首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
对水下滑翔器定常直线滑翔运动的稳定性问题进行研究.以定常直线滑翔运动时的纵倾角为考察对象,利用自由扰动运动方程特征根的方法对研制的滑翔器的运动稳定性进行了分析判断.在此基础上,考察了在小扰动作用下纵倾角扰动量的时间响应特性.研究结果表明,研制的水下滑翔器在做定常直线滑翔运动时,具有运动稳定性,而且具有方向稳定性.  相似文献   

2.
以英国 OCCAM(The Ocean Circulation and Climate Advanced Modeling Project)全球环流模式的 1 994年计算结果作为初始场和边界条件 ,用 POM模式 ,对东中国海黑潮季节变化进行了数值模拟 ,特别注意了海水运动的混沌特点和质点移动轨迹。研究结果表明 :东海黑潮区地形引起的黑潮流剪切是导致混沌的主要原因 ;东海黑潮区混沌运动有明显的季节变化 ;黑潮主轴区基本是输运的屏障区。  相似文献   

3.
在流体力学中,描述流体运动有Lagrange方法和Euler方法.Euler方法是通过观测通过空间各固定位置点处流体质点的运动行为来描述流体运动规律,而Lagrange方法是跟踪各个流体质点,通过观测它们在时空运动中所走过的路径来描述流体的运动规律.在数学处理上,Euler方法较Lagrange方法简单,但Lagrange方法可以完全描述流体运动的整个流场的所有特性,而Euler方法却无法描述每个流体质点的运动轨迹.本文,我们研究具有刚性边界的三层流体系统中的界面内波,其中上层流体的密度比下层流体的密度大.通过在界面处引入朗格朗日匹配条件并使用微扰法得到了拉格朗日描述下的界面内波的一阶解、二阶解及三阶解,给出了质量输运速度、波频率、平均水平和质点运动轨迹的解.结果表明对于质量输运速度、波频率、平均水平和质点运动轨迹在界面处会有不连续性,但是我们发现在满足一定的三层流体水深比和密度比条件时这种不连续性将会消失.  相似文献   

4.
运用 Mc Creary和 Yu(1992 )的非线性 2 12 层模式的积分流场 ,研究了混沌混合与输运对海水及要素浓度的输运和混合问题。模式结果显示混沌混合区主要分布于赤道东太平洋不稳定区及东、西边界附近 ,中西太平洋的大部分区域为非混沌区。释放在混沌区内的示踪团随时间的弥散过程要较非混沌区内的示踪团复杂的多。因多模态不稳定波动的共同作用 ,尤其是在赤道上经向运动最强的 Yanai波的加入 ,使得赤道不稳定区的流体以混沌混合的方式均匀地弥散开 ,趋向于粗粒 (coarse- grained)意义下的均匀化。并有大量释放于赤道东太平洋不稳定区的示踪质点越过赤道进入对面半球。背景辐散流的加入能将部分示踪点输送出混合区使其不加入均匀化过程 ,故最后混入另一半球的质点数少于半数。过赤道交换速率则主要由混沌混合的强度有关。  相似文献   

5.
利用MICAPS站点降水数据和NCEP再分析资料对2014年3月30-31日发生在广东的一次极端降水过程进行了分析。结果表明,副热带北大西洋东部上空200hPa扰动在南支西风急流中的传播对本次极端降水的触发具有重要影响。降水发生前,副热带北大西洋东部高空不稳定槽发展,扰动信号进入南支西风急流并沿其向下游传播。阿拉伯海上空暖平流使印度上空的脊得到加强,脊前冷平流导致脊前位于华南上空的槽加深,从而导致降水区上空急流最大风速中心断裂,形成有利于极端降水发生的高层大气环流形势——急流入口区的右侧,涡度平流随高度增加和强的辐散中心引发强烈的上升运动,配合低层气旋式切变与充分的水汽供应,导致了此次极端降水的发生。  相似文献   

6.
本文着重研究大地形对正压大气迭加在非均匀纬向基本气流上挑动演变的影响。用WKBJ方法推导了正压扰动的频率和频散关系以及波作用量所满足的方程。当基本流场定常且存在无限长的东西向山脉时,则有波作用量守恒。据此,获得了正压不稳定的必要条件:即在所考察的平面域内至少在某点或某些点上含地形效应的某一物理量等于零,扰动就可能得到发展。对波包动能的倚时变化的讨论得知,在无摩擦正压纬向非均匀基流的情形,地形对扰动动能并无直接影响,即导波和曳波分别在西风急流的南侧和北侧得到加强,并分别在西风急流的北侧和南侧强度减弱。扰动的发展由扰动的结构所决定。导波和曳波的波长缩短总伴同其轴线倾向于东西向相联系,而它们的波长伸长总是与其轴线倾向于南北向同时发生。还指出,正压扰动的加强(或减弱)与波长的伸长(或缩短)不是必然的联系,它的成立是有条件的。  相似文献   

7.
本文着重研究大地形对正压大气迭加在非均匀纬向基本气流七扰动演变的影响。。用WKBJ方法推导了正压扰动的频率和频散关系以及波作用量所满足的方程。当基本流场定常且存在无限长的东西向山脉时,则有波作用量守恒。据此,获得了正压不稳定的必要条件:即在所考察的平面城内至少在某点或某些点上含地形效应的某一物理量等于零,扰动就可能得到发展。对波包动能的倚时变化的讨论得知.在无摩擦正压纬向非均匀基流的情彤.地形对扰动动能并无直接影响.即导波和曳波分别在西风急流的南侧和北侧得到加强,并分别在西风急流的北侧和南侧强度减弱。扰动的发展由扰动的结构所决定。导波和曳波的波长缩短总伴同其轴线倾向r东西向相联系,而它们的波长伸长总是与其轴线倾向于南北向同时发生。还指出,正压扰动的加强或减弱,与波长的伸长(或缩短)不是必然的联系,它的成立是有条件的。  相似文献   

8.
基于Liu和Shi(2008)的波浪势函数零阶、一阶近似解,采用四阶龙格-库塔法,对缓变海底上一维波浪传播理论模型进行了数值求解,并对波浪在定常坡度的斜坡地形、双曲正切地形为例的传播、变形进行了研究。为了更逼真地描述流体质点的波动特性,将在Euler坐标系下得到的解转换至Lagrange坐标下的解,并绘制Lagrange坐标下坡度为0.2的海滩上的一个波周期内临近破碎前的波形的详细变化过程。此外,计算得到了变水深区域波浪速度势以及自由面的分布,并与Athanassoulis and Belibassakis[34]的结果进行了对比,表明本文模型比保留了六个瞬息项的后者更有效。  相似文献   

9.
流体运动在本质上是非线性的粘性流,直接研究非线性的粘性流,无论在理论上还是在实践上都具有重要的意义。研究了粘性不可压缩流体在有界区域中作定常运动的如下问题  相似文献   

10.
利用NECP 6h再分析资料,对2009年初秋山西暴雪和2010年隆冬北京暴雪进行了诊断分析。研究发现:两次暴雪都与高空西风急流的影响密切相关。高空西风急流出口区左侧的上升运动是山西出现暴雪的重要因素,而高空西风急流出口区左侧的上升气流通过影响地面气旋发展,气旋中心以东外围气流沿锋面上升运动加强,导致北京暴雪发生。垂直方向上,与山西暴雪相关的上升运动主要出现在大气中、高层,呈深厚系统特征,而与北京暴雪相关上升运动区主要在大气低层。高空西风急流引起的两次上升运动与水汽输送条件的配合可作为北方暴雪预报中有价值的参考因素。  相似文献   

11.
The dynamics of cavitation bubble is analyzed in the compressible fluid by use of the boundary integral equation considering the compressibility.After the vertical incidence of plane wave to the rigid wall,the motion characteristics of single cavitation bubble near the rigid wall with initial equilibrium state are researched with different parameters.The results show that after the driving of acoustic wave,the cavitation bubble near the rigid wall will expand or contract,and generate the jet pointing to the wall.Also,the existence of the wall will elongate time for one oscillation.With the compressible model,the oscillation amplitude is reduced,as well as the peak value of inner pressure and jet tip velocity.The effect of the wall on oscillation amplitude is limited.However with the increment of initial vertical distance,the effect of wall on the jet velocity is from acceleration to limitation,and finally to acceleration again.  相似文献   

12.
The design of thrusters inspired by the locomotion of fishes is currently investigated in many research centres for unmanned underwater vehicles. Fast fishes propel themselves in water through the rhythmic motion of their tail. Propulsion is achieved by means of the periodic shedding of vortex structures by the edges of the tail. Thrust is produced because the vortices give rise to a steady jet of fluid which leaves the tail in the direction which is opposite to the forward motion of the fish. Assuming that the fish tail can be modelled by a two-dimensional plate in steady forward motion and oscillating with a combination of harmonic heaving and pitching movements, Brown and Michael’s model is presently used to determine the dynamics of the vortex structures shed by plate edges. Numerical simulations have been carried out to investigate the effects on the flow field of varying the physical parameters of the phenomenon. The knowledge of the strength and trajectory of the vortex structures shed by the plate allows the characteristics of the jet producing the thrust to be quantified.  相似文献   

13.
By the method of multiple scales, we obtain (to within the third order of smallness) the asymptotic expansions for the components of the velocity of motion of liquid under a floating ice cover in the process of propagation of periodic surface flexural gravity waves of finite amplitude under the conditions of ice compression. We study the dependences of the distributions of the velocity components along the wave profile on the compressive forces and the parameters of the initial harmonic. It is shown that the amplitude values of the velocity components decrease and the phase shift of oscillations increases as the compressiveforces increase.  相似文献   

14.
In this paper, the hydrodynamic characteristic of a synthetic jet steered underwater vehicle is studied. The steering motion studied is the lateral motion and the yaw motion. The lateral motion is induced through the in-phase work of this two actuators and the yaw motion is realized through the out-of-phase work. The vehicle studied is REMUS AUV with synthetic jet actuator mounted inside. The hydrodynamic characteristic of the vehicle under different cruising speed is studied. The driving parameters of the SJ actuator keep invariant in different cases. When the two actuators work in phase, the average steering force is smaller than the thrust of the isolated actuator and keeps nearly invariant under different cruising speed. When the two actuators work out of phase, the average steering moment also keeps invariant with cruising speed. The mathematical model of the additional drag of the vehicle, the thrust of the actuator, the steering force as well as the steering moment is given. The velocity distribution is also given to assistant the analysis in this paper. From the analysis given it can be known the steering method based on SJ is realized through position control other than velocity control.  相似文献   

15.
Unsteady two-dimensional Navier-Stokes equations and Navier-Stokes type model equations for porous flow were solved numerically to simulate the propagation of water waves over a permeable rippled bed. A boundary-fitted coordinate system was adopted to make the computational meshes consistent with the rippled bed. The accuracy of the numerical scheme was confirmed by comparing the numerical results concerning the spatial distribution of wave amplitudes over impermeable and permeable rippled beds with the analytical solutions. For periodic incident waves, the flow field over the wavy wall is discussed in terms of the steady Eulerian streaming velocity. The trajectories of the fluid particles that are initially located close to the ripples were also determined. One of the main results herein is that under the action of periodic water waves, fluid particles on an impermeable rippled bed initially moved back and forth around the ripple crest, with increasing vertical distance from the rippled wall. After one or two wave periods, they are then lifted towards the next ripple crest. All of the marked particles on a permeable rippled bed were shifted onshore with a much larger displacement than those on an impermeable bed. Finally, the flow fields and the particle motions close to impermeable and permeable beds induced by a solitary wave are elucidated.  相似文献   

16.
By using the velocity potential obtained by the method of multiscale asymptotic expansions to within the quantities of the third order of smallness, we study the dependences of the components of the velocity of motion of a homogeneous liquid under the floating ice cover on the thickness of the cover and its modulus of elasticity in the process of propagation of periodic waves of finite amplitude. It is shown that the presence of broken ice leads to a decrease in the moduli of components of the velocity of liquid particles and the phase delay of generated oscillations. The effect of the elasticity of ice becomes more pronounced as the wavelength of the initial harmonic decreases and manifests itself in the increase in the maximum values of the components of velocity and in the phase shift of oscillations in the direction of propagation of waves.  相似文献   

17.
Modifications of integral bubble and jet models including the pressure force are proposed. Exact solutions are found for the modified model of a stationary convective jet from a point source of buoyancy and momentum. The exact solutions are compared against analytical solutions of the integral models for a stationary jet that are based on the approximation of the vertical boundary layer. It is found that the modified integral models of convective jets retain the power-law dependences on the altitude for the vertical velocity and buoyancy obtained in classical models. For a buoyant jet in a neutrally stratified atmosphere, the inclusion of the pressure force increases the amplitude of buoyancy and decreases the amplitude of vertical velocity. The total amplitude change is about 10%. It is shown that in this model there is a dynamic invariant expressing the law of a uniform distribution of the potential and kinetic energy along the jet axis. For a spontaneous jet rising in an unstably stratified atmosphere, the inclusion of the pressure force retains the amplitude of buoyancy and increases the amplitude of vertical velocity by about 15%. It is shown that in the model of a spontaneous jet there is a dynamic invariant expressing the law of a uniform distribution of the available potential and kinetic energy along the jet axis. The results are of interest for the problems of anthropogenic pollution diffusion in the air and water environments and the formulation of models for statistical and stochastic ensembles of thermals in a mass-flux parameterization of turbulent moments.  相似文献   

18.
采用计算流体力学—离散元耦合方法(CFD-DEM)模拟海底管道床面的冲刷过程。经过模型验证,该方法的计算结果与前人的研究具有较好的一致性,证明其可以应用于海底管道周围的冲刷模拟计算。冲刷初期的结果增强了目前对启动阶段粒子运动机理的理解,即管前后压力梯度造成的渗流作用导致粒子运动。对完整冲刷过程的模拟中,发现冲刷分为冲刷启动阶段、间隙冲刷阶段和尾迹冲刷阶段。间隙冲刷阶段管道下方粒子具有较大速度,冲刷坑快速向下方发展。进入尾迹冲刷阶段后,管道后方出现周期性脱落的涡旋,沙丘上的粒子速度更大。同时利用DEM更具直观性的独特优势,首次得到了14个典型位置处颗粒的运动轨迹和运动速度,对于理解冲刷过程中粒子的运动情况具有较大帮助。  相似文献   

19.
An experimental investigation on the disturbance effect of jet-type active vibration suppression device on vortexinduced vibration of deep-sea riser was carried out in the wave-flow combined flume. The vibration suppression device was designed in which the jet pipe was horizontally fixed to the front end of the riser. By varying three different excitation spacings and multi-stage outflow velocities, the influence law of the dominant frequency,dimensionless displacement and other dynamic response parameters was studied under different excitation spacings,and the mechanism and sensitive characteristics of the disturbance suppression were explored. The results indicate that the variation of excitation spacing makes gas curtain enter the strong disturbed flow region at different velocities and angles, and the coupling relationship between excitation spacing and reduced velocity is the key factor to enter the strong disturbed flow region to achieve the optimal disturbance suppression. In the strong disturbed flow region,the influence of gas curtain on the dominant frequency is obviously affected by the flow velocity, while the vibration displacement is stable at the same amplitude and is weakly affected by the flow velocity. Gas curtain can effectively disturb the formation of vortex shedding, destroy the strong nonlinear coupled vibration of the riser, and achieve better vibration suppression effect. In the weak disturbed flow region, the vortex length of the riser tail is prolonged,the strong nonlinear coupled vibration of the riser is gradually restored, and the vibration suppression effect of the device gradually decreases.  相似文献   

20.
A series of fully three-dimensional(3 D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185–1015. The numerical results obtained by the two-way fluid–structure interaction(FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline(IL) and crossflow(CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean-square(RMS) amplitude and the relatively chaotic trajectories. The fluid–structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3 D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3 D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号