首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Internal solitary wave(ISW) is often accompanied by huge energy transport, which will change the pore water pressure in the seabed. Based on the two-dimensional Biot consolidation theory, the excess pore water pressure in seabed was simulated, and the spatiotemporal distribution characteristics of excess pore water pressure was studied. As the parameters of both ISW and seabed can affect the excess pore water pressure, the distribution of pore water pressure showed both dissipation and phase lag...  相似文献   

2.
Profiles of tidal current and suspended sediment concentration(SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3 in neap tide to 3.5 kg/m3 in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are responsible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Settling occurs at the slack water periods to cause SSC troughs and formation of a thin fluff layer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.  相似文献   

3.
4.
There exists a wide tidal flat in the Qiantang Estuary. In this article the sediment concentrations in the mainstream and on the tidal flat are computed separately, taking into account the transverse exchange of sediment between them. The basic equation is similar to that used in Reference [2], but the ratio of the bottom sediment concentration to the vertical average is not taken as the same to the ratio of sediment transport capacity. The ratio of sediment concentration can be determined by the computational results of a simple model and checked by the field data. The formula of the sediment transport capacity for tidal flow can be obtained by statistical analysis directly using the measured values of sediment concentration.The verification of sediment concentration has been carried out with two sections both in the mainstream and on the tidal flat during twelve successive tidal cycles. The average discrepancy between the calculated and the measured is less than 20%.  相似文献   

5.
The response to the catchment changes of the sedimentary environment of the western intertidal flat of Yalu River Estuary was investigated by analyzing the vertical variations of the grain size of sediment cores,along with the hydrologic data and human activities in the catchment.The results demonstrated a stepwise decreasing trend for the variations of both the sediment load and water discharge into the sea,which could be divided into three stages as 1958–1970,1971–1990 and 1991–2009.Reservoir construction and the changes of catchment vegetation coverage turned out to be the two predominant contributors to the changes.There are four periods for the variation of the sensitive components of the sediment cores from 1940 to 2010,i.e.,1940–1950,1951–1980,1981–1990 and 1991–2010.The vertical distribution of grain size in the cores mainly varied with the changes of vegetation coverage in the catchment and reservoir construction from 1960 to 1980,whereas it varied depending on the intensity of water and soil erosion in the catchment from 1980 to 1990.Despite the further reduction of the water and sediment input into the sea from 1990 to 2009,this period was characterized by coarsening trends for the grain size of sediment in the estuarine intertidal flat and correspondingly,the significantly increased silt contents of the sensitive component.  相似文献   

6.
- The sediment from different sources have different content of the characteristic elements. According to the fuzzy mathematical theory, corresponding calculation and cluster analysis of each sediment sample are carried out, so the main courses of sediment transport in water area can be obtained. The characteristics of sediment from different sources are analysed. It is found that the sediment deposited of certain point in water area is due to the sources' contributions which can be calculated by the formula derived in this paper. Based on the distribution of the contribution values, the depositional range of sediment from each source can be determined. The depositional range in Huangmao Bay is determined as an example.  相似文献   

7.
Owing to different influence factors of foundation soil, the initial stress state of the soil under various working conditions is complex. To simulate this situation, in this paper, a series of tests on undisturbed soft clay under pure principal stress axis rotation were carried out by using the hollow cylinder apparatus(HCA). The influence of initial consolidation angle ζ(the angle between the vertical direction and direction of the applied load in consolidation) and intermediate principal stress coefficient b on pore water pressure accumulation of undisturbed soft clay were mainly studied. The test results show that, during pure principal stress axis rotation, the pore water pressure accumulation of the undisturbed soft clay fluctuates and increases with the rotation of the major principal stress; the values of major principal stress angles α, corresponding to the peak value of the pore water pressure in a certain cycle, are different with different initial consolidation angles; the pore water pressure accumulation of soft clay is greatly affected by the intermediate principal stress coefficient b. With the fixed initial consolidation angle ζ, the variation trend of the maximum pore water pressure for each cycle is appropriately the same with different b values. With the increase of cycles, the difference value of pore water pressure between b = 0 and b = 1 in each cycle increases gradually with different initial consolidation angles ζ. While with different initial consolidation angles ζ, the increase of the pore water pressure when b increases from 0 to 0.5 is different with that when b increases from 0.5 to 1; the variation of maximum pore water pressure with ζ is significantly affected by the value of b; the value of maximum pore water pressure increases with the cycle number increases under all test conditions, but the growth rate decreases gradually.And the variation of maximum pore water pressure with the cycle number N is obviously influenced by both ζ and b.  相似文献   

8.
Threshold of Sediment Movement in Different Wave Boundary Layers   总被引:3,自引:2,他引:3  
A review of former studies on the onset of sediment movement under wave action reveals that the Shields criterion obtained in unidirectional steady flow can also be applicable to oscillatory unsteady flow when the boundary layer is the same. In this paper, through comparison of different boundary layers in wave and steady flow conditions, a new criterion is presented which can be used to predict the threshold of sediment movement under wave action. The criterion curve shows good agreement with the experimental data.  相似文献   

9.
In order to study the mechanism of flow-sediment movement, it is essential to obtain measured data of water hydrodynamic and sediment concentration process with high spatial and temporal resolution in the bottom boundary layer (BBL). Field observations were carried out in the northwest Caofeidian sea area in the Bohai Bay. Near 2 m isobath (under the lowest tidal level), a tripod system was installed with AWAC (Acoustic Wave And Current), ADCP (Acoustic Doppler Current Profilers), OBS-3A (Optical Backscatter Point Sensor), ADV (Acoustic Doppler Velocimeters), etc. The accurate measurement of the bottom boundary layer during a single tidal period was carried out, together with a long-term sediment concentration measurement under different hydrological conditions. All the measured data were used to analyze the characteristics of wave-current-sediment movement and the BBL. Analysis was performed on flow structure, shear stress, roughness, eddy viscosity and other parameters of the BBL. Two major findings were made. Firstly, from the measured data, the three-layer distribution model of the velocity profiles and eddy viscosities in the wave-current BBL are proposed in the observed sea area; secondly, the sediment movement is related closely to wind-waves in the muddy coast area where sediment is clayey silt: 1) The observed suspended sediment concentration under light wind conditions is very low, with the peak value generally smaller than 0.1 kg/m^3 and the average value being 0.03 kg/m^3; 2) The sediment concentration increases continuously under the gales over 6-7 in Beaufort scale, under a sustained wind action. The measured peak sediment concentration at 0.4 m above the seabed is 0.15-0.32 kg/m^3, and the average sediment concentration during wind-wave action is 0.08-0.18 kg/m^3, which is about 3-6 times the value under light wind conditions. The critical wave height signaling remarkable changes of sediment concentration is 0.5 m. The results show that the suspended load sediment concentration is mainly influenced by wave-induced sediment suspension.  相似文献   

10.
Observations of fluid mud were made in the lower North Passage of the Yangtze Estuary in February 2000, on 10 -11 August 2000, on 30 - 31 August 2000 (after two strong typhoons), on 21 - 24 August 2000 (neap tide) and on 3 -6 September 2000 (mean tide) respectively. In situ data show that the fluid mud in this area consists of fine cohesive sediment (median size 7.23 μm). The formation and movement of fluid mud varied during the neap-spring and flood-ebb tidal cycle. Observations suggest that fluid mud phenomena in this area may be categorised in a three-fold manner as slack water, storm and saltwedge features. The thickness of the fluid mud layer of slack water during the neap tide ranged from 0.2 to 0.96 m, whereas during the mean tide, the thickness ranged from 0.17 to 0.73 m, and the thickness of the fluid mud layer was larger during slack water than at the flood peak. Shoals cover an area of 800 km^2 with a water depth smaller than 5 m. Erosion of these extensive intertidal mudflats due to storm action provides an abundant sediment source. This is particularly significant in this estuary when the tidal level is lower than 5 m. The lower North Passage is a typical zone of saltwater wedging, so the saltwedge fluid mud has the most extensive spatial range in the estuary.  相似文献   

11.
Abstract

Fiber Bragg Grating (FBG) technology has emerged as a relatively new sensing technology for engineering applications because of lots of advantages. In this study, a large diameter probe instrumented with FBG pressure sensors to monitor excess pore pressure in marine sediment is proposed. The principle of FBG differential pressure sensor was introduced. Laboratory tests were carried out to check the workability and stability of the FBG pressure sensor. Offshore field test was also conducted in a wharf in Qingdao of China to evaluate the feasibility of the proposed probe. The installation procedure of the probe was introduced in detail. The excess pore pressure in dissipation test, after installation and pulling process were reported. The permeability coefficient of marine sediment was calculated based on the measured data. The field data show that the proposed probe based on FBG pressure sensor has good feasibility and accuracy in monitoring the excess pore pressure of marine sediment. The generation and dissipation of excess pore pressure is closely related to the degree of soil disturbance. The variation of excess pore pressure after installation can reflect the tide well in the site.  相似文献   

12.
Abstract

In September 1975, a differential piezometer probe was successfully implanted in the soft seafloor sediments of Block 28, South Pass, Mississippi Delta. The probe sensor is located approximately 6.4 m below the mudline in a water depth of 19 m, and has essentially continuously monitored excess pore pressure (the difference between sediment pore pressure and hydrostatic pressure at that depth) since installation. Excess pore pressure will be monitored until March 1976, when the probe will be recovered.

Immediately after deployment, an excess pore pressure of 54 kPa was recorded. An ambient excess pore pressure of approximately 32 kPa remained after dissipation of that developed during probe installation. Because of the possible presence of gas in the sediments in this area, it is not known with certainty whether the measured excess pressure is pore water pressure, pore gas pressure, or some combination of the two. An excess pore pressure of about 32 ±4 kPa was monitored during Hurricane Eloise and subsequent storms. The exact magnitude and time distribution of these pressure fluctuations is presently being evaluated.  相似文献   

13.
A multisensor piezometer probe has measured pore pressures in fine-grained submarine sediments of the Mississippi Delta over a period of approximately eight months. Data presented here cover the initial 2650 hours of the experiment. Dynamic and ambient pore pressures were recorded. Analogue data collected from the time of probe insertion include decay characteristics, steady-state (ambient) excess pore pressures, and the response of pore pressures to surface wave activity. The probe was installed in 43–44 ft of water near an offshore platform in the East Bay area of the Delta. Sensors were located at 21, 41 and 51 ft below the mudline. Ambient excess pore pressures were determined to be 0.7, 2.8 and 6.6 psi (lb/in2) at the respective depths. The relatively high excess pressures and the measured laboratory wet unit weights of the soil result in a significantly low effective stress. Pressure fluctuations due to tidal and surface wave activity were observed to produce significant pore pressure response in these soils. Preliminary data obtained using high-airentry and corundum stones indicate that considerably more research is necessary in order to fully understand the peculiarities observed in the data and to assess the role of dissolved and free gas on the pore pressures in submarine sediments.  相似文献   

14.
为了研究黄河口海床沉积物固结过程中电阻率同工程力学性质指标的对应关系,探索海床土体固结过程的新型原位监测技术,本文在黄河刁口流路三角洲叶瓣潮坪上,现场取土配置黄河口快速沉积形成的流体状沉积物和观测研究粉质土海床的固结过程。利用静力触探、十字板剪切试验、孔隙水压力监测等原位土工测试手段,实时测定固结过程中海床土强度变化和孔隙水压力消散过程;同时通过埋置自行研制的环形电极探杆,实时测定海床土固结过程中的电阻率变化。通过对比分析海床土电阻率与工程力学性质指标的同步测定数据发现:黄河口饱和粉土的电阻率与微型贯入试验测得的土体贯入强度,静力触探试验测得的比贯入阻力,十字板剪切试验测得的不排水抗剪强度(峰值强度、残余强度)均呈乘幂关系,且相关性良好;海床沉积物在固结过程中的电阻率与孔隙水压力呈负线性相关性。  相似文献   

15.
This study describes the temporal variation of microphytobenthic biomass and its controlling factors, as well as the impact of microphytobenthic activities on coastal shallow sediment in the eastern Seto Inland Sea, Japan. The chlorophyll a (Chl a), phaeopigments and sedimentary biophilic element (C, N, P and Si) contents in surface sediments, as well as nutrient concentrations at the sediment-water interface (overlying water and pore water) were observed monthly during November 2003 to May 2005 at one site in Shido Bay (water depth ca. 7 m) and at one site in Harima-Nada (35 m). No correlation was observed between the sedimentary biophilic elements and other parameters. The maximum chlorophyll a content of 48.2 μg g–1 was found in surface sediments under the photon flux reaching the seafloor of 537 μmol photon m–2 s–1 during the winter period when water transparency was the highest at station S (Shido Bay). Our results suggest that higher chlorophyll a content in surface sediment was due to the fresh microphytobenthic biomass (mainly benthic diatom). We also found a significant negative correlation between Chl a and inorganic nutrients in pore water during the low temperature period, especially silicic acid. This result suggests that the silicic acid was assimilated largely during the increase of microphytobenthic biomass in surface sediment. This study suggests that the microphytobenthic roles may have a great effect on nutrient budgets during the large supply of irradiance (winter periods) for their photosynthetic growth in shallow coastal waters.  相似文献   

16.
The role of deep sediment in supporting nutrient budget in the Gulf of Aqaba has been investigated by estimating the flux of inorganic nitrogen, phosphate and silicate. Fluxes were calculated directly by pore water profiles and indirectly by chamber incubations carried out onboard the RV Meteor cruise. The results showed that maximum potential fluxes calculated by chamber incubations were higher than those calculated by porewater profiles for all nutrients (6.4–28.5 fold). This has been attributed to the additional flux due to bioturbation and flux from advective porewater exchange in the case of chamber incubation, while porewater fluxes represent diffusive ones. Using a rough estimation considering flux results in addition to the sediment area and water mass of the Gulf of Aqaba, we estimate that 3.3 × 105, 6.4 × 104 and 6.5 × 106 kg year−1 of inorganic nitrogen, phosphate and silicate respectively are effused from deep sediments to the water column. This quanitity would certainly support the primary productivity in the oligotrophic water in the Gulf of Aqaba.  相似文献   

17.
Abstract

This report describes the instrumentation, initial results, and progress of an experiment designed to measure and monitor submarine sediment pore water and hydrostatic pressures in a selected area of the Mississippi Delta. The experiment also is intended to monitor significant pressure perturbations during active storm periods. Initial analysis of the data revealed excess pore water pressures in the silty clay sediment at selected depths below the mudline. Continuous monitoring of the pore water and hydrostatic pressures was expected to reveal important information regarding sediment pore water pressure variations as a function of the geological processes active in the Mississippi Delta.  相似文献   

18.
Box cores were collected close to river mouths along the eastern Brazilian shelf at water depths of 10–30 m. One core was taken from more than 1000 m depth at the shelf slope. 210Pb and 226Ra activities were measured to establish sediment accumulation rates. Seven of the 10 cores exhibited an exponential decrease with depth of excess 210Pb activities. The sediments from the sheltered Sudeste Channel off Caravelas revealed the highest sediment accumulation rate of 0.81 cm yr−1. The sediments at the shelf slope seaward of the Rio Doce revealed the lowest accumulation rate of 0.13 cm yr−1. Sediment accumulation rates increased towards the Caravelas Bank. Current patterns and the morphology of the seabed favor sediment deposition in this area.  相似文献   

19.
During the spring-neap period of 17–24 August 2004, turbidity, horizontal and vertical current velocities and echo intensity were measured using OBS-3A and ADP-XR instruments over an intertidal flat within the semi-enclosed Jiaozhou Bay, China, to examine patterns in suspended sediment concentration (SSC) and possible control factors. SSC was found to be lower than 30 mg l−1 in most of the water column and for most of the tidal cycle. This is attributed mainly to the low hydrodynamic energy, in particular weak currents (near-bottom maximum 1- and 8-min-interval velocities were only 26.1 and 14.2 cm s−1, respectively), and limited fine-grained sediment supply by rivers. However, high SSC values ranging from 100 to >1,000 mg l−1 occurred over short periods at the beginning and the end of inundation. This phenomenon is attributed to the shoaling effect of frequent wind-generated waves, as a result of which near-bottom SSC fluctuations display a U-shaped trend during each tidal cycle.  相似文献   

20.
A simple estimation of light penetration in tidal flat sediments was developed using various sediment size fractions and their attenuation rate of irradiance. The attenuation coefficients of the sediment size fractions of 63–125, 125–250, 250–500, 500–1000 μm and 1000–2000 μm were 8.10, 4.08, 2.92, 2.12 and 1.44 mm−1, respectively. Using the average attenuation coefficient of the particle size fractions in the sediment, the calculated attenuation coefficient agreed well with the actual attenuation coefficient. The method presented gives a photo-parameter to predict productivity in intertidal sediments, given only the particle size fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号