (v) strong compaction in sandstone of distributary channel edge laterally as a result of fine grain size and high content of ductile components in those sandstones, forming the group of interstitial cement pores – extremely narrow sheet-like throat with porosity values less than 8%.  相似文献   

4.
A detailed laboratory study of 53 sandstone samples from 23 outcrops and 156 conventional core samples from the Maastrichtian-Paleocene Scollard-age fluvial strata in the Western Canada foredeep was undertaken to investigate the reservoir characteristics and to determine the effect of diagenesis on reservoir quality. The sandstones are predominantly litharenites and sublitharenites, which accumulated in a variety of fluvial environments. The porosity of the sandstones is both syn-depositional and diagenetic in origin. Laboratory analyses indicate that porosity in sandstones from outcrop samples with less than 5% calcite cement averages 14%, with a mean permeability of 16 mD. In contrast, sandstones with greater than 5% calcite cement average 7.9% porosity, with a mean permeability of 6.17 mD. The core porosity averages 17% with 41 mD permeability. Cementation coupled with compaction had an important effect in the destruction of porosity after sedimentation and burial. The reservoir quality of sandstones is also severely reduced where the pore-lining clays are abundant (>15%). The potential of a sandstone to serve as a reservoir for producible hydrocarbons is strongly related to the sandstone’s diagenetic history. Three diagenetic stages are identified: eodiagenesis before effective burial, mesodiagenesis during burial, and telodiagenesis during exposure after burial. Eodiagenesis resulted in mechanical compaction, calcite cementation, kaolinite and smectite formation, and dissolution of chemically unstable grains. Mesodiagenesis resulted in chemical compaction, precipitation of calcite cement, quartz overgrowths, and the formation of authigenic clays such as chlorite, dickite, and illite. Finally, telodiagenesis seems to have had less effect on reservoir properties, even though it resulted in the precipitation of some kaolinite and the partial dissolution of feldspar.  相似文献   

5.
This paper analyses the diagenetic evolution of sandstones belonging to the Bajo Barreal Formation (Cretaceous) in the Golfo de San Jorge Basin (Patagonia, Argentina). The Bajo Barreal Formation includes the main reservoirs, which are located along the western area of the basin and is composed of sandstones, conglomerates, mudstones, tuffaceous mudstones and some layers of tuffs. The principal reservoirs comprise medium-to coarse-grained sandstones, which are dominated by feldspathic litharenites and contain minor amounts of litharenites and lithic arkoses. The authigenic minerals include kaolinite, smectite, chlorite, quartz overgrowths, microquartz and calcite, with minor proportions of megaquartz, siderite, analcime, laumontite, feldspar overgrowths and illite/smectite and chlorite/smectite mixed layers. Secondary porosity is much more important than primary porosity and is produced by the dissolution of feldspar, lithic clasts and clay cements. The diagenetic history of the Bajo Barreal sandstones can be divided into seven diagenetic stages, each of which is characterized by a specific assemblage of authigenic minerals and diagenetic processes. Eogenetic conditions occur in stages 1, 2, 3 and 4. Stage 1 corresponds to shallow burial characterized by the physical reduction of primary porosity by compaction; during stage 2, rim clay cements of chlorite, smectite and clinoptilolite, as well as thin quartz overgrowths, were formed. The precipitation of pore-filling cements of kaolinite, chlorite and smectite occurred during stage 3, while stage 4 records the intense dissolution of feldspar, lithic fragments and kaolinite cements. Mesogenesis occurs in diagenetic stages 5 and 6. The former corresponds to a new phase of authigenic kaolinite, while the latter records the significant dissolution of feldspar, lithic clasts and previous cements, which produced the highest values of secondary porosity. Finally, stage 7 corresponds to the highest degree of diagenesis in the Bajo Barreal Formation (mesogenesis), which resulted in the precipitation of cements of zeolites and calcite, as well as quartz and plagioclase overgrowths.  相似文献   

6.
Compared to conventional reservoirs, pore structure and diagenetic alterations of unconventional tight sand oil reservoirs are highly heterogeneous. The Upper Triassic Yanchang Formation is a major tight-oil-bearing formation in the Ordos Basin, providing an opportunity to study the factors that control reservoir heterogeneity and the heterogeneity of oil accumulation in tight oil sandstones.The Chang 8 tight oil sandstone in the study area is comprised of fine-to medium-grained, moderately to well-sorted lithic arkose and feldspathic litharenite. The reservoir quality is extremely heterogeneous due to large heterogeneities in the depositional facies, pore structures and diagenetic alterations. Small throat size is believed to be responsible for the ultra-low permeability in tight oil reservoirs. Most reservoirs with good reservoir quality, larger pore-throat size, lower pore-throat radius ratio and well pore connectivity were deposited in high-energy environments, such as distributary channels and mouth bars. For a given depositional facies, reservoir quality varies with the bedding structures. Massive- or parallel-bedded sandstones are more favorable for the development of porosity and permeability sweet zones for oil charging and accumulation than cross-bedded sandstones.Authigenic chlorite rim cementation and dissolution of unstable detrital grains are two major diagenetic processes that preserve porosity and permeability sweet zones in oil-bearing intervals. Nevertheless, chlorite rims cannot effectively preserve porosity-permeability when the chlorite content is greater than a threshold value of 7%, and compaction played a minor role in porosity destruction in the situation. Intensive cementation of pore-lining chlorites significantly reduces reservoir permeability by obstructing the pore-throats and reducing their connectivity. Stratigraphically, sandstones within 1 m from adjacent sandstone-mudstone contacts are usually tightly cemented (carbonate cement > 10%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The carbonate cement most likely originates from external sources, probably derived from the surrounding mudstone. Most late carbonate cements filled the previously dissolved intra-feldspar pores and the residual intergranular pores, and finally formed the tight reservoirs.The petrophysical properties significantly control the fluid flow capability and the oil charging/accumulation capability of the Chang 8 tight sandstones. Oil layers usually have oil saturation greater than 40%. A pore-throat radius of less than 0.4 μm is not effective for producible oil to flow, and the cut off of porosity and permeability for the net pay are 7% and 0.1 mD, respectively.  相似文献   

7.
Rock physical properties, like velocity and bulk density, change as a response to compaction processes in sedimentary basins. In this study it is shown that the velocity and density in a well defined lithology, the shallow marine Etive Formation from the northern North Sea increase with depth as a function of mechanical compaction and quartz cementation. Physical properties from well logs combined with experimental compaction and petrographic analysis of core samples shows that mechanical compaction is the dominant process at shallow depth while quartz cementation dominates as temperatures are increased during burial. At shallow depths (<2000–2500 m, 70–80 °C) the log derived velocities and densities show good agreement with results from experimental compaction of loose Etive sand indicating that effective stress control compaction at these depths/temperatures. This indicates that results from experimental compaction can be used to predict reservoir properties at burial depths corresponding to mechanical compaction. A break in the velocity/depth gradient from about 2000 m correlates with the onset of incipient quartz cementation observed from petrographic data. The gradient change is caused by a rapid grain framework stiffening due to only small amounts of quartz cement at grain contacts. At temperatures higher than 70–80 °C (2000–2500 m) the velocities show a strong correlation with quartz cement amounts. Porosity reduction continues after the onset of quartz cementation showing that sandstone diagenesis is insensitive to effective stress at temperatures higher than 70–80 °C. The quartz cement is mainly sourced from dissolution at stylolites reflected by the fact that no general decrease in intergranular volume (IGV) is observed with increasing burial depth. The IGV at the end of mechanical compaction will be important for the subsequent diagenetic development. This study demonstrates that mechanical compaction and quartz cementation is fundamentally different and this needs to be taken into consideration when analyzing a potential reservoir sandstone such as the Etive Formation.  相似文献   

8.
Chalk compaction is often assumed to be controlled by a combination of mechanical and effective stress-related chemical processes, the latter commonly referred to as pressure solution. Such effective stress-driven compaction would result in elevated porosities in overpressured chalks compared with otherwise identical, but normally pressured chalks. The high porosities that are frequently observed in overpressured North Sea chalks have previously been reported to reflect such effective stress-dependent compaction.However, several wells with deeply buried chalk sequences also exhibit low porosities at high pore pressures. To investigate the possible origins of these overpressures, basin modeling was performed in a selected well (NOR 1/3-5) offshore Norway. This modeling was based on both effective stress-driven mechanical porosity reduction, which enables modeling of disequilibrium compaction, and on stress-insensitive chemical compaction where the porosity reduction is caused by thermally activated diagenesis.The modeling has demonstrated that the present day porosities and pore pressures of the chalks could be successfully replicated with mechanical porosity loss as the only process leading to chalk porosity reduction. However, the modeled porosity and fluid pressure history of the sediments deviated significantly from the porosity and pore pressure versus depth relationships observed in non-reservoir North Sea chalks today. To the contrary, modeling which was based on thermally activated porosity loss due to diagenesis (as a supplement to mechanical compaction), resulted in modeled chalk histories that are consistent with present day observations.It was therefore inferred that disequilibrium compaction could not account for all of the pore pressure development in overpressured chalks in the study area. The observation that modeling including temperature-controlled diagenetic porosity reduction gave plausible results, suggests that such porosity reduction may in fact be operating in chalks as well as in clastic rocks. If this is correct, then improved methods for pore pressure identification and fluid flow analysis in basins containing chalks should be developed.  相似文献   

9.
Reservoir quality and heterogeneity are critical risk factors in tight oil exploration. The integrated, analysis of the petrographic characteristics and the types and distribution of diagenetic alterations in the Chang 8 sandstones from the Zhenjing area using core, log, thin-section, SEM, petrophysical and stable isotopic data provides insight into the factors responsible for variations in porosity and permeability in tight sandstones. The results indicate that the Chang 8 sandstones mainly from subaqueous distributary channel facies are mostly moderately well to well sorted fine-grained feldspathic litharenites and lithic arkose. The sandstones have ultra-low permeabilities that are commonly less than 1 mD, a wide range of porosities from 0.3 to 18.1%, and two distinct porosity-permeability trends with a boundary of approximately 10% porosity. These petrophysical features are closely related to the types and distribution of the diagenetic alterations. Compaction is a regional porosity-reducing process that was responsible for a loss of more than half of the original porosity in nearly all of the samples. The wide range of porosity is attributed to variations in calcite cementation and chlorite coatings. The relatively high-porosity reservoirs formed due to preservation of the primary intergranular pores by chlorite coatings rather than burial dissolution; however, the chlorites also obstruct pore throats, which lead to the development of reservoirs with high porosity but low permeability. In contrast, calcite cementation is the dominant factor in the formation of low-porosity, ultra-low-permeability reservoirs by filling both the primary pores and the pore throats in the sandstones. The eogenetic calcites are commonly concentrated in tightly cemented concretions or layers adjacent to sandstone-mudstone contacts, while the mesogenetic calcites were deposited in all of the intervals and led to further heterogeneity. This study can be used as an analogue to understand the variations in the pathways of diagenetic evolution and their impacts on the reservoir quality and heterogeneity of sandstones and is useful for predicting the distribution of potential high-quality reservoirs in similar geological settings.  相似文献   

10.
Poor biostratigraphic control for some Triassic-Jurassic successions in the North Sea Basin and sub-basins necessitates the use of alternative correlation methods. This study examines the use of diagenetic signatures to distinguish continenetal from marine sandstone successions (Triassic-Jurassic) in the UK Central Graben. The key diagenetic alterations encountered in these successions include kaolinitization of the framework grains and the development of sphaerosiderite and pyrite. The δ 13CV-PDB values of siderite (−8.1 to −8.5‰) and of ankerite (−10.8 to −9.2‰), indicate a strong contribution of dissolved carbon from the decay of plant material in soil. However, marine water likely influenced diagenesis during periods of relative sea level rise by providing the dissolved sulfate (SO42−) required for the precipitation of pyrite. The presence of diagenetic alterations such as kaolinitization of framework grains and cementation by sphaerosiderite could indicate that the sediments were deposited in an overall continental setting. However, the occurrence of pyrite and scattered grains of deep-green colored glauconite suggests occasional marine influence. Such information on the changes of the diagenetic realm provides important clues for establishing a framework for stratigraphic correlations. Caution should be exercised when interpreting petrographic data as subsequent episodes of telodiagenesis can complicate petrographic interpretations.  相似文献   

11.
The Jiaolai Basin (Fig. 1) is an under-explored rift basin that has produced minor oil from Lower Cretaceous lacustrine deltaic sandstones. The reservoir quality is highly heterogeneous and is an important exploratory unknown in the basin. This study investigates how reservoir porosity and permeability vary with diagenetic minerals and burial history, particularly the effects of fracturing on the diagenesis and reservoir deliverability. The Laiyang sandstones are tight reservoirs with low porosity and permeability (Φ < 10% and K < 1 mD). Spatial variations in detrital supply and burial history significantly affected the diagenetic alterations during burial. In the western Laiyang Sag, the rocks are primarily feldspathic litharenites that underwent progressive burial, and thus, the primary porosity was partially to completely eliminated as a result of significant mechanical compaction of ductile grains. In contrast, in the eastern Laiyang Sag, the rocks are lithic arkoses that were uplifted to the surface and extensively eroded, which resulted in less porosity reduction by compaction. The tectonic uplift could promote leaching by meteoric water and the dissolution of remaining feldspars and calcite cement. Relatively high-quality reservoirs are preferentially developed in distributary channel and mouth-bar sandstones with chlorite rims on detrital quartz grains, which are also the locations of aqueous fluid flow that produced secondary porosity. The fold-related fractures are primarily developed in the silt–sandstones of Longwangzhuang and Shuinan members in the eastern Laiyang Sag. Quartz is the most prevalent fracture filling mineral in the Laiyang sandstones, and most of the small-aperture fractures are completely sealed, whereas the large-aperture fractures in a given set may be only partially sealed. The greatest fracture density is in the silt–sandstones containing more brittle minerals such as calcite and quartz cement. The wide apertures are crucial to preservation of the fracture porosity, and the great variation in the distribution of fracture-filling cements presents an opportunity for targeting fractures that contribute to fluid flow.  相似文献   

12.
Mechanical compaction is the main porosity-reducing process in sandstones, including high-reservoir-quality rigid-grain sandstones. For such sandstones, the extrapolation of theoretical or experimental compaction algorithms needs calibration with rocks having well constrained burial histories. Evaluating the compaction of these rocks is achieved by comparing current intergranular volume (IGV) with depositional IGV, which is strongly dependent on sorting. However, because sandstone sorting is difficult to measure accurately, its impact on depositional porosity and compaction state is largely underestimated. We use the quartzarenites of the Oligocene Carbonera Formation in the subsurface of the hydrostatically-pressured Llanos basin to illustrate the importance of sorting when evaluating the compaction of rigid-grain sandstones. IGV and sorting were measured in core samples using a combination of transmitted-light and cathodoluminescence images, resulting in improved accuracy over standard procedures. The compaction state of clean quartzarenites at given depths is best described using IGV-versus-sorting plots, which are used to derive compaction curves for specified sorting values. The IGV-versus-sorting trends are displaced to lower IGV values with increasing burial depth. The differences in IGV caused by differences in sorting exceed the differences in IGV resulting from 1000 m of burial, illustrating the high impact of sorting when evaluating compaction. Contrasting with published experimental results, the compaction of the Llanos basin ductile-grain-poor quartzarenites is independent of grain size, and grain rearrangement is the main compaction mechanism during the first ∼1.6 km of burial. Based on the Llanos data, we have generated IGV-versus-depth curves for clean pure quartzarenites of specific sorting, which can be used to predict their maximum primary porosity up to moderate burial depths. Differences with other published burial curves are probably related to unaccounted variations in sorting, ductile-grain content and framework-strengthening cements. However, the Llanos basin quartzarenites contain virtually no cements, explaining their high degree of compaction relative to other rigid-grain sandstones, and making them ideal to isolate the effects of compaction on the IGV of quartzarenites. The Llanos basin data suggest that, below ∼2.5 km of depth, clean well- to moderately well sorted quartzarenites continue reducing their IGV by mechanical compaction below the 26% limit, which should apply only to extremely well sorted, rigid grain, uncemented sandstones.  相似文献   

13.
首次分析睡宝盆地A井区古近系成岩演化序列并提出其储层处于中成岩A1-A2期,此成岩阶段有利于次生孔隙的保护。研究区古近系储层成岩演化序列具有特殊性:第一期胶结作用为硅质胶结,早于机械压实作用或者同时进行,强烈的机械压实作用使得孔隙度减小15%,此后第二期碳酸盐胶结作用占主导,镜下统计两期胶结作用的减孔量为4%~6%;渐新世受到挤压构造运动和表生成岩作用的双重影响,紧临渐新统不整合面以下的储层由于碳酸盐胶结物溶解而形成次生孔隙。2009年中海油新钻井地处冲起构造,后期的这种构造变形对始新统及其以下的核部地层产生侧向挤压形成构造压实效应,原始孔隙遭到更多的破坏,而对渐新统起到构造托举的作用,可以减缓上覆沉积物的静岩压实效应。成岩演化序列的特殊性和多期构造运动使得古近系储层物性出现差异,总结储集性好的储层并分析其成因机制,对睡宝盆地下一步勘探具有重要指导意义。  相似文献   

14.
Tight grainstones, although widespread throughout the Lower Triassic Feixianguan Formation in the Sichuan Basin, have received little attention, in part, due to their lower porosity and greater heterogeneity relative to their dolostone counterparts. Based on data from cores and thin sections, as well as petrophysical properties, the Feixianguan grainstones, representing a major gas reservoir in the Jiannan gas field were systemically analysed to better understand porosity evolution in tight carbonates that have experienced original oil accumulation and subsequent thermal cracking during progressive burial. The grainstones were divided into two types according to whether pyrobitumen was present, and their porosity evolutions were quantitatively reconstructed. Taking 40% as the original porosity, the grainstones without pyrobitumen, which were ineffective palaeo-oil reservoirs, lost 21.94% and 3.13% of their porosities through marine and burial calcite cementation, respectively, and 13.34% by compaction, and have a current porosity of 1.59%, thus allowing them to serve as major present-day gas reservoirs. Comparatively, pyrobitumen-bearing grainstones, which were once palaeo-oil reservoirs, lost 23.96% and 2.36% of their porosities through marine and burial calcite cementation, respectively; 11.4% by compaction, and 1.44% by pyrobitumen and have a current porosity of 0.84%, thus making them ineffective gas reservoirs. This study provides a quantitative understanding of the close association between porosity evolution and reservoir effectiveness for the palaeo-oil charge and present-day gas accumulation with respect to diagenetic history, which is useful for the future exploration in tight gas limestone reservoirs.  相似文献   

15.
A dramatic reduction in porosity, generally as much as 15–35%, is frequently associated with fine-grained sediment within which the transition of biogenic silica (opal-A) to cryptocrystalline opal-CT (cristobalite and tridymite) occurs. Many of these silica diagenetic boundaries imaged on seismic reflection data, in several basins worldwide, show a variety of undulating morphologies, often with a regular wavelength, where the diagenetic boundaries have variable relief, deformation of the overburden has been identified. Unusual stratal patterns are the result and these have recently been accounted for as a result of differential advancement of the boundary, differential compaction and subsidence of the overburden. The hypothesis developed is that differential advancement of the diagenetic fronts simply causes differential compaction and folding of the strata above the opal-A to opal-CT boundary.We test this hypothesis and then use knowledge of the relief of the diagenetic boundary and the folding above it, to make estimations of the magnitude of the porosity drop. We apply this forward modelling technique to examples of boundaries from the North Sakhalin Basin, Russian Far East and from the Faeroe-Shetland, Vøring and Møre Basins from the Northeast Atlantic margin. This is the first documented case of using seismic data to predict porosity reduction on the basis of seismic geometry alone and should have applicability in some siliceous successions.  相似文献   

16.
The Flemish Pass Basin is a deep-water basin located offshore on the continental passive margin of the Grand Banks, eastern Newfoundland, which is currently a hydrocarbon exploration target. The current study investigates the petrographic characteristics and origin of carbonate cements in the Ti-3 Member, a primary clastic reservoir interval of the Bodhrán Formation (Upper Jurassic) in the Flemish Pass Basin.The Ti-3 sandstones with average Q86.0F3.1R10.9 contain various diagenetic minerals, including calcite, pyrite, quartz overgrowth, dolomite and siderite. Based on the volume of calcite cement, the investigated sandstones can be classified into (1) calcite-cemented intervals (>20% calcite), and (2) poorly calcite-cemented intervals (porous). Petrographic analysis shows that the dominant cement is intergranular poikilotopic (300–500 μm) calcite, which stared to form extensively at early diagenesis. The precipitation of calcite occured after feldspar leaching and was followed by corrosion of quartz grains. Intergranular calcite cement hosts all-liquid inclusions mainly in the crystal core, but rare primary two-phase (liquid and vapor) fluid inclusions in the rims ((with mean homogenization temperature (Th) of 70.2 ± 4.9 °C and salinity estimates of 8.8 ± 1.2 eq. wt.% NaCl). The mean δ18O and δ13C isotopic compositions of the intergranular calcite are −8.3 ± 1.2‰, VPDB and −3.0 ± 1.3‰, VPDB, respectively; whereas, fracture-filling calcite has more depleted δ18O but similar δ13C values. The shale normalized rare earth element (REESN) patterns of calcite are generally parallel and exhibit slightly negative Ce anomalies and positive Eu anomalies. Fluid-inclusion gas ratios (CO2/CH4 and N2/Ar) of calcite cement further confirms that diagenetic fluids originated from modified seawater. Combined evidence from petrographic, microthermometric and geochemical analyses suggest that (1) the intergranular calcite cement precipitated from diagenetic fluids of mixed marine and meteoric (riverine) waters in suboxic conditions; (2)the cement was sourced from the oxidation of organic matters and the dissolution of biogenic marine carbonates within sandstone beds or adjacent silty mudstones; and (3) the late phases of the intergranular and fracture-filling calcite cements were deposited from hot circulated basinal fluids.Calcite cementation acts as a main controlling factor on the reservoir quality in the Flemish Pass reservoir sandstones. Over 75% of initial porosity was lost due to the early calcite cementation. The development of secondary porosity (mostly enlarged, moldic pores) and throats by later calcite dissolution due to maturation of organic matters (e.g., hydrocarbon and coals), was the key process in improving the reservoir quality.  相似文献   

17.
Understanding diagenetic heterogeneity in tight sandstone reservoirs is vital for hydrocarbon exploration. As a typical tight sandstone reservoir, the seventh unit of the Upper Triassic Yanchang Formation in the Ordos Basin (Chang 7 unit), central China, is an important oil-producing interval. Results of helium porosity and permeability and petrographic assessment from thin sections, X-ray diffraction, scanning electron microscopy and cathodoluminescence analysis demonstrate that the sandstones have encountered various diagenetic processes encompassing mechanical and chemical compaction, cementation by carbonate, quartz, clay minerals, and dissolution of feldspar and lithic fragments. The sandstones comprise silt-to medium-grained lithic arkoses to feldspathic litharenites and litharenites, which have low porosity (0.5%–13.6%, with an average of 6.8%) and low permeability (0.009 × 10−3 μm2 to 1.818 × 10−3 μm2, with an average of 0.106 × 10−3 μm2).This study suggests that diagenetic facies identified from petrographic observations can be up-scaled by correlation with wire-line log responses, which can facilitate prediction of reservoir quality at a field-scale. Four diagenetic facies are determined based on petrographic features including intensity of compaction, cement types and amounts, and degree of dissolution. Unstable and labile components of sandstones can be identified by low bulk density and low gamma ray log values, and those sandstones show the highest reservoir quality. Tightly compacted sandstones/siltstones, which tend to have high gamma ray readings and relatively high bulk density values, show the poorest reservoir quality. A model based on principal component analysis (PCA) is built and show better prediction of diagenetic facies than biplots of well logs. The model is validated by blind testing log-predicted diagenetic facies against petrographic features from core samples of the Upper Triassic Yanchang Formation in the Ordos Basin, which indicates it is a helpful predictive model.  相似文献   

18.
The Upper Triassic Chang 6 sandstone, an important exploration target in the Ordos Basin, is a typical tight oil reservoir. Reservoir quality is a critical factor for tight oil exploration. Based on thin sections, scanning electron microscopy (SEM), X-ray diffraction (XRD), stable isotopes, and fluid inclusions, the diagenetic processes and their impact on the reservoir quality of the Chang 6 sandstones in the Zhenjing area were quantitatively analysed. The initial porosity of the Chang 6 sandstones is 39.2%, as calculated from point counting and grain size analysis. Mechanical and chemical compaction are the dominant processes for the destruction of pore spaces, leading to a porosity reduction of 14.2%–20.2% during progressive burial. The porosity continually decreased from 4.3% to 12.4% due to carbonate cementation, quartz overgrowth and clay mineral precipitation. Diagenetic processes were influenced by grain size, sorting and mineral compositions. Evaluation of petrographic observations indicates that different extents of compaction and calcite cementation are responsible for the formation of high-porosity and low-porosity reservoirs. Secondary porosity formed due to the burial dissolution of feldspar, rock fragments and laumontite in the Chang 6 sandstones. However, in a relatively closed geochemical system, products of dissolution cannot be transported away over a long distance. As a result, they precipitated in nearby pores and pore throats. In addition, quantitative calculations showed that the dissolution and associated precipitation of products of dissolution were nearly balanced. Consequently, the total porosity of the Chang 6 sandstones increased slightly due to burial dissolution, but the permeability decreased significantly because of the occlusion of pore throats by the dissolution-associated precipitation of authigenic minerals. Therefore, the limited increase in net-porosity from dissolution, combined with intense compaction and cementation, account for the low permeability and strong heterogeneity in the Chang 6 sandstones in the Zhenjing area.  相似文献   

19.
Rapid supply and deposition of 1000's of meters of Miocene and Pliocene sediment tend to lead to a different set of controls on reservoir quality than older, more slowly buried sandstones. Here we have studied Miocene fluvial-deltaic Bhuban Formation sandstones, from the Surma Group, Bengal Basin, buried to >3,000 m and >110 °C, using a combination of petrographic, geochemical and petrophysical methods in order to understand the controls on Miocene sandstone reservoir quality to facilitate improved prediction of porosity and permeability. The main conclusions of the study are that mechanical compaction processes are the dominant control on porosity-loss although early calcite growth has led to locally-negligible porosity in some sandstones. Mechanical compaction occurred by grain rearrangement, ductile grain compaction and brittle grain fracturing. Calcite cement, occupying up to 41% intergranular volume, was derived from a combination of dissolved and recrystallized bioclasts, an influx of organic-derived carbon dioxide and plagioclase alteration. Clay minerals present include smectite-illite, kaolinite and chlorite. The smectitic clay was probably restricted to low energy depositional environments and it locally diminishes permeability disproportionate to the degree of porosity-loss. Kaolinite is probably the result of feldspar alteration resulting from the influx of organic-derived carbon dioxide. Quartz cement is present in small amounts, despite the relatively high temperature, due to a combination of limited time available in these young sandstones, grain-coating chlorite and low water saturations in these gas-bearing reservoir sandstones. Reservoir quality can now be predicted by considering primary sediment supply and primary depositional environment, the magnitude of the detrital bioclast fraction and the influx of organic-derived carbon dioxide.  相似文献   

20.
The complex burial and diagenetic histories of the Jurassic Fulmar and Triassic Skagerrak sandstones in the UK Central North Sea present significant challenges with regard to reservoir quality and rock property prediction. Commercial reservoir quality is retained despite deep burial and associated high temperatures and pressures. Shallow marine Fulmar sands are normally compacted (mean IGV = 26 ± 3%) yet have porosities of 21–33%. Porosity was preserved through inhibition of quartz cementation by clay and microquartz coatings, and enhanced by dissolution of framework grains (∼5%). Skagerrak fluvial sands are more compacted (mean IGV = 23 ± 2%), exhibit minor feldspar dissolution (<1%), and have porosities of 16–27%. Quartz cement averages only 2 ± 1.5% due to robust chlorite coats that cover 80% (±13%) of quartz surfaces.We modeled reservoir quality evolution using the forward diagenetic model Touchstone, which simulates porosity loss due to compaction and quartz cementation. Quantitative petrographic analyses and burial history data were used to calibrate Touchstone model parameters. The results were applied to deeper prospects for pre-drill prediction of porosity and permeability. In parallel, petrophysical data were used to characterize the elastic properties of the sandstones to provide a basis for quantitative seismic forward modeling. Experimental data and core-calibrated petrophysical results, reflecting variable in situ fluids and saturations, were used to build an elastic properties model. The model is robust and was used to generate fluid-filled sandstone properties, incorporating Touchstone results, for prospect-specific seismic attribute modeling. Well results from exploration wells are in good agreement with pre-drill Touchstone and elastic properties model predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号