首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 128 毫秒
1.
波浪作用下渤海湾近岸海域污染物的输移扩散规律   总被引:10,自引:3,他引:10  
孙涛  陶建华 《海洋与湖沼》2004,35(2):110-119
用物理模型实验和数学模型计算相结合的方法,研究了均匀缓坡岸滩上,规则波及不规则波浪作用下形成的沿岸流及其对岸边排放污染物输移扩散的影响。针对渤海湾的地形和主要波浪方向,研究了渤海湾主要排污口附近单纯波浪以及波浪、潮流共同作用下近岸海域内流动速度分布与相应污染物输移扩散规律。结果表明,在渤海湾近岸海域(一定范围内),污染物输移扩散受到波浪作用的影响,表现为平行岸线方向。波浪作用使得远离污染物排放口的滩涂受污染的影响增大。  相似文献   

2.
孙涛  陶建华 《海洋学报》2003,25(3):104-112
在近岸缓坡浅水海岸,波浪破碎产生沿岸流是近岸海域流场的重要组成部分,它对污染物输移扩散规律的影响重大,在高阶近似抛物化缓坡方程求解大面积波浪场基础上,建立了波浪作用下污染物输移扩散数学模型.计算结果与不同坡度均匀斜坡地形上具有不同波高、周期的规则波及不规则波浪作用下污染物输移扩散实验结果进行了比较,分析了各种因素对波浪作用下沿岸流分布规律影响,所得结论认为地形坡度及入射波高对污染物输移扩散的影响较大,波浪作用将使缓坡海滩上污染物的输移扩散平行岸线方向.  相似文献   

3.
波生流对海岸污染物输移的影响   总被引:2,自引:1,他引:2  
通过物理模型实验对海岸波浪作用下污染物运动特性进行了分析,重点分析了质量输移流、沿岸流、沿岸流不稳定运动及破波带内旋涡运动等海岸水动力因素的影响.实验中坡度分别取为1:100和1:40,实验中采用CCD摄像机记录墨水的运动轨迹,同步测量流体质点速度以及波面升高.实验表明,在破碎带外污染物主要受波浪非线性引起的质量输移流的影响;在破碎带内主要受沿岸流的影响,同时还受沿岸流不稳定运动及大尺度旋涡运动的影响.  相似文献   

4.
为研究污染物离岸排放的输移扩散规律及影响因素,本文基于MIKE21软件构建了渤海和黄海北部海域的数学模型,采用水动力模块对海域潮流进行数值模拟,通过对排污口海域网格逐层加密,模拟了芝罘岛海域的潮流场,并与实测潮流资料进行对比,验证了模型的合理性。在此基础上耦合输移扩散模块,模拟了污染物COD在不同环境条件下的输移扩散现象,并研究对比了风场和源项对离岸排放污染物的输移扩散产生的影响。结果表明,风场改变了污染物离岸输移扩散的速度和方向;在排污区域附近,线源比点源更有利于污染物的离岸输移扩散。  相似文献   

5.
近年来,由于河口、海岸地区的泥沙运动与港口、航道以及海岸的冲淤有着直接的关系,对一些海岸建筑物比如防波堤、护岸工程等造成一定的威胁,甚至于使其完全丧失使用价值,造成巨大的损失。为此人们越来越重视对这一问题的研究。本文为估计岸滩的冲淤变化和了解岸滩的演变规律,对影响泥沙运动的海洋动力要素进行了研究。 为研究悬沙的输移规律,建立了一个由两部分组成的二维悬沙模型系统:①水动力模式。建立了一个综合多因素的二维波浪、潮汐和风暴潮耦合模式,以此来研究波、潮、风暴潮间的相互作用,并为泥沙计算提供流速场。②二维悬沙模式。运用得出的流场来研究悬沙的输移扩散规律。其中所采用的波浪模式是将流对波浪场的影响同时加以考虑的耦合数学模型,将流速加入波能方程,并考虑由于水面的升降而产生的不定常水深对波浪场的影响,再将波浪场对流场的影响通过辐射应力、考虑波浪影响的底应力以及依赖波龄的表面风应力耦合到流场中,从而建立了一个综合多种因素的波浪、潮汐、风暴潮联合作用下的二维悬沙模型系统。并在此模型系统的基础上,对黄河口泥沙的输移问题作了探讨,为今后的防堤、护岸工程提供依据。  相似文献   

6.
闫圣  邹志利 《海洋通报》2017,36(4):416-423
为了说明波浪场中浓度输移扩散Stokes漂移效应的欧拉描述方法,采用欧拉方法推导了波浪场中波浪周期平均的浓度输移扩散方程,其对流项是由波浪速度的波动和物质浓度的波动相互作用而产生,所含的对流速度恰是Stokes漂移速度。由此说明,波浪场中浓度扩散问题的Stokes漂移效应可以自动的由欧拉法来考虑,所得到的Stokes漂移效应与拉格朗日描述的结果是等价的。为了进一步说明这一问题,将粒子追踪法的拉格朗日描述的Stokes漂移速度与欧拉法的结果进行了对比,二者是一致的。研究中也数值求解了线性波浪场中σ坐标下浓度扩散方程,将浓度的Stokes漂移、浓度分布和粒子追踪法的结果进行了对比,以证明欧拉描述和拉格朗日描述两种方法的等价性。研究中也根据实验结果对实际波浪场中Stokes漂移效应所引起的浓度漂移进行了讨论,解释了物理模型实验中的观察到的波浪场中浓度漂移现象。  相似文献   

7.
文章基于自制的组合式环形水槽(周长9.7 m、宽0.45 m、深1.0 m),分别以阿曼原油及其消油剂混合物和淡水(含示踪剂)为模拟污染物,开展水下溢油的物理模拟实验,以浮射流输移轨迹、污染物扩散范围和油滴粒径分布为考察指标,研究横流环境和消油剂的使用对水下溢油输移扩散的影响。实验结果表明:在横流环境中,浮射流输移轨迹开始弯曲的高度随着流速的增加而降低;与淡水浮射流主要在水中输移扩散的情况不同,当污染物为原油时,大粒径油滴脱离浮射流主体并上浮至水面,导致扩散范围更大;消油剂的添加会使原油浮射流内部油滴的体积中值粒径变小,油滴粒径分布曲线向小尺寸方向偏移。实验结果可为后续的物理模拟实验和数值模拟研究提供参考。  相似文献   

8.
量测了在水深0.5m的情况下波浪、水流通过水平沙床所产生的床沙输移。实验波高为0.15m,周期分别为1.4和2.0s。首先量测纯波浪下的床沙输移,然后量测波流共同作用下,水流与波浪行进方向一致其稳定速度分别为0.02,0.04,0.06m/s时的床沙输移,结果表明,2个沙槽所得的总输沙率在波周期2.0s时最大,净输沙率在波周期1.4s时最大,将波叠加在速度为0.02m/s的水流上时,2种波型的净输沙率都增加约1倍,水流为0.04m/s和0.06m/s时2种波型的净输沙率分别都减少。  相似文献   

9.
王平  邹文峰 《海洋通报》2017,36(5):568-577
基于三维潮流和谱波浪模型,以及输移扩散模型和拉格朗日粒子追踪模型,构建了波流耦合下保守污染物的迁移扩散模型。模型基于非结构化网格,对近岸复杂岸线有很好的拟合,可用于大范围波流耦合计算。运用所建的耦合模型研究了旅顺港内外的潮流变化、波生流场、保守污染物输移、粒子运动、以及新水道对湾内污染物迁移的影响,模拟的潮流场与实测数据吻合较好。结果表明:潮流会在湾内近湾口处形成一逆时针涡,波浪对湾内影响较小,但波生流会改变湾口流场分布;在湾内处于涡中的水体潮流自净能力较强,而湾中及湾底则较弱,SE向波浪会降低湾内水体的自净能力;新潮流通道的开挖,会显著改善水体的自净能力,尤其对湾底浅水区域作用明显。  相似文献   

10.
沿岸流中混合系数的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
进行了在规则波作用下破波带内水平混合系数测量的物理模型实验。通过在沿岸流流场中投放墨水点源和采用CCD摄像机摄像,测量了点源扩散过程。利用水深平均二维扩散方程近似解析解得到了由实验结果计算混合系数的方法。实验结果表明:扩散系数仅依赖于当地水深,与波浪参数(周期和波高)无关。沿岸流沿水深变化产生的离散作用导致顺流方向(纵向)混合系数远大于横流方向(横向)混合系数。横流方向混合系数中由波浪产生的扩散系数占总扩散系数约40%,其余为波浪破碎引起的湍流产生的扩散系数。  相似文献   

11.
This work aims to demonstrate an advancement towards the integrated modelling of surf zone hydrodynamics by means of a VOF-type numerical model (COBRAS-UC) based on the Reynolds-Averaged Navier–Stokes equations. In this paper, the numerical model is adapted and validated for the study of nearshore processes on a mildly-sloping beach. The model prediction of wave energy transformation and higher order statistics (skewness and asymmetry) are in good agreement with detailed laboratory observations from a barred beach [Boers, M. (1996). “Simulation of a surf zone with a barred beach; Report 1: Wave heights and wave breaking”. Tech. Rep.96-5, Comm. on Hydrol. and Geol. Eng., Dept. of Civil Engineering, Delft University of Technology]. Moreover, the numerical model allows us to study the low-frequency motions inside the surf zone. It is found that in order to achieve a satisfactory simulation of both short- and long-wave transformation, the numerical model must achieve: (i) the simultaneous second-order wave generation and absorption, (ii) the energy transfer between triad of components, (iii) the short- and long-wave energy dissipation inside the surf zone, and (iv) the wave reflection at the shoreline. Comparisons between numerical and experimental results demonstrate the model capability to satisfactorily simulate all the aforementioned processes.  相似文献   

12.
Regional Ocean Modeling System (ROMS v 3.0), a three-dimensional numerical ocean model, was previously enhanced for shallow water applications by including wave-induced radiation stress forcing provided through coupling to wave propagation models (SWAN, REF/DIF). This enhancement made it suitable for surf zone applications as demonstrated using examples of obliquely incident waves on a planar beach and rip current formation in longshore bar trough morphology (Haas and Warner, 2009). In this contribution, we present an update to the coupled model which implements a wave roller model and also a modified method of the radiation stress term based on Mellor (2008, 2011a,b,in press) that includes a vertical distribution which better simulates non-conservative (i.e., wave breaking) processes and appears to be more appropriate for sigma coordinates in very shallow waters where wave breaking conditions dominate. The improvements of the modified model are shown through simulations of several cases that include: (a) obliquely incident spectral waves on a planar beach; (b) obliquely incident spectral waves on a natural barred beach (DUCK'94 experiment); (c) alongshore variable offshore wave forcing on a planar beach; (d) alongshore varying bathymetry with constant offshore wave forcing; and (e) nearshore barred morphology with rip-channels. Quantitative and qualitative comparisons to previous analytical, numerical, laboratory studies and field measurements show that the modified model replicates surf zone recirculation patterns (onshore drift at the surface and undertow at the bottom) more accurately than previous formulations based on radiation stress (Haas and Warner, 2009). The results of the model and test cases are further explored for identifying the forces operating in rip current development and the potential implication for sediment transport and rip channel development. Also, model analysis showed that rip current strength is higher when waves approach at angles of 5° to 10° in comparison to normally incident waves.  相似文献   

13.
Wave-induced currents may drive nearshore mixing and transport processes, including coastal pollutant dispersion, littoral drift, and long-term morphological changes through beach erosion and accretion. In this study, a numerical model is newly developed to simulate wave climate and localized currents in complicated coastal environments. The model developed is based on a quadtree grid system. The two-dimensional hydrodynamic governing equations are solved by using an explicit Adams-Bashforth finite difference scheme. Effects of wave breaking, shoaling, refraction, diffraction, wave-current interaction, set-up and set-down, turbulent mixing, bed friction, and shoreline movement are incorporated in the model. Results are presented for set-up at a beach in a flume due to normally incident waves, and longshore currents generated by oblique waves on a plane beach.  相似文献   

14.
A laboratory experiment on alongshore currents is conducted for two plane beaches with slopes 1:40 and 1:100 to investigate the instability of alongshore currents.The dye release experiment is also performed synchronously in surf zone.Complicated and strongly unstable motions of alongshore currents are observed in the experiment.To examine the spatial and temporal variations of the shear instabilities of longshore clearly,dye batches are released in surf zone.The deformation of the dye patch is observed efficiently and effectively with charge coupled device(CCD) system.Some essential characteristics of the shear instability are validated from the results of image analyses of the temporal variation of the dye patch.The influences of alongshore currents,Stokes drift,large-scale vorticity and the shear instabilities on the transport of dye are analyzed using the collected images.The spatial structure of the instabilities of longshore currents is studied by analyzing collected images of the dye patch.And the phase velocity of the meandering movements is obtained through measuring the movement distances of the oscillations of dye patch in alongshore direction with time.The results suggest that the propagation speed of the shear instability is approximately 50%-75% of maximum of mean alongshore currents for irregular and regular waves.The calculated propagation speed using a linear instability analysis theory is compared with the experimental results.The comparison shows agreements between them.  相似文献   

15.
《Coastal Engineering》2002,47(1):53-75
The mechanism responsible for the ubiquitous presence of convex beach profiles and shoreward migration of linear bars is examined using numerical circulation and sediment transport models. The models are validated against laboratory measurements and observed natural beach cross-sections. While not discounting the importance of infragravity and advective horizontal circulation or bed-return flow mechanisms, a robust diffusive process explains the convex profile shape and bar formation. In the presence of concentration gradients across the surf zone, a diffusive sediment flux from high to low concentration results in the transfer of sediment outwards from the breakpoint, both onshore and offshore, and the subsequent formation of a “diffusion bar” and “diffusion profile”. The profiles are characterised by single- and double-convex dome-like shapes, developing during shoreward migration of the bars by the diffusion mechanism. The mechanism explains several phenomena observed on natural beaches, including (i) convex beach profiles; (ii) shoreward migration of the bar with concomitant beach accretion under narrow-band swell; (iii) reduced propensity for bar formation on low-gradient, fine-sand beaches or under wide-band wave spectra (even though multiple bars are common on some low-gradient beaches) and (iv) offshore migration of the bar during periods of increasing wave height. The diffusion mechanism can be dependent on orbital motion alone and, as such, requires no frequency selection or strong correlation between multiple processes for bar formation.  相似文献   

16.
The accuracy of predicting wave transformation in the nearshore is very important to wave hydrodynamics, sediment transport and design of coastal structures. An efficient numerical model based on the time-dependent mild-slope equation is presented in this paper for the estimation of wave deformation across the surf zone. This model incorporates an approximate nonlinear shoaling formula and an energy dissipation factor due to wave breaking to improve the accuracy of the calculation of wave height deformation prior to wave breaking and also in the surf zone. The model also computes the location of first wave breaking, wave recovery and second wave breaking, if physical condition permits. Good agreement is found upon comparison with experimental data over several one-dimensional beach profiles, including uniform slope, bar and step profiles.  相似文献   

17.
Coastal groundwater systems can have a considerable impact on sediment transport and foreshore evolution in the surf and swash zones. Process-based modeling of wave motion on a permeable beach taking into account wave-aquifer interactions was conducted to investigate the effects of the unconfined coastal aquifer on beach profile evolution, and wave shoaling on the water table. The simulation first dealt with wave breaking and wave runup/rundown in the surf and swash zones. Nearshore hydrodynamics and wave propagation in the cross-shore direction were simulated by solving numerically the two-dimensional Navier–Stokes equations with a k–ε turbulence closure model and the Volume-Of-Fluid technique. The hydrodynamic model was coupled to a groundwater flow model based on SEAWAT-2000, the latter describing groundwater flow in the unconfined coastal aquifer. The combined model enables the simulation of wave-induced water table fluctuations and the effects of infiltration/exfiltration on nearshore sediment transport. Numerical results of the coupled ocean/aquifer simulations were found to compare well with experimental measurements. Wave breaking and infiltration/exfiltration increase the hydraulic gradient across the beachface and enhance groundwater circulation inside the porous medium. The large hydraulic head gradient in the surf zone leads to infiltration across the beachface before the breaking point, with exfiltration taking place below the breaking point. In the swash zone, infiltration occurs at the upper part of the beach and exfiltration at the lower part. The simulations confirm that beaches with a low water table tend to be accreted while those with a high water table tend to be eroded.  相似文献   

18.
Morphodynamics of a bar-trough surf zone   总被引:3,自引:0,他引:3  
A field study was made of the distinguishing morphodynamic processes operating in a surf zone which perennially exhibits accentuated bar-trough topography (the “longshore-bar-trough” and “rhytmic-bar-and-beach” states as described by Wright and Short, 1984). Characteristic features of the morphology include a shallow bar with a steep shoreward face, a deep trough, and a steep beach face. This morphology, which is favored by moderate breaker heights and small tidal ranges, strongly controls the coupled suite of hydrodynamic processes. In contrast to fully dissipative surf zones, the bar-trough surf zone is not at all saturated and oscillations at incident wave frequency remain dominant from the break point to the subaerial beach. The degree of incident wave groupiness does not change appreciably across the surf zone. Infragravity standing waves which, in dissipative surf zones, dominate the inshore energy, remain energetically secondary and occur at higher frequencies in the bar trough surf zone. Analyses of the field data combined with numerical simulations of leaky mode and edge wave nodal—antinodal positions over observed surf-zone profiles, indicate that the frequencies which prevail are favored by the resonant condition of antinodes over the bar and nodes in the trough. Standing waves which would have nodes over the bar are suppressed. Sediment resuspension in the surf zone appears to be largely attributable to the incident waves which are the main source of bed shear stress. In addition, the extra near-bottom eddy viscosity provided by the reformed, non-breaking waves traversing the trough significantly affects the vertical velocity profile of the longshore current. Whereas the bar is highly mobile in terms of onshore—offshore migration rates, the beach face and inner regions of the trough are remarkably stable over time.  相似文献   

19.
T.D. Price  B.G. Ruessink   《Marine Geology》2008,251(1-2):98-109
This paper builds on the work of Masselink [Masselink, G., 1993. Simulating the effects of tides on beach morphodynamics. J. Coast. Res. SI 15, 180–197.] on the use of the residence times of shoaling waves, breaking waves and swash/backwash motions across a cross-shore profile to qualitatively understand temporal beach behaviour. We use a data set of in-situ measurements of wave parameters (height and period) and water depth, and time-exposure video images overlooking our single-barred intertidal measurement array at Egmond aan Zee (Netherlands) to derive boundaries between the shoaling zone, the surf zone and the swash zone. We find that the boundaries are functional dependencies of the local relative wave height on the local wave steepness. This contrasts with the use of constant relative wave heights or water levels in earlier work. We use the obtained boundaries and a standard cross-shore wave transformation model coupled to an inner surf zone bore model to show that large (> 5) relative tide ranges (RTR, defined as the ratio tide range–wave height) indicate shoaling wave processes across almost the entire intertidal profile, with surf processes dominating on the beach face. When the RTR is between 2 and 5, surf processes dominate over the intertidal bar and the lower part of the beach face, while swash has the largest residence times on the upper beach face. Such conditions, associated with surf zone bores propagating across the bar around low tide, were observed to cause the intertidal bar to migrate onshore slowly and the upper beach face to steepen. For RTR values less than about 2, surf zone processes dominate across the intertidal bar, while the dominance of swash processes now extends across most of the beach face. The surf zone processes were now observed to lead to offshore bar migration, while the swash eroded the upper beach face.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号