首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
Nitrate and phosphate uptake kinetics ofChattonella antiqua were examined under light and dark conditions. The uptake kinetics ofC. antiqua followed the Michaelis-Menten equation. The maximal uptake rates (V max) of nitrate and phosphate in the dark were 86 and 93% of those in the light, respectively. The half-saturation constants (K 8 ) were not significantly affected by illumination and were comparable to those of other phytoplankton. However, specific maximal uptake rates ofC. antiqua for these substrates were much smaller than those of other phytoplankton.  相似文献   

2.
Ammonium uptake kinetics and interactions between nitrate and ammonium uptake were examined inChattonella antiqua. After the addition of ammonium to the culture ofC. antiqua, the ammonium concentration decreased linearly with time. The ammonium uptake rate as a function of ammonium concentration followed the Michaelis-Menten equation; the maximal uptake rate was 2.0 pmol cell–1hr–1 and the half saturation constant, 2.2M. Although the ammonium uptake was not affected by nitrate, uptake of nitrate was rapidly (15min) suppressed by ammonium and a 50% reduction in nitrate uptake was observed at an ammonium concentration ofca. 2M.  相似文献   

3.
The tropical seagrass Halophila stipulacea is dominant in most regions of the Indo‐Pacific and the Red Sea and was introduced into the Mediterranean Sea after the opening of the Suez canal. The species is considered invasive in the Mediterranean Sea and has been progressively colonizing new areas westward. Growth and photosynthetic responses of H. stipulacea have been described but no information is yet available on the nitrogen nutrition of the species. Here we simultaneously investigated the uptake kinetics of ammonium and nitrate and the internal translocation of incorporated nitrogen in H. stipulacea using 15N‐labelled substrates across a range of Ni levels (5, 25, 50 and 100 μm ). The ammonium uptake rates exceeded the nitrate uptake rates 100‐fold, revealing a limited capacity of H. stipulacea to use nitrate as an alternative nitrogen source. The uptake rates of ammonium by leaves and roots were comparable up to 100 μm 15NH4Cl. At this concentration, the leaf uptake rate was 1.4‐fold higher (6.22 ± 0.70 μmol·g?1 DW h?1) than the root uptake rate (4.54 ± 0.28 μmol·g?1 DW h?1). The uptake of ammonium followed Michaelis–Menten kinetics, whereas nitrate uptake rates were relatively constant at all nutrient concentrations. The maximum ammonium uptake rate (Vmax) and the half‐saturation constant (Km) of leaves (9.79 μmol·g?1 DW h?1 and 57.95 μm , respectively) were slightly higher than that of roots (6.09 μmol·g?1DW h?1 and 30.85 μm , respectively), whereas the affinity coefficients (α = Vmax/Km) for ammonium of leaves (0.17) and roots (0.20) were comparable, a characteristic that is unique among seagrass species. No substantial translocation (<2.5%) of 15N incorporated as ammonium was detected between plant parts, whereas the translocation of 15N incorporated as nitrate was higher (40–100%). We conclude that the Ni acquisition strategy of H. stipulacea, characterized by a similar uptake capacity and efficiency of leaves and roots, favors the geographical expansion potential of the species into areas with variable water‐sediment N levels throughout the Mediterranean.  相似文献   

4.
Environmental parameters that affect the growth ofChattonella antiqua were monitored throughout the outbreak period of this species around the Ie-shima Islands, the Seto Inland Sea, in the summer of 1987 (20 July–13 August). Averaged cell concentration ofC. antiqua over the water column (21 m) was below 10 cells· ml–1 on 20 July, gradually increased to reach the maximum of 250 cells·ml–1 on 7 August, and then rapidly decreased to the value of 30 cells·ml–1 on 13 August.Thermal stratifications were prominent from 20 July to 3 August and were destroyed after 4 August. Temperature and salinity were optimum for the growth ofC. antiqua throughout the survey period.At the bloom initiation period (20–21 July), concentrations of N- and P-nutrients (S N andS P ) were high throughout the water column. From 22 July to 3 August, whenC. antiqua increased its populations,S N andS P at the depth of 0–5m were low but those at the depth of 10–20m kept a high value. After 4 August,S n andS P at the depth of 10–20m decreased rapidly due to wind mixing coupled with the nutrient uptake byC. antiqua. When the populations ofC. antiqua reached the maximum (7–9 August), N-nutrients were depleted throughout the water column but P-nutrients were not. Concentrations of vitamin B12 were almost in the same range as those of the previous years and were optimum for the growth ofC. antiqua.GP- value (growth potential of the seawater with respect to nitrogen and phos-phorus) was higher than 0.6 even at the surface layer (0–5 m) at the bloom-initiation period. During the bloom development period (22 July–3 August), GP at the surface layer (0–5m) was low (<0.2), but GP at the depth of 10–20m kept a rather high value (>0.4).In situ growth rates ofC. antiqua at the depth of 0 and 5m estimated from bottle experiments coincided well with the values expected from GP. A high value of GP at the surface layer in the initiation period and a shallow GP-cline in the development period, combined with the ability of diurnal vertical migration seemed to be at least one reason that natural populations ofC. antiqua grew at a rather high rate and formed red tides in the summer of 1987.  相似文献   

5.
Severe red tides due toChattonella antiqua occur sporadically during summer in the Seto Inland Sea, Japan, and cause significant damage to the fishing industry. In order to assess the chemical environment with respect to the outbreak ofC. antiqua, environmental factors that affect the growth ofC. antiqua were monitored around the Ie-shima Islands, the Seto Inland Sea, in the summer of 1986. In addition, a growth bioassay of the seawater usingC. antiqua was conducted under a semicontinuous culture system. Although temperature, salinity and light intensity were optimum for the growth ofC. antiqua, red tides by this species did not occur. Concentrations of NH 4 + , NO 3 ? and PO 4 3? were low (<0.4, <0.2, <0.06 µM, respectively) above the thermocline (8–12 m) and high below it (0.6–2, 4–8, 0.4–0.8 µM, respectively). Vitamin B12 concentrations did not change significantly between the surface (0 m) and below the thermocline (25 m) in the level of 2–4 ng·l?1. The growth bioassay revealed that in the surface waters, concentrations of N- as well as P- nutrients were too low to support a rapid growth ofC. antiqua. At the depth of 25 m, neither N, P nor B12 limited the growth rate. In order to obtain more quantitative information on the growth rate as a function of the concentrations of N- and P- nutrients,C. antiqua was grown in a semicontinuous culture system by changing nutrient concentrations systematically. The observed growth rate (μ) can be approximated as follows: $$\mu = \mu _{\max } .\frac{{S_N }}{{K_g ^N + S_N }}.\frac{{S_{PO4} }}{{K_g ^P + S_{PO4} }},$$ whereS N is the concentration of NO 3 ? plus NH 4 + (0–6 µM),S PO, the concentration of PO 4 3? (0–0.6 µM), μmax (0.97 d?1) the maximal growth rate,K 0 N (1.0 µM) andK 0 P (0.11 µM) the half saturation constants for NO 3 ? and PO 4 3? , respectively. Using the above equation with nutrient concentrations measured, the rate at which seawater supports the growth ofC. antiqua can be estimated and this can be used for the assessment of chemical environments with respect to the outbreak ofC. antiqua.  相似文献   

6.
朱明  刘峰  陈璐  刘兆普 《海洋与湖沼》2018,49(5):975-982
我国黄海出现的绿潮发源于黄海南部苏北辐射沙洲紫菜养殖区,苏北沙洲区濒临的沿岸河网众多,来自沿岸径流的淡水携带大量氮磷等营养盐间歇性入海,导致海水的富营养化并伴随着盐度的周期性波动。本研究通过模拟实验研究低盐度(15和5)对浒苔吸收氮盐(NO_3~–-N和NH_4~+-N)和磷盐(PO_4~(3–)-P)的影响,主要发现:与盐度30相比,在低盐度(15和5)时,浒苔对NO_3~–-N的1h最大吸收速率(V_(max))和亲和力(V_(max)/Ks)分别提高280%和350%左右,半饱和常数(Ks)下降15%左右,并能够维持对NO_3~–-N的高效吸收(24h);盐度15和5时,浒苔对NH_4~+-N的1h最大吸收速率(V_(max))分别提高40%和200%,亲和力(V_(max)/Ks)分别提高20%和180%, Ks分别提高15%和30%,但是盐度降低对NH_4~+-N的长效吸收产生负面影响,甚至在盐度5条件下出现吸收高浓度NH_4~+-N后再释放的现象;与盐度30相似,盐度15条件下浒苔能够快速吸收PO_4~(3–)-P,而盐度5则导致藻细胞内的PO_4~(3–)-P在早期阶段快速流失,并在后期不能有效吸收PO_4~(3–)-P。本实验的结果表明,降低盐度有利于浒苔对氮源的快速吸收,在盐度15下浒苔能够实现对硝酸盐和磷盐的高效吸收。  相似文献   

7.
Physiology of Laminaria   总被引:1,自引:0,他引:1  
Abstract. Sporophytes of Laminaria digitata and L. saccharina were collected from the shore at different times of year. Intact sporophytes of both species, and discs cut from L. digitata lamina tissue were maintained for several weeks in laboratory cultures under various nitrate, phosphate, temperature and daylength regimes. Substrate-saturated uptake rates of approximately 24 μgN g dry weight-1 h-1 from 20 μM nitrate and 8 μgP g dry weight-1 h-1 from 10 μM phosphate were more than sufficient to account for internal nitrogen and phosphorus accumulation. Other nitrogen sources - nitrite, ammonium and urea - were also taken up, independently of each other, and supported growth. During the late spring decline of ambient nutrient levels, when growth rates on the shore also decline markedly, enrichment with nitrate (15 μM) and phosphate (3μ) together prevented this decline and also maintained peak photosynthetic rates (net photosynthesis = 10.4 μlO2 cm-2 h-1) which otherwise dropped to 4.5 μO2 cm-2 h-1 over 47 days at ambient nutrient levels (0.5 μM nitrate and phosphate). Slow summer growth rates in June/July were enhanced to greater than spring peak values by combined nitrate (7.5 μM) and phosphate (1.8 μM) enrichment; neither was sufficient alone, although the individual nutrients were accumulated internally. A lesser, but significant enhancement was also achieved in September. In midwinter, nutrient enhancement itself (10.5 μM nitrate and 3.0 μM phosphate) had a small effect on growth rates only if summer water temperature (15°C) was used, but the dramatic effect of an increased photoperiod (7.5 to 17.5 h) was in excess of that expected for the increased radiant energy available. This was found to be due, at least in L. digitaia discs, to the re-establishment of a surface meristoderm in the dormant winter tissue; this was particularly active with high phosphate supply. Growth of the new lamina in January on the shore was much reduced if the old lamina was removed, although the time of initiation of new growth remained unchanged. In the laboratory, the old lamina was found to be a source of nitrogen for new lamina but not of fixed carbon or phosphorus. New lamina photosynthesis, manifest as mannitol accumulation, was directly proportional to phosphate supply up to at least 7.5 μM phosphate. Mannitol accumulation was then suppressed by a nitrate supply above 12 um, presumably by diversion of fixed carbon to other biosynthetic pathways.  相似文献   

8.
In order to assess the roles of Fe and Cu in outbreaks ofChattonella antiqua red tide, concentrations of these metals in the surface seawater were monitored around the Ie-shima Islands in the Seto Inland Sea during the summers of 1986–1988. Bioassay of the surface seawater with respect to Fe and Cu was also conducted using a cultured strain ofC. antiqua.Concentrations of Fe and Cu in the filtered seawater (FeF and CuF) were in the range of 3.9–10.0 and 9.3–11.2 nM, respectively. The bioassay with respect to Fe revealed that Fe at the surface layer was usually insufficient to support the maximum growth rate ofC. antiqua, except whenC. antiqua was dominant in the field. However, correlations between FeF and the growth rate of the control cultures (Fe, EDTA=not enriched; N, P, B12=enriched at optimum levels) were not apparent, probably because FeF did not reflect the concentration of available Fe.The bioassay with respect to Cu was coupled with the CuF values obtained. The results indicated that Cu at the surface layer was detoxified by complexation with natural organic ligand(s), and that pCu (=minus log of cupric ion activity) was 11.5–11.7, optimum for the growth ofC. antiqua, throughout the survey period. It is suggested that Fe, but not Cu, is a potentially important factor in regulating the natural populations ofC. antiqua in the Seto Inland Sea.  相似文献   

9.
We conducted a study that shows that light and dark conditions do not affect the uptake rates of ammonium and nitrate by the seagrass Zostera noltei. This is an important advantage over some seaweed species in which these rates are severely reduced at night. In the light, the ammonium uptake rates were initially higher (15 and 20 μmol·g?1·h?1) and stabilized at a rate of 5 μmol·g?1·h?1 after 1 h, whereas in the dark the rates remained constant at a rate of 10 μmol·g?1·h?1 over the first 180 min of incubation. The rates of nitrate uptake in the light were high within the first 120 min of incubation (7.2–11.1 μmol·g?1·h?1) and decreased afterwards to lower values (0.8–3.9 μmol·g?1·h?1), whereas in the dark the rates fluctuated around 0.0–11.1 μmol·g?1·h?1 throughout the whole incubation time (7 h). The soluble sugar content of Z. noltei leaves increased significantly with both ammonium and nitrate incubations in the light, indicating the metabolic outcome of photosynthesis. In the dark, there was no significant variation in either the soluble sugar or in the starch content of leaves, rhizomes or roots in either the ammonium or nitrate incubations. However, the total starch content of plants decreased at night whereas the total soluble sugars increased, suggesting a process of starch catabolism to generate energy with the consequent production of smaller monosaccharide products. The starch content of rhizomes decreased significantly during the light incubations with nitrate but not with ammonium. These results suggest that carbohydrate mobilization is necessary for Z. noltei to account for extra energetic costs needed for the uptake and assimilation of nitrate. Furthermore, our results suggest that nitrate uptake, at least during the day, requires the mobilization of starch whereas the uptake of ammonium does not.  相似文献   

10.
The preferential inorganic nitrogen source for the seagrass Zostera noltii was investigated in plants from Ria Formosa, South Portugal. Rates of ammonium and nitrate uptake were determined at different concentrations of these nutrients (5, 25 and 50 μm ), supplied simultaneously (NH4NO3) or separately (KNO3 and NH4Cl). The activity of the enzymes nitrate reductase (NR) and glutamine synthetase (GS) was also assessed. The results showed that ammonium is the preferential inorganic nitrogen source for Z. noltii, but, in the absence of ammonium, the species also has a high nitrate uptake capacity. The simultaneous availability of both inorganic nitrogen forms enhanced the uptake rate of ammonium and decreased the uptake rate of nitrate compared to when only one of the nitrogen forms was supplied. The activity of both enzymes was much higher in the leaves than in the roots, highlighting the importance of the leaves as primary reducing sites in the nitrogen assimilation process.  相似文献   

11.
氮磷营养盐与有机汞联合作用对微氏海链藻生长的影响   总被引:1,自引:1,他引:1  
探讨在高营养盐(氮、磷、硅分别为浮游植物生长的营养盐阚值≥40、50、9倍)条件下,氮浓度及氮磷摩尔比值[n(N)/n(P)]变化、汞(甲基汞和乙基汞)对微氏海链藻(Thalassiosira weissflogii)生长的影响。结果表明,高营养盐区海链藻的生长遵循营养盐限制的唯一因子论;氮浓度和氮磷比提高促进生长,当n(N)/n(P)=64则呈抑制效应;生长初期,甲基汞和乙基汞均产生毒性抑制作用,生长中后期,适量甲基汞(浓度≤1.0μg/L)、乙基汞(浓度≤0.5μg/L)却呈兴奋效应,促进生长;汞形态不同,剂量-效应关系不同。氮和有机汞是海链藻生长的刺激因子。适度有机汞污染与氮富营养化对微氏海链藻的生长产生协同效应。  相似文献   

12.
13.
I present here a review of my work concerning nitrogen assimilation by marine phytoplankton. This opportunity was provided to me as the recipient of the Okada Prize for 1990 from the Oceanographical Society of Japan. Assimilation of nitrogenous nutrients by phytoplankton has received considerable research effort since it is an essential process in organic matter production in the sea surface. The use of15N technique is necessary for tracing nitrogen assimilation by natural marine phytoplankton, but nitrogen metabolism of heterogenous natural populations significantly complicates flow of isotope. Dilution of15N isotope by heterotrophic regeneration of ammonium causes underestimates of uptake rates. I made an evaluation of isotope dilution effects in available data sets of15N-ammonium uptake experiments in literature. Incorporated15N in particulates might revert back to dissolved organic or inorganic nitrogen. I conducted pulse-chase experiments which can quantify such loss of tracer. From these studies, a short term experiment with sufficient amount of tracer enrichment is found to overwhelm these problems. In such an experiment, however, the elevation of nutrient concentration by tracer addition may likely perturb the uptake process. An initial rapid uptake is expected if the population is nitrogen deficient, but I found that this phenomenon is not common to surface oligotrophic open oceans. Uptake rate from such an experiment, or capacity of nitrogen uptake, was obtained using surface waters from an extended area in the North Pacific, and its regional variability was discussed. In addition to overall15N uptake, time series analysis of intracellular15N partitioning between hot ethanol soluble and insoluble fractions was found to be useful. When15N-ammonium is added to nitrogen deficient cells of phytoplankton,15N is accumulated in the ethanol soluble fraction. Using cultured strains of marine phytoplankton, this accumulation was proved to be caused by the difference of rates of nitrogen uptake and nitrogenous macromolecule synthesis. Uptake rate per cell is relatively constant irrespective of nutritional status, but macromolecule synthesis decreases with nitrogen deficiency. This accumulation of15N in the ethanol soluble fraction was used as an index of nutritional status with respect to nitrogen of the natural populations of phytoplankton from the western North Pacific. The uptake capacity of nitrate was observed to be higher than that of ammonium in the regional upwelling around Izu Islands and during the spring bloom in Alaskan coastal water. The15N partitioning technique revealed that nitrate taken up was rapidly incorporated in the macromolecule fraction. This suggests that ammonium uptake is suppressed to be smaller than intracellular nitrogen assimilation, rather than that nitrate is taken up in excess and accumulates within the cell. Regulation of nitrate uptake by light intensity was also discussed in detail for the Alaskan data. Several other studies currently conducted are also mentioned.  相似文献   

14.
The size-related activities of important heterotrophs and autotrophs were compared at the surface and at the subsurface chlorophyll maximum (Chlmax) in Agulhas Bank waters. The netplankton fraction was dominated by Nitzschia spp. and ciliates, small (diameter c. 3μm) microflagellates being the most abundant nanoplankton group. Uptake ratios of ammonium to phosphate for the total microplankton community were different at the two depths. With reference to the Redfield ratio, it appears that at least 48 per cent of the nitrogen ration at the Chlmax was regenerated even though nitrate was in ample supply. These assimilation ratios also suggest a very large contribution from recycled nitrogen other than ammonium in surface waters. It is unlikely that phosphorus would ever become limiting, except perhaps at the primary production maximum. Microplankton uptake and regeneration of both ammonium and phosphorus were approximately in balance, indicating that variations in assimilation ratios were the result of heterotrophic excretory activity. The size-fractionation studies show that picoplankton were on average the single most important size class in nutrient assimilation. The netplankton size class was, in terms of regeneration, often the most active in the microplankton community especially within the Chlmax. Heterotrophic microflagellates and picoplankton supplied the bulk of ammonium and phosphorus at the surface. The importance of a particular size class to either ammonium or phosphorus uptake/excretion was quantified as a relative assimilation/regeneration index. These calculations demonstrate size-related differences in the relative importance of the microplanktonic groups to the immobilization and recycling of different nutrients.  相似文献   

15.
Nutrient requirements of a red tide flagellate,Chattonella antiqua, were investigated in a laboratory culture experiment. Growth ofC. antiqua was supported by nitrate and ammonium, and by urea to a limited extent, but not by glycine, alanine and glutamate. Orthophosphate served as a good phosphorus source but glycerophosphate did not. Fe3+ (1µM) fully promoted the flagellate's growth in the presence of 80µM of EDTA. The addition of Mn2+ (0–20µM), Zn2+ (0–10µM) and Co2+ (0–0.4µM) did not show any effect. Among three vitamins tested, only B12 (6 ng 1?1) served as a growth factor. Glucose, acetate and glycolate did not improve growth in the light nor did they support growth in darkness. The minimum cell quotas for nitrogen, phosphorus, iron and B12 were estimated to be 11 pmoles ce?1, 1.0, ~0.09 and 1.1 fg cell?1, respectively.  相似文献   

16.
为探讨海马齿(Sesuvium portulacastrum)对水域环境修复作用,本文研究了水培海马齿对不同盐度水质的碳汇作用以及不同形态氮的利用情况。实验设计0、10、20、30、35盐度梯度,海马齿水培时间82 d,然后测定植株干重、营养元素含量以及积累速率,最后在抑菌与不抑菌条件下研究海马齿根际与铵态氮(NH4+-N)、硝态氮(NO3--N)、无机磷(PO43-)以及色氨酸(Trp)吸收转化关系。研究结果表明,盐度10条件下海马齿植株干重、有机元素含量以及积累速率最高,有机碳、有机氮与有机磷积累速率分别为(5.572±1.611)、(0.313±0.058)、(0.057±0.013)mg/(d·ind.),而高盐环境35盐度条件下对海马齿生长造成一定胁迫。盐度0~35范围,海马齿均未出现死亡现象。不同盐度抑菌培养条件下,色氨酸与无机氮共存时均能被能被海马齿利用,色氨酸利用量远高于硝态氮、铵态氮;不抑菌条件下铵态氮则表现出增加的结果。海马齿作用在盐度...  相似文献   

17.
The source and significance of three nutrients – nitrogen, phosphorous and silicon – were investigated by a modified dilution method performed on seawater samples from the Central Yellow Sea (CYS), in spring blooming period of 2007. This modified dilution method accounted for the phytoplankton growth rate, microzooplankton grazing mortality rate, the internal and external nutrient pools, as well as nutrients supplied through remineralization by microzooplankton grazing. The results indicate that phytoplankton growth during the bloom is mostly contributed by internal nutrient pools (KI=0.062–1.730). The external nutrient pools (KE=<0–0.362) are also of importance for phytoplankton growth during the bloom at some sampling sites. Furthermore, the contribution of the recycled-nutrient pool by remineralization (KR=<0–0.751) is significant when microzooplankton grazing rate was higher than 0.5 d−1 during the spring phytoplankton blooms in the Central Yellow Sea. Compared with internal phosphorus, internal nitrogen and silicon contribute more to the phytoplankton production at most sampling stations.  相似文献   

18.
Primary productivity (PP), bacterial productivity (BP) and the uptake rates of nitrate and ammonium were measured using isotopic methods (13C, 3H, 15N) during a mesoscale iron (Fe)-enrichment experiment conducted in the western subarctic Pacific Ocean in 2004 (SEEDS II). PP increased following Fe enrichment, reached maximal rates 12 days after the enrichment, and then declined to the initial level on day 17. During the 23-day observation period, we observed the development and decline of the Fe-induced bloom. The surface mixed layer (SML) integrated PP increased by 3-fold, but was smaller than the 5-fold increase observed in the previous Fe-enrichment experiment conducted at almost the same location and season during 2001 (SEEDS). Nitrate uptake rates were enhanced by Fe enrichment but decreased after day 5, and became lower than ammonium uptake rates after day 17. The total nitrogenous nutrient uptake rate declined after the peak of the bloom, and accumulation of ammonium was obvious in the euphotic layer. Nitrate utilization accounted for all the requirements of N for the massive bloom development during SEEDS, whereas during SEEDS II, nitrate accounted for >90% of total N utilization on day 5, declining to 40% by the end of the observation period. The SML-integrated BP increased after day 2 and peaked twice on days 8 and 21. Ammonium accumulation and the delayed heterotrophic activity suggested active regeneration occurred after the peak of the bloom. The SML-integrated PP between days 0 and 23 was 19.0 g C m−2. The SML-integrated BP during the same period was 2.6 g C m−2, which was 14% of the SML-integrated PP. Carbon budget calculation for the whole experimental period indicated that 33% of the whole (particulate plus dissolved) PP (21.5 g C m−2) was exported below the SML and 18% was transferred to the meso-zooplankton (growth). The bacterial carbon consumption (43% of the whole PP) was supported by DOC or POC release from phytoplankton, zooplankton, protozoa and viruses. More than a half (56%) of the whole PP in the Fe patch was consumed within the SML by respiration of heterotrophic organisms and returned to CO2.  相似文献   

19.
Alkenone unsaturation indices (UK37 and UK′37) have long been used as proxies for surface water temperature in the open ocean. Recent studies have suggested that in other marine environments, variables other than temperature may affect both the production of alkenones and the values of the indices. Here, we present the results of a reconnaissance field study in which alkenones were extracted from particulate matter filtered from the water column in Chesapeake Bay during 2000 and 2001. A multivariate analysis shows a strong positive correlation between UK37 (and UK′37) values and temperature, and a significant negative correlation between UK37 (and UK′37) values and nitrate concentrations. However, temperature and nitrate concentrations also co-vary significantly. The temperature vs. UK37 relationships (UK37=0.018 (T)−0.162, R2=0.84, UK′37=0.013 (T)−0.04, R2=0.80) have lower slopes than the open-ocean equations of Prahl et al. [1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta 52, 2303–2310] and Müller et al. [1998. Calibration of the alkenone paleotemperature index UK′37 based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochimica et Cosmochimica Acta 62, 1757–1772], but are similar to the relationships found in controlled studies with elevated nutrient levels and higher nitrate:phosphate (N:P) ratios. This implies that high nutrient levels in Chesapeake Bay have either lowered the UK37 vs. temperature slope, or nutrient levels are the main controller of the UK37 index. In addition, particularly high abundances (>5% of total C37 alkenones) of the tetra-unsaturated ketone, C37:4, were found when water temperatures reached 25 °C or higher, thus posing further questions about the controls on alkenone production as well as the biochemical roles of alkenones.  相似文献   

20.
Nitrate and ammonium uptake rates were measured during a series of cruises in the well-mixed region of the southern North Sea from February to September. Water column-integrated uptake rates ranged between 0.01 and 8.7 mmol N m−2 d−1 and 0.01 and 12.2 mmol N m−2 d−1 for nitrate and ammonium, respectively, with ammonium uptake dominating after the phytoplankton spring bloom in May. A moored buoy continuously measuring nitrate and chlorophyll a and seabed current meters were also deployed in the central southern North Sea in the region of the East Anglian plume—a permanent physical feature which transports nutrients towards continental Europe. This enabled the flux of water and hence of nutrients across the southern North Sea to be determined and an assessment of the contribution of freshwater nutrients to the flux to be made. A simple box model is developed to relate the phytoplankton uptake of nitrate and ammonium to the transport of nitrate, ammonium and particulate organic matter (POM) across the southern North Sea. This showed the importance of the plume region of the North Sea in the processing of nitrogen, with nitrate dominating total nitrogen transport prior to the spring bloom (10 340×103 kg N inflow to the plume in March) and transport of nitrogen as ammonium, nitrate and POM in approximately equivalent amounts during summer (2560, 2960 and 2151×103 kg N inflow to the plume, respectively, in July). The box model also demonstrates more generally the need to assess nitrogen transport as nitrate, ammonium and POM if an improved understanding of the impact of nutrient input in shelf seas is to be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号