首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phytoplankton production was measured at the shelf edge region of the Celtic Sea in April/May 1994 at the beginning of the spring bloom. Size fractionated 14C uptake experiments showed that phytoplankton >2 μm dominated the bloom although, in the period immediately before the increase in phytoplankton biomass, picophytoplankton (<2 μm) was responsible for up to 42% of the production; in these late winter conditions, chlorophyll concentrations were generally <0.7 μg l-1 and primary production was ca. 70 mmol C m-2 d-1. As the spring bloom developed, phytoplankton production rates of 120 mmol C m-2 d-1 were measured. Chlorophyll concentration increased to >2 μg l-1 as a result of growth of larger phytoplankton, including diatoms, with large numbers of Nitzschia, Thalassionema and Chaetoceros dominating the assemblage. Picophytoplankton production declined as the spring bloom progressed. Nutrient concentrations were not depleted during the sampling period, and NO-3 concentrations were >6 μmol l-1. Nutrient assimilation rates were measured at the same time as primary production was estimated. Before the development of any substantial phytoplankton biomass, the uptake rates for ammonium and nitrate were very similar, with f-ratios ranging from 0.5 to 0.6. Assimilation of ammonium remained relatively constant after the onset of stratification and bloom development, but nitrate uptake increased by a factor of 2 or more, resulting in f-ratios >0.8. There was significant phosphate uptake in the dark, which was generally ca. 50% of the rate in the light. The C : N : P assimilation ratios changed as the bloom developed; in the pre-bloom situation, when small phytoplankton cells dominated the assemblage, the C : N assimilation ratio was variable, with some stations having ratios less than (ca 2.5), and some higher than (ca. 9), the Redfield ratio. The most actively growing assemblages had N : P ratios close to the Redfield ratio, but the C : N ratios were consistently lower. New production was found to be closely correlated with the size of the species making up the phytoplankton assemblage, and high f ratios were measured when larger phytoplankton dominated the assemblage.  相似文献   

2.
Carbon overconsumption, i.e. the consumption of inorganic carbon relative to inorganic nitrogen in excess of the Redfield ratio at the sea surface, was examined in relation to the dynamics of dissolved organic carbon and nitrogen (DOC and DON) in the northeast Atlantic. We observed the presence of N-poor dissolved organic matter (DOM) in surface water during summer, requiring the consumption of inorganic carbon and nitrogen in a ratio exceeding the Redfield ratio. The C : N ratio of bulk DOM is not only different from the Redfield ratio but also variable, i.e. no fixed conversion factor of C and N exists where DOM is important in C and N transformations. The existence of N-poor DOM is recognized as a feature typical of oligotrophic systems. At the same time, the C : N ratios of particles conform to Redfield stoichiometry as does deep-ocean chemistry. The implications of this finding are discussed, the conclusion being that, while DOM buildup contributes to CO2 drawdown seasonally, its impact on long-term carbon and nitrogen balance of the ocean is small.  相似文献   

3.
Redfield stoichiometry has proved a robust paradigm for the understanding of biological production and export in the ocean on a long-term and a large-scale basis. However, deviations of carbon and nitrogen uptake ratios from the Redfield ratio have been reported. A comprehensive data set including all carbon and nitrogen pools relevant to biological production in the surface ocean (DIC, DIN, DOC, DON, POC, PON) was used to calculate seasonal new production based on carbon and nitrogen uptake in summer along 20°W in the northeast Atlantic Ocean. The 20°W transect between 30 and 60°N covers different trophic states and seasonal stages of the productive surface layer, including early bloom, bloom, post-bloom and non-bloom situations. The spatial pattern has elements of a seasonal progression. We also calculated exported production, i.e., that part of seasonal new production not accumulated in particulate and dissolved pools, again separately for carbon and nitrogen. The pairs of estimates of `seasonal new production’ and `exported production’ allowed us to calculate the C : N ratios of these quantities. While suspended particulate matter in the mixed layer largely conforms to Redfield stoichiometry, marked deviations were observed in carbon and nitrogen uptake and export with progressing season or nutrient depletion. The spring system was characterized by nitrogen overconsumption and the oligotrophic summer system by a marked carbon overconsumption. The C : N ratios of seasonal new as well as exported production increase from early bloom values of 5–6 to values of 10–16 in the post-bloom/oligotrophic system. The summertime accumulation of nitrogen-poor dissolved organic matter can explain only part of this shift.  相似文献   

4.
To test the hypothesis that phytoplankton assemblages dominated by different taxa have distinct biogeochemical characteristics and cycles, the temporal and spatial variations in phytoplankton biomass and composition were studied within the Ross Sea polynya, where diatoms and the haptophyte Phaeocystis antarctica are thought to have spatially distinct distributions. Two cruises were completed, with the first conducted in spring, 1994, and the second in late spring–early summer, 1995/1996. Ice concentrations decreased substantially from spring to summer. Mixed layer depths for the region decreased markedly in early spring and were relatively invariant thereafter; the strength of the stratification varied both in time and space. Mixed layers were greater in spring in assemblages dominated by diatoms (as determined by HPLC pigment concentrations) than those dominated by Phaeocystis antarctica, whereas in summer no difference was observed. Nutrient concentrations were initially high and near winter values, but decreased throughout November and December. Nitrate : phosphate removal ratios varied widely, with ratios exceeding 20 in spring but decreasing below 14 in summer. N : P removal ratios at stations dominated by diatoms were less than the Redfield ratio in both spring and summer, and at those stations dominated by P. antarctica the N : P removal ratio was ca. 19 in both seasons. Chlorophyll and particulate matter concentrations increased as nutrients decreased. Spatial and temporal variations of phytoplankton pigments occurred, with 19′-hexanoylfucoxanthin, a pigment of P. antarctica, exceeding 3.9 μg l−1 during spring in the south-central polynya, and fucoxanthin, an accessory pigment of diatoms, found in concentrations >1 μg l−1 in the western Ross Sea. The distributions were not mutually exclusive, and concentrations of both pigments were greatest in spring. The early growth of P. antarctica appears to be related to earlier stratification and disappearance of ice from the south-central Ross Sea. Ratios of FUCO/CHL were relatively invariant, but substantial changes in the HEX/CHL and POC/CHL ratios were observed through time. A one-dimensional nitrogen budget for the spring–early summer period suggests that much of the surface production was partitioned into particles, most (53%) of which remained in the upper 200 m. The rest was partitioned into dissolved organic matter (14%), remineralized as ammonium (19%), or sank from the surface layer as particles (13%). The region may serve as a useful analog to other polar systems, and an understanding of the processes controlling assemblage composition, production, and biomass accumulation may provide insights into biogeochemical cycles of other Antarctic environments.  相似文献   

5.
JGOFS-KERFIX (KERguelen point FIXe) time-series station, located south of the polar front in the Indian sector of the Antarctic Ocean, was occupied monthly between January 1990 and March 1995. Annual cycles of dissolved inorganic carbon (DIC), total alkalinity (TALK), oxygen (O2) and nutrients (nitrate, silicate, phosphate and ammonia) in the upper ocean are presented for this site. From seasonal drawdown of nutrients and DIC, we estimate a spring–summer net community production of 3.2±0.5 mol m−2 and C/N/P ratios of 100/16/1. The Si/N ratio varies between 1.8 and 3, suggesting low iron concentrations. The spring–summer biogenic silicon export derived from silicate drawdown is 1.18 mol m−2, consistent with model estimates of silicate export at this site. Seasonal and interannual variations of oxygen, nitrate and DIC due to physical and biological processes are quantified using a simple month-to-month budget formulation. From these budgets, an annual net community production of 5.7±3.3 mol m−2 yr−1 is estimated, about twice the averaged spring–summer production, indicating that, at KERFIX, there is a positive net community production throughout the year. Air–sea CO2 fluxes show that KERFIX is a strong CO2 sink for the atmosphere of 2.4–5.1 mol m−2 yr−1 in 1993, depending on the gas exchange formulation used. A 2.1–3.3 mol m−2 yr−1 outgassing of O2 is observed at KERFIX except in 1993 and 1994 where a decreasing trend of temperature induces an increase of O2 solubility.  相似文献   

6.
Determinations of the activity of the respiratory electron transport system (ETS), during the FRAM III expedition permit us to estimate oxygen utilization rates (RO2) from the surface to 2000 m under the polar pack ice in the Nansen Basin just north of Svalbard (83°N, 7°E) during April 1981. We found RO2 at in situ temperatures ranging from 20 pM O2 min−1 just below the ice to 0.2 pM O2 min−1 at 2000 m. These rates are low compared to most other ocean regions, but they could decrease particulate organic carbon and nitrogen by 76% and 74%, respectively, over a period of ∼6 months. The RO2 calculations based on measurements made at 0 °C yielded a power function of RO2 vs. depth (Z) of RO2=67Z−0.5534. When this RO2 profile was superimposed on a more recent oxygen utilization rate profile made using the 3He–3H–AOU method (OUR), in the same vicinity of the Nansen Basin during 1987 (OUR=52Z–0.4058, [Zheng, Y., Schlosser, P., Swift, J.W., Jones, E.P., 1997. Oxygen utilization rates in the Nansen Basin, Arctic Ocean: implications for new production. Deep Sea Research I 44, 1923–1943]), the agreement of the two profiles was close. On one hand, this was to be expected because RO2 is the biological basis of OUR, on the other hand, it was a surprise because the methodologies are so different. Nitrate mineralization obtained from ETS activities also compared favorably with calculations based on the data of Zheng et al. [1997. Oxygen utilization rates in the Nansen Basin, Arctic Ocean: implications for new production. Deep Sea Research I 44, 1923–1943]. Chlorophyll ranged from 6 ng L−1 at 5 m to 0.06 ng L−1 at 2000 m. Particulate organic carbon (POC) decreased from 0.93 μM C just below the ice to less than 0.4 μM C at 500 m. Particulate organic nitrogen (PON) was not detectable below 70 m, however in the upper 70 m it ranged from 0.16 to 0.04 μM N. The C/N mass ratio over these depths ranged from 5.8 to 11.3. Annual carbon productivity as calculated to balance the total water column respiration was 27 g C m−2 y−1. The integrated respiration rate between 50 and 4000 m suggests that exported production and carbon flux from the 50 m level was 24 g C m−2 y−1. These are minimal estimates for the southern Nansen Basin because they are based on measurements made at the end of the Arctic winter.  相似文献   

7.
The Arctic Ocean has wide shelf areas with extensive biological activity including a high primary productivity and an active microbial loop within the surface sediment. This in combination with brine production during sea ice formation result in the decay products exiting from the shelf into the deep basin typically at a depth of about 150 m and over a wide salinity range centered around S ~33. We present data from the Beringia cruise in 2005 along a section in the Canada Basin from the continental margin north of Alaska towards the north and from the International Siberian Shelf Study in 2008 (ISSS-08) to illustrate the impact of these processes. The water rich in decay products, nutrients and dissolved inorganic carbon (DIC), exits the shelf not only from the Chukchi Sea, as has been shown earlier, but also from the East Siberian Sea. The excess of DIC found in the Canada Basin in a depth range of about 50–250 m amounts to 90±40 g C m?2. If this excess is integrated over the whole Canadian Basin the excess equals 320±140×1012 g C. The high DIC concentration layer also has low pH and consequently a low degree of calcium carbonate saturation, with minimum aragonite values of 60% saturation and calcite values just below saturation. The mean age of the waters in the top 300 m was calculated using the transit time distribution method. By applying a future exponential increase of atmospheric CO2 the invasion of anthropogenic carbon into these waters will result in an under-saturated surface water with respect to aragonite by the year 2050, even without any freshening caused by melting sea ice or increased river discharge.  相似文献   

8.
A method for obtaining the directional spectrum, on assuming that the frequencies of the elementary waves are all different from one another, is re-proposed in a form suitable for applications to sea states near a coast. The method is applied to an interval of 10 h during which the sea state remained basically steady state off the beach at Reggio Calabria (east coast of the Straits of Messina). It is shown that the directional spectrum converges as the length of the time series data grows. A numerical simulation of a 10 h sea state confirms that the directional spectrum converges as the length of the time series grows, and the convergence is onto the known directional spectrum used to make the numerical simulation. Through the numerical simulation, it is proved that the method, generally, is suitable for applications even with short time series of wind waves (duration of about 100Tp). Finally, it is shown that the method is not necessarily inadequate even with short records of multimodal sea states with different modal directions, modal amplitude ratios and intermodal distances.  相似文献   

9.
New productivity measurements using the 15N tracer technique were conducted in the north-eastern (NE) Arabian Sea during six expeditions from 2003 to 2007, mostly in winter. Our results indicate that the NE Arabian Sea has a potential for higher new productivity during blooms. Nitrate uptake by plankton is the highest during late winter. New productivity and f-ratios in the NE Arabian Sea are mainly controlled by hydrodynamic and meteorological parameters such as wind strength, sea surface temperature (SST), mixed layer depth (MLD) and mixed layer nitrate. Deepening of the mixed layer supplies nitrate from below, which supports the observed nitrogen uptake. Higher f-ratios during blooms indicate the strong coupling between surface layers and sub-surface layers. Deepening of mixed layer below 100 m (from its inter-monsoon value between 30 and 40 m) transferred often more than 100 mmol N–NO3 m? 2 into the surface layers from below. The observed winter blooms in the region are supported by such input and are sustained for more than a month. Higher new productivity has been found in late winter, whereas transport of nitrate is maximum in early winter. In general, new production varies progressively during winter. Diurnal cycling of the mixed layer could be the reason for the under utilization of entrained nitrate during early winter. New productivity values and wind strength show significant differences during Feb–Mar 03 and Feb–Mar 04. These differences indicate that the winter cooling and parameters related the biological productivity also vary inter-annually. However, the difference between the new productivity values between Feb–Mar 03 and Feb–Mar 04 is much lower than the difference between Jan 03 and Feb–Mar 03. The results suggest that amplitude of seasonal variation is higher than the inter-annual variation in the region. During spring, Fickian diffusive fluxes of nitrate into the surface layer range from 0.51 to 1.38 mmol N–NO3 m? 2 day? 1, and can account for 67% and 78% of the observed nitrogen uptake in the coastal and open ocean regions, respectively. We document the intra-seasonal and inter-annual variations in new productivity during winter and identify sources of nitrate which support the observed productivity during spring.  相似文献   

10.
The giant diatom Ethmodiscus was examined along an east–west transect at 28–30°N during 2002 and 2003 to determine if abundance, chemical composition or physiological status of this largest of diatoms varied on the scale of 100's–1000's of km in North Pacific gyre. Abundance ranged from <0.1–>2.0 cells m−3 and supported the notion of an abundance mosaic reported previously. However, there was only minimal support for the relationship between abundance and nutrient concentration at 125 m reported previously. Cellular chlorophyll varied little along the transect (7.3–10.9 ng chl cell−1) except at the westernmost station. Cellular N and P quotas co-varied 3–4.5 fold (mean=50.8±3.7 and 3.7±0.8 nmol N and P cell−1) and yielded N:P ratios that closely clustered around the Redfield ratio (average=14.6±1.1). Only low levels of chlorophyll-normalized alkaline phosphatase (APase) activity were observed (0.4–2.5 nmol P μg chl−1 h−1) with APase activity lower than that in either the bulk water, or co-occurring Trichodesmium spp. and Pyrocystis noctiluca. The active fluorescence parameter Fv:Fm, a property sensitive to Fe stress, was uniformly high at all stations (average=0.73±0.04 for 2003, and 0.69±0.05 for 2002), indicating sufficient Fe for optimum photosynthetic competence. These results contrasted sharply with results from Rhizosolenia mats reported along the same transect where there was a significant decline westward in Fv:Fm. Both ferredoxin (Fd) and flavodoxin accumulated in cells of Ethmodiscus, resulting in Fd Index values of<0.6. Iron cell quotas ranged from 0.7–5.1 pmol Fe cell−1. When normalized to cytoplasmic volume, the Fe μm−3 was comparable to that of Escherichia coli. We note that the disproportionate contribution of the vacuole (with its high organic content) to total volume typical of large diatoms is a potentially significant source of error in Fe:C ratios and suggest that Fe should be normalized to cytoplasmic volume whenever possible to permit valid intercomparisons between studies. The composition, Fv:Fm data and Fe:C ratio suggest a relatively uniform population experiencing little N, P or Fe stress. The uncoupling of the Fd Index from these measures is consistent with previous findings showing that the expression of flavodoxin can be characterized as an early stress response and that its accumulation is not necessarily correlated with physiological deficit. Ethmodiscus appears to be well adapted to some of the most oligotrophic waters in the ocean. Because it is an important sedimentary marker, the biology of living Ethmodiscus provides insights into the source of extensive Ethmodiscus oozes. Mass sedimentation after frontal accumulation has been suggested as a source for these oozes. Our data contain no evidence that the flux is linked directly to Fe, N or P stress.  相似文献   

11.
Late Turonian, Coniacian and Santonian source rock samples from a recently drilled well (Tafaya Sondage No. 2; 2010) in the Tarfaya Basin were analyzed for quantity, quality, maturity and depositional environment of the organic matter (OM). To our knowledge such a thick sequence of organic matter-rich Turonian to Santonian source rocks was investigated in that great detail for the first time. Organic geochemical and organic petrological investigations were carried out on a large sample set from the 200 m thick sequence. In total 195 core samples were analyzed for total organic carbon (Corg), total inorganic carbon contents and total sulfur (TS) contents. Rock-Eval pyrolysis and vitrinite reflectance measurements were performed on 28 samples chosen on the basis of their Corg content. Non-aromatic hydrocarbons were analyzed on selected samples by way of gas chromatography–flame ionization detection (GC–FID) and GC–mass spectrometry (GC–MS). The organic matter-rich carbonates revealed a high source rock potential, representing type I kerogen and a good preservation of the organic matter, which is mainly of marine (phytoplankton) origin. HI values are high (400–900 mg/g Corg) and in a similar range as those described for more recent upwelling sediments along the continental slope of North Africa. TS/Corg ratios as well as pristane over phytane ratios indicate variable oxygen content during sediment deposition. All samples are clearly immature with respect to petroleum generation which is supported by maturity parameters such as vitrinite reflectance (0.3–0.4%), Tmax values (401–423 °C), production indices (S1/(S1 + S2) > 0.1) as well as maturity parameters based on ratios of specific steranes and hopanes.  相似文献   

12.
To assess the magnitude, distribution and fate of net community production (NCP) in the Chukchi Sea, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON), and particulate organic carbon (POC) and particulate organic nitrogen (PON) were measured during the spring and summer of 2004 and compared to similar observations taken in 2002. Distinctive differences in hydrographic conditions were observed between these two years, allowing us to consider several factors that could impact NCP and carbon cycling in both the Chukchi Shelf and the adjacent Canada Basin. Between the spring and summer cruises high rates of phytoplankton production over the Chukchi shelf resulted in a significant drawdown of DIC in the mixed layer and the associated production of DOC/N and POC/N. As in 2002, the highest rates of NCP occurred over the northeastern part of the Chukchi shelf near the head of Barrow Canyon, which has historically been a hotspot for biological activity in the region. However, in 2004, rates of NCP over most of the northeastern shelf were similar and in some cases higher than rates observed in 2002. This was unexpected due to a greater influence of low-nutrient waters from the Alaskan Coastal Current in 2004, which should have suppressed rates of NCP compared to 2002. Between spring and summer of 2004, normalized concentrations of DIC in the mixed layer decreased by as much as 280 μmol kg−1, while DOC and DON increased by ∼16 and 9 μmol kg−1, respectively. Given the decreased availability of inorganic nutrients in 2004, rates of NCP could be attributed to increased light penetration, which may have allowed phytoplankton to increase utilization of nutrients deeper in the water column. In addition, there was a rapid and extensive retreat of the ice cover in summer 2004 with warmer temperatures in the mixed layer that could have enhanced NCP. Estimates of NCP near the head of Barrow Canyon in 2004 were ∼1500 mg carbon (C) m−2 d−1 which was ∼400 mg C m−2 d−1 higher than the same location in 2002. Estimates of NCP over the shelf-break and deep Canada Basin were low in both years, confirming that there is little primary production in the interior of the western Arctic Ocean due to near-zero concentrations of inorganic nitrate in the mixed layer.  相似文献   

13.
One hundred twelve rainwater samples collected from 1986 to 2003 at the signal station of Cap Ferrat (France, NW Mediterranean coast) were analysed for phosphate and silicate contents. This sampling site is affected by a European urban-dominated background material, with episodic Saharan dust inputs. The input of dissolved inorganic phosphorus (DIP) and dissolved inorganic silicon (DISi) was calculated. The most significant loadings of DIP and DISi were selected in order to assess their potential impact on phytoplankton dynamics, particularly in oligotrophic conditions, when surface waters are nutrient-depleted. The theoretical new production triggered by DIP and DISi inputs (NPatmo) was estimated through Redfield calculations. The maximum theoretical DIP-triggered NPatmo was up to 670 mg C m−2 in October, at the end of the oligotrophic period (135 mg C m−3 in the 5 m-thick surface layer). During the same period, the daily integrated primary production measured at the DYFAMED site (NW Mediterranean Sea) was on average 219 mg C m−2 d−1 within the 0–100 m depth water column, while the mean daily primary production in the 5 m-thick surface layer was 1.6 mg C m−3 d−1. However, high NPatmo due to high DIP inputs might be episodically limited by lower DISi inputs, which may consequently lead to episodic preferential growth of non-siliceous phytoplanktonic species.  相似文献   

14.
Chlorophyll a (chl a) concentrations and primary production by the 0.2–2, 2–18 and >18 μm phytoplankton size-fractions were estimated along a transect in the NW Indian Ocean extending from the coast of Oman to 8°N 68°E during the late SW monsoon and autumn intermonsoonal seasons in 1994. Primary production was estimated using the 14C technique with either in situ or simulated in situ incubations. During the late monsoon season, maximal chl a and production values were recorded in the coastal upwelling zone with values of 69 mg m-2 and 3800 mg C m-2 d-1, respectively. The maxima, which were distributed patchily in this region, were dominated by the >18 μm size-fraction. Over the remainder of the transect chl a concentrations and production averaged 30 mg m-2 and 1500 mg C m-2 d-1, respectively, with approximately equal contributions by the three size-fractions in the case of chl a at the majority of stations, but in general, with a maximum in production in the 0.2–2 μm fraction. Immediately following cessation of the SW monsoon wind, chl a and production values over the northern part of the transect decreased to values similar to those over the southern part of the transect at the time of the SW monsoon, with the contributions by the three size-fractions being approximately equal. During the following intermonsoonal season, both chl a concentrations and production across the section were dominated by the 0.2–2 μm size-fraction, with average chl a and production values of the order of 20 mg m-2 and 750 mg C m-2 d-1, respectively. Considerable variation in production values, however, was exhibited across the transect. A clearly defined subsurface chl a maximum was only recorded at the southernmost stations of the transect in oligotrophic waters: the feature did not develop universally across the transect during the intermonsoon.  相似文献   

15.
pH and alkalinity measurements from a coastal upwelling area located near 30°S (Coquimbo, Chile), are used to describe the short-term variations of CO2 air–sea exchanges over a period of one week in summer 1996. A 180 km ocean–coastal transect, together with two almost-synoptic grid surveys off Coquimbo covering approximate 2500 km2 each, showed that during and immediately after a 4 day long southwesterly wind event (24–28 January) a large area of cold surface water (≈14°C), highly supersaturated in CO2 (fCO2 up to 900 μatm), was located near the coast. Three days after the end of the event, the second grid survey showed that in most of the study area the surface temperature and pH had increased significantly (by 1–3°C and 0.05–0.2, respectively), and that the surface water was no longer supersaturated in CO2. The CO2-supersaturated water observed in the first grid survey was identified as upwelled subsurface equatorial water, a water mass with its core at about 200 m depth: the depth from which the water upwells is a major determinant of the surface water fCO2. Integrated C fluxes within a 20 km wide coastal strip (1900 km2) indicate a strong outgassing of CO2 from the ocean under upwelling conditions (Grid 1; 121 t C day-1), while the net C exchange was directed to the ocean during the relaxation period (Grid 2; 19 t C day-1). Estimates of CO2 fluxes in upwelling areas based on surface water fCO2 measurements must therefore take into account these short-term variations: reliance on longer-term averages and interpolation will lead to erroneous results.  相似文献   

16.
Measurements of dissolved inorganic carbon (DIC), pH, total alkalinity (TA), and partial pressure of CO2 (pCO2) were conducted at a total of 25 stations along four cross shelf transects in the East China Sea (ECS) in January 2008. Results showed that their distributions in the surface water corresponded well to the general circulation pattern in the ECS. Low DIC and pCO2 and high pH were found in the warm and saline Kuroshio Current water flowing northeastward along the shelf break, whereas high DIC and pCO2 and low pH were mainly observed in the cold and less saline China Coastal Current water flowing southward along the coast of Mainland China. Difference between surface water and atmospheric pCO2 (ΔpCO2), ranging from ~ 0 to ? 111 μatm, indicated that the entire ECS shelf acted as a CO2 sink during winter with an average flux of CO2 of ?13.7 ± 5.7 (mmol C m? 2 day? 1), and is consistent with previous studies. However, pCO2 was negatively correlated with temperature for surface waters lower than 20 °C, in contrast to the positive correlation found in the 1990s. Moreover, the wintertime ΔpCO2 in the inner shelf near the Changjiang River estuary has appreciably decreased since the early 1990s, suggesting a decline of CO2 sequestration capacity in this region. However, the actual causes for the observed relationship between these decadal changes and the increased eutrophication over recent decades are worth further study.  相似文献   

17.
Atmospheric dry deposition of nitrogen (N) and dinitrogen (N2) fixation rates were assessed in 2004 at the time-series DYFAMED station (northwestern Mediterranean, 43°25′N, 7°52′E). The atmospheric input was monitored over the whole year. Dinitrogen fixation was measured during different seasonal trophic states (from mesotrophy to oligotrophy) sampled during nine cruises. The bioavailability of atmospherically deposited nutrients was estimated by apparent solubility after 96 h. The solubility of dry atmospheric N deposition was highly variable (from ∼18% to more than 96% of total N). New N supplied to surface waters by the dry atmospheric deposition was mainly nitrate (NO3) (∼57% of total N, compared to ∼6% released as ammonium (NH4+)). The mean bioavailable dry flux of total N was estimated to be ∼112 μmol m−2 d−1 over the whole year. The NO3 contribution (70 μmol NO3 m−2 d−1) was much higher than the NH4+ contribution (1.2 μmol NH4+ m−2 d−1). The N:P ratios in the bioavailable fraction of atmospheric inputs (122.5–1340) were always much higher than the Redfield N:P ratio (16). Insoluble N in atmospheric dry deposition (referred to as “organic” and believed to be strongly related to anthropogenic emissions) was ∼40 μmol m−2 d−1. N2 fixation rates ranged from 2 to 7.5 nmol L−1 d−1. The highest values were found in August, during the oligotrophic period (7.5 nmol L−1 at 10 m depth), and in April, during the productive period (4 nmol L−1 d−1 at 10 m depth). Daily integrated values of N2 fixation ranged from 22 to 100 μmol N m−2 d−1, with a maximum of 245 μmol N m−2 d−1 in August. No relationship was found between the availability of phosphorus or iron and the observed temporal variability of N2 fixation rates. The atmospheric dry deposition and N2 fixation represented 0.5–6% and 1–20% of the total biological nitrogen demand, respectively. Their contribution to new production was more significant: 1–28% and 2–55% for atmospheric dry deposition and N2 fixation, respectively. The dry atmospheric input was particularly significant in conditions of water column stratification (16–28% of new production), while N2 fixation reached its highest values in June (46% of new production) and in August (55%).  相似文献   

18.
A time series (1970–1980) of silicate concentrations in the surface mixed layer at Ocean Station P (OSP, 50°N, 145°W) in the subarctic NE Pacific Ocean in high-nutrient and low-chlorophyll (HNLC) waters shows nearly total depletion of silicate (<1 μmol kg−1) in the summers of 1972, 1976 and 1979. From a mixed-layer model for the spring–summer period, we calculated silicate and nitrate utilization. The silicate utilization (ΔSiO4) during the growing season displays large interannual variations, suggesting that diatom production would experience similar fluctuations. The years 1972 and 1979 had both high-silicate utilization (ΔSiO4) and high-nitrate utilization (ΔNO3). During these two high-production years, the lack of available silicate appeared to limit diatom production. For 1972 and 1979, the ratio of ΔSiO4 to ΔNO3 was 1.4 and 2.5, respectively. The 1979 ratio supports the conclusion that high-nutrient utilization in the mixed layer is dominated by diatoms. The 1972 ratio is consistent with the average value calculated from the time-series data and suggests that the high-nutrient utilization resulted from a combination of diatom and non-siliceous production. A time series of particle fluxes (1980–1994) collected in deep-moored sediment traps at OSP showed that the averaged monthly flux ratio of opal to particulate organic nitrogen (PON) remained constant except during two high-PON flux periods. These two periods occurred during the late summers of 1983 and 1993 when the PON flux was more than double the average. During these two high-PON flux periods a significant decrease in the opal to PON flux ratio occurred. If these high-PON fluxes were caused by increased diatom production, the composition and preservation of nitrogen in the sinking organic matter also must increase during these diatom blooms. In 1983, the high-PON flux period was associated with a high-opal flux but not in 1993. It appears that the two high-PON periods were driven by two different processes. In 1983, the high-PON and opal fluxes are consistent with increased diatom production, while in 1993, the high-PON flux and average opal flux suggest increased non-diatom production. The switch between high production of diatoms and high production by non-diatoms is consistent with the silicate and nitrate utilization, which also had years with both high silicate and nitrate utilization and years with only high-nitrate utilization.  相似文献   

19.
The results from a~1 km resolution HYbrid Coordinate Ocean Model (HYCOM), forced by 1/2° Navy Operational Global Atmospheric Prediction System (NOGAPS) atmospheric data, were used in order to study the dynamic response of the Persian Gulf to wintertime shamal forcing. Shamal winds are strong northwesterly winds that occur in the Persian Gulf area behind southeast moving cold fronts. The period from 20 November to 5 December 2004 included a well defined shamal event that lasted 4–5 days. In addition to strong winds (16 m s?1) the winter shamal also brought cold dry air (Ta=20 °C, qa=10 g kg?1) which led to a net heat loss in excess of 1000 W m?2 by increasing the latent heat flux. This resulted in SST cooling of up to 10 °C most notably in the northern and shallower shelf regions. A sensitivity experiment with a constant specific humidity of qa=15 g kg?1 confirmed that about 38% of net heat loss was due to the air–sea humidity differences. The time integral of SST cooling closely followed the air–sea heat loss, indicating an approximate one-dimensional vertical heat balance. It was found that the shamal induced convective vertical mixing provided a direct mechanism for the erosion of stratification and deepening of the mixed layer by 30 m. The strong wind not only strengthened the circulation in the entire Persian Gulf but also established a northwestward flowing Iranian Coastal Current (ICC, 25–30 cm s?1) from the Strait of Hormuz to about 52°E, where it veered offshore. The strongest negative sea level of 25–40 cm was generated in the northernmost portion of the Gulf while the wind setup against the coast of the United Arab Emirates established a positive sea level of 15–30 cm. The transport through the Strait of Hormuz at 56.2°E indicated an enhanced outflow of 0.25 Sv (Sv≡106 m3 s?1) during 24 November followed by an equivalent inflow on the next day.  相似文献   

20.
A 1-D coupled physical-biogeochemical model is used to study the seasonal cycles of silicon and nitrogen in two High Nutrient Low Chlorophyll (HNLC) systems, the Antarctic Circumpolar Current (ACC) and the North Pacific Ocean, and a mesotrophic system, the North Atlantic Ocean. The biological model consists of nine compartments (diatoms, nano-flagellates, microzooplankton, mesozooplankton, two types of detritus, nitrate, ammonium and silicic acid) forced by irradiance, temperature, mixing and deep nitrate and silicic acid concentrations. At all sites, nanophytoplankton standing crop variations are low, in spite of variations in primary production, because of a “top–down” control by microzooplankton. Although nanophytoplankton sustain more than 60% of the annual primary production in these areas, their contribution to the export production does not exceed 1% of the total. The differences in the seasonal plankton cycle among these regions come mainly from differences in the dynamics of large phytoplankton (here diatoms). In the ACC, the chlorophyll maximum remains <1.5 mg m−3, as an unfavourable light/mixing regime and a likely trace-metal limitation keep diatoms from blooming. In the northeast Pacific, trace-metal limitation seems to keep diatoms from blooming throughout the year. In both these systems, light or iron limitations induce high Si/N uptake ratios. Incidentally these high Si/N uptake ratios lead to a net excess of silicic acid utilization over nitrate, and to a subsequent silicic acid limitation during the summertime. In the North Atlantic, under favourable light/mixing regime and nutrient-replete conditions at the onset of the growing period, diatoms outburst and sustain a bloom >3.5 mg Chl-a m−3. Thereafter, mesozooplankton grazing pressure and silicic acid limitation induce the collapse of the chlorophyll maximum and the persistence of lower chlorophyll concentrations in summer. Although the ACC and the North Pacific show HNLC features, they support a high biogenic silica production (1.9 and 1.07 mol Si m−2 yr−1) and export flux (0.79 and 0.61 mol Si m−2 yr−1), compared to the North Atlantic (production: 0.23 mol Si m−2 yr−1, export: 0.12 mol Si m−2 yr−1). The differences in Si production and export between the HNLC systems and the mesotrophic North Atlantic come from both higher Si concentrations and Si/N uptake ratios in the HNLC areas compared to the North Atlantic. Also, the low dissolution rate of biogenic silica compared to nitrogen degradation rate, and the inhibition of nitrate uptake by ammonium, reinforce the net excess of silicic acid utilization over nitrate. As a result, the model also illustrates the efficiency of the silica pump for the three sites: about 50% of the biogenic silica synthesized in the euphotic layer is exported out of the first 100 m, while only 4–11% of the particulate organic nitrogen escapes recycling in the surface layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号