首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Intermediate intrusion of low salinity water (LSW) into Sagami Bay was investigated on the basis of CTD data taken in Sagami Bay and off the Boso Peninsula in 1993–1994. In October 1993, water of low temperature (<7.0°C), low salinity (<34.20 psu) and high dissolved oxygen concentration (>3.5 ml I−1) intruded along the isopycnal surface of {ie29-1} at depths of 320–500 m from the Oshima East Channel to the center of the bay. On the other hand, the LSW was absent in Sagami Bay in the period of September–November 1994, though it was always found to the south off the Boso Peninsula. Salinity and dissolved oxygen distributions on relevant isopycnal surfaces and water characteristics of LSW cores revealed that the LSW intruded from the south off the Boso Peninsula to Sagami Bay through the Oshima East Channel. The LSW cores were distributed on the continental slope along 500–1000 m isobaths and its onshore-offshore scales were two to three times the internal deformation radius. Initial phosphate concentrations in the LSW revealed its origin in the northern seas. These facts suggest that the observed LSW is the submerged Oyashio Water and it flows southwestward along the continental slope as a density current in the rotating fluid. The variation of the LSW near the center of Sagami Bay is closely related to the Kuroshio flow path. The duration of LSW in Sagami Bay is 0.5 to 1.5 months.  相似文献   

2.
Seasonal variations in the picoplankton community were investigated from June 2002 to March 2004 within the photic zone of Sagami Bay, Japan. The study area was mostly dominated by coastal waters during the warm period (mixed layer water temperature ≥ 18°C). During the cold period (mixed layer water temperature ≤ 18°C), the water mass was characterized by low temperature and high saline waters indicative of the North Pacific Subtropical Mode Water (NPSTMW). Occasionally, a third type of water mass characterized by high temperature and low saline properties was observed, which could be evidence of the intrusion of warm Kuroshio waters. Synechococcus was the dominant picophytoplankton (5−28 × 1011 cells m−2) followed by Prochlorococcus (1−5 × 1011 cells m−2) and picoeukaryotes during the warm period. Heterotrophic bacteria dominated the picoplankton community throughout the year, especially in the warm period. During the Kuroshio Current advection, cyanobacterial abundance was high whereas that of picoeukaryotes and heterotrophic bacteria was low. During the cold period, homogeneously distributed, lower picophytoplankton cell densities were observed. The dominance of Synechococcus in the warm period reflects the importance of high temperature, low salinity and high Photosynthetically Active Radiation (PAR) on its distribution. Cyanobacterial and heterotrophic bacterial abundance showed a positive correlation with temperature. Prochlorococcus and picoeukaryotes showed a positive correlation with nutrients. Picoeukaryotes were the major contributors to the picophytoplankton carbon biomass. The annual picophytoplankton contribution to the photosynthetic biomass was 32 ± 4%. These observations suggest that the environmental conditions, combined with the seasonal variability in the source of the water mass, determines the community structure of picoplankton, which contributes substantially to the phytoplankton biomass and can play a very important role in the food web dynamics of Sagami Bay.  相似文献   

3.
Nutrient regeneration and oxygen consumption after a spring bloom in Funka Bay were studied on monthly survey cruises from February to November 1998 and from March to December 1999. A high concentration of ammonium (more than 4 μmol l−1) was observed near the bottom (80–90 m) after April. Phosphate and silicate gradually accumulated and dissolved oxygen decreased in the same layer. Salinity near the bottom did not change until summer, leading to the presumption that the system in this layer is semi-closed, so regenerated nutrients were preserved until September. Nitrification due to the oxidation of ammonium to nitrate was observed after June. Nitrite, an intermediate product, was detected at 4–7 μmol L−1 in June and July 1999. Assuming that decomposition is a first order reaction, the rate constant for decomposition of organic nitrogen was determined to be 0.014 and 0.008 d−1 in 1998 and 1999, respectively. The ammonium oxidation rate increased rapidly when the ambient ammonium concentration exceeded 5 μmol L−1. We also performed a budget calculation for the regeneration process. The total amount of N regenerated in the whole water column was 287.4 mmol N m−2 in 4 months, which is equal to 22.8 gC m−2, assuming the Redfield C to N ratio. This is 34% of the primary production during the spring bloom and is comparable to the export production of 25 gC m−2 measured by a sediment trap at 60 m (Miyake et al., 1998).  相似文献   

4.
This study describes the temporal variation of microphytobenthic biomass and its controlling factors, as well as the impact of microphytobenthic activities on coastal shallow sediment in the eastern Seto Inland Sea, Japan. The chlorophyll a (Chl a), phaeopigments and sedimentary biophilic element (C, N, P and Si) contents in surface sediments, as well as nutrient concentrations at the sediment-water interface (overlying water and pore water) were observed monthly during November 2003 to May 2005 at one site in Shido Bay (water depth ca. 7 m) and at one site in Harima-Nada (35 m). No correlation was observed between the sedimentary biophilic elements and other parameters. The maximum chlorophyll a content of 48.2 μg g–1 was found in surface sediments under the photon flux reaching the seafloor of 537 μmol photon m–2 s–1 during the winter period when water transparency was the highest at station S (Shido Bay). Our results suggest that higher chlorophyll a content in surface sediment was due to the fresh microphytobenthic biomass (mainly benthic diatom). We also found a significant negative correlation between Chl a and inorganic nutrients in pore water during the low temperature period, especially silicic acid. This result suggests that the silicic acid was assimilated largely during the increase of microphytobenthic biomass in surface sediment. This study suggests that the microphytobenthic roles may have a great effect on nutrient budgets during the large supply of irradiance (winter periods) for their photosynthetic growth in shallow coastal waters.  相似文献   

5.
Seasonal and interannual variations in physicochemical properties were investigated in the neritic area of Sagami Bay, Kanagawa, Japan, from December 2000 to December 2005. Physicochemical properties (i.e. temperature, salinity, density, dissolved oxygen and dissolved inorganic nutrient concentration) revealed clear seasonal variations, which were similar to each other during all 5 years. Temperature, salinity and dissolved inorganic nutrients showed rapid, drastic variations within a few days and/or weeks. These variations are related to sea levels, principally due to the shifting effects of the Kuroshio Current axis: they were strongly affected by the Kuroshio Water and other waters, when sea level difference was greater than ca. 35 cm and lower than ca. 15 cm, respectively. Temperature difference (DF T ) increased with sea level difference, and the difference of salinity and dissolved inorganic nutrients (NH4 +-N, NO3 +NO2 -N, NH4 ++NO3 +NO2 -N, PO4 3−-P and SiO2-Si) increased and decreased with DF T , respectively. All these correlations are significant. Total dissolved inorganic nitrogen (N), phosphate (P) and silicate (Si) revealed seasonal variations in the ranges of 0.57–16.08, 0.0070–0.91 and 0.22–46.38 μM, respectively. From the regression equations between these elements allowed the following relation to be obtained; Si:N:P = 14.8:13.4:1. Dissolved inorganic nutrients were characterized by Si and/or P deficiency, especially in the upper layer (0–20 m depth) during summer. Single and/or combined elements are discussed on the basis of potential and stoichiometric nutrient limitations, which could restrict phytoplankton (diatom) growth as a limiting factor.  相似文献   

6.
The biomass and production rate of net zooplankton were studied at eight stations in Yatsushiro Bay, Japan, monthly from May 2002 to April 2003. Based on environmental conditions, the bay was divided into three regions, viz. northern (average depth, salinity and chlorophyll a concentration: 11 m, 31.8 and 6.5 μg l−1, respectively), central (30 m, 32.8 and 3.2 μg l−1, respectively) and southern (43 m, 33.4 and 1.9 μg l−1, respectively). Net zooplankton biomass was high in warm months and low in cold ones, with annual averages of 20.2, 38.8 and 16.4 mg C m−3 in the northern, central and southern regions, respectively. Copepods were the most important constituent (>ca. 70% of net zooplankton biomass) in all regions. The northern region was characterized by the dominance of Oithona spp. in summer and Acartia spp. in winter-spring. In the central region, Microsetella norvegica was most pronounced in summer-fall. In both central and southern regions, Calanus sinicus and Eucalanus spp. dominated in winter-spring and fall, respectively. The annual average net zooplankton secondary production rate was 4.4, 7.5 and 3.9 mg C m−3d−1 in the northern, central and southern region, respectively. Combining the results from the present study with those from other collaborative works on microzooplankton allowed us to determine the trophic interactions in Yatsushiro Bay. If the secondary producers depend entirely on phytoplankton for food, their daily carbon requirement is equivalent to 12.5, 21.6 and 19.1% of the phytoplankton biomass in the respective regions.  相似文献   

7.
We utilized 234Th, a naturally occurring radionuclide, to quantify the particulate organic carbon (POC) export rates in the northern South China Sea (SCS) based on data collected in July 2000 (summer), May 2001 (spring) and November 2002 (autumn). Th-234 deficit was enhanced with depth in the euphotic zone, reaching a subsurface maximum at the Chl-a maximum in most cases, as commonly observed in many oceanic regimes. Th-234 was in general in equilibrium with 238U at a depth of ∼100 m, the bottom of the euphotic zone. In this study the 234Th deficit appeared to be less significant in November than in July and May. A surface excess of 234Th relative to 238U was found in the summer over the shelf of the northern SCS, most likely due to the accumulation of suspended particles entrapped by a salinity front. Comparison of the 234Th fluxes from the upper 10 m water column between 2-D and traditional 1-D models revealed agreement within the errors of estimation, suggesting the applicability of the 1-D model to this particular shelf region. 1-D model-based 234Th fluxes were converted to POC export rates using the ratios of bottle POC to 234Th. The values ranged from 5.3 to 26.6 mmol C m−2d−1 and were slightly higher than those in the southern SCS and other oligotrophic areas. POC export overall showed larger values in spring and summer than in autumn, the seasonality of which was, however, not significant. The highest POC export rate (26.6 mmol C m−2d−1) appeared at the shelf break in spring (May), when Chl-a increased and the community structure changed from pico-phytoplankton (<2 μm) dominated to nano-phytoplankton (2–20 μm) and micro-phytoplankton (20–200 μm) dominated.  相似文献   

8.
In Tokyo Bay the concentrations of dissolved gaseous mercury (DGM) in the surface seawater and total gaseous mercury (TGM) over the sea were measured during December 2003, October 2004 and January 2005. Based on these data, the evasional fluxes of mercury from the sea surface were estimated using a gas exchange model. In addition, an automatic wet and dry deposition sampler was used to measure the wet and dry depositional fluxes of mercury from December 2003 to November 2004 at three locations in and near Tokyo Bay. The results indicate that the average DGM and TGM levels of seven locations are 52 ± 26 ng m−3 and 1.9 ± 0.6 ng m−3, respectively, which shows that the surface seawater in Tokyo Bay is supersaturated with gaseous mercury, leading to an average mercury evasional flux of 140 ± 120 ng m−2d−1. On the other hand, the annual average wet and dry depositional fluxes of mercury at three locations were 19 ± 3 μg m−2yr−1 and 20 ± 9 μg m−2yr−1, respectively. These depositional fluxes correspond to the daily average total depositional flux of 110 ± 20 ng m−2d−1. Thus, it is suggested that in Tokyo Bay, the evasional fluxes of mercury are comparable to the depositional fluxes.  相似文献   

9.
The habitat quality of Chub mackerel (Scomber japonicus) in the East China Sea has been a subject of concern in the last 10 years due to large fluctuations in annual catches of this stock. For example, the Chinese light-purse seine fishery recorded 84000 tons in 1999 compared to 17000 tons in 2006. The fluctuations have been attributed to variability in habitat quality. The habitat suitability Index (HSI) has been widely used to describe fish habitat quality and in fishing ground forecasting. In this paper we use catch data and satellite derived environmental variables to determine habitat suitability indices for Chub mackerel during July to September in the East China Sea. More than 90% of the total catch was found to come from the areas with sea surface temperature of 28.0°–29.4°C, sea surface salinity of 33.6–34.2 psu, chlorophyll-a concentration of 0.15–0.50 mg/m3 and sea surface height anomaly of −0.1–1.1 m. Of the four conventional models of HSI, the Arithmetic Mean Model (AMM) was found to be most suitable according to Akaike Information Criterion analysis. Based on the estimation of AMM in 2004, the monthly HSIs in the waters of 123°–125°E and 27°30′–28°00′ N were more than 0.6 during July to September, which coincides with the catch distribution in the same time period. This implies that AMM can yield a reliable prediction of the Chub mackerel’s habitat in the East China Sea.  相似文献   

10.
Air-sea interaction, coastal circulation and primary production exhibit an annual cycle in the eastern Arabian Sea (AS). During June to September, strong southwesterly winds (4∼9 m s−1) promote sea surface cooling through surface heat loss and vertical mixing in the central AS and force the West India Coastal Current equatorward. Positive wind stress curl induced by the Findlater jet facilitates Ekman pumping in the northern AS, and equatorward-directed alongshore wind stress induces upwelling which lowers sea surface temperature by about 2.5°C (compared to the offshore value) along the southwestern shelf of India and enhances phytoplankton concentration by more than 70% as compared to that in the central AS. During winter monsoon, from November to March, dry and weak northeasterly winds (2–6 m s−1) from the Indo-China continent enhance convective cooling of the upper ocean and deepen the mixed layer by more than 80 m, thereby increasing the vertical flux of nutrients in the photic layer which promotes wintertime phytoplankton blooms in the northern AS. The primary production rate integrated for photic layer and surface chlorophyll-a estimated from the Coastal Zone Color Scanner, both averaged for the entire western India shelf, increases from winter to summer monsoon from 24 to 70 g C m−2month and from 9 to 24 mg m−2, respectively. Remotely-forced coastal Kelvin waves from the Bay of Bengal propagate into the coastal AS, which modulate circulation pattern along the western India shelf; these Kelvin waves in turn radiate Rossby waves which reverse the circulation in the Lakshadweep Sea semiannually. This review leads us to the conclusion that seasonal monsoon forcing and remotely forced waves modulate the circulation and primary production in the eastern AS. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Concentrations of particulate organic nitrogen (PN), dissolved inorganic nitrogen (DIN), and their nitrogen isotope ratios (δ 15N) in the Kiso-Sansen Rivers were determined from monthly observations over the course of a year to assess variations in the form and sources of riverine nitrogen discharged into Ise Bay. The δ 15N values of NO3 observed in the Kiso-Sansen Rivers showed a logarithmic decreasing trend from 8 to 0‰, which varied with the river discharge, indicating mixing between point sources with high δ 15N and non-point sources with low δ 15N. The influence of isotope fractionation of in situ biogeochemical processes (mainly DIN assimilation by phytoplankton) on δ 15N of NO3 was negligible, because sufficient concentrations of NH4 + for phytoplankton demand would inhibit the assimilation of NO3 . A simple relationship between river discharge and δ 15N of NO3 showed that the fraction of total NO3 flux arising from point sources increased from 4.0–6.3% (1.1–1.8 tN day−1) during higher discharge (>600 m3 s−1) to 30.2–48.3% (2.6–4.1 tN day−1) during lower discharge (<300 m3 s−1). Riverine NO3 discharge from the Kiso-Sansen Rivers can explain 75% of the variations in surface NO3 at the head of Ise Bay over the year.  相似文献   

12.
Dissolved organic carbon (DOC) concentrations in surface waters of the Pacific Ocean during October–November, 1995, were determined using a high-temperature combustion method. The DOC in the surface mixed-layer was approximately homogeneous with a concentration between 55 and 89 μmol C l−1. This homogeneity indicates that there is a strong control of the vertical distribution of DOC by mixing processes. The DOC concentrations in the mixed-layer in the subtropical region were up to 27 μmol C l−1 higher than in the tropical region. This difference reflects the subtropical accumulation and the tropical export of DOC. There is a significant positive correlation between DOC and chlorophyll a concentrations in the mixed-layer of the North Pacific subtropical region, suggesting that phytoplankton is the primary source of DOC accumulated in this region. Calculations using simple box models suggest that DOC export in the tropical region (0–50 m depth, 10°N-10°S, along 160°W) occurs primarily by poleward advection at a rate of 0.5–3 mmol C m−2day−1. A comparison with estimates of the export rate of particulate organic carbon published in previous studies leads us to conclude that DOC export may contribute less to the carbon budget in the tropical region than has recently been supposed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The spatial distribution of the primary production (PP) and the chlorophyll a concentration (Chl) were investigated during two research cruises in the Drake Passage area in October–November of 2007 and 2008. The algorithm evaluating the integral PP (PPint) for the water column in this area was developed based on the data on the surface chlorophyll (Chls) and the incident solar irradiance obtained in 2004–2008 in the Atlantic Sector of the Southern Ocean. The results obtained both by the experimental and model approaches suggested that the Polar Front (PF) region of the Drake Passage was characterized by low values of both the PPint (<100 mg C/m2 per day) and Chls (0.08–0.20 mg/m3) in October–November. Low values of the Chls and relatively high phaeophytine a concentrations indicated the winter succession state of the phytoplankton community in the Antarctic Ocean and the southern Polar Frontal Zone (PFZ). The seasonal warming of the surface water layers and the developing pycnocline resulted in a phytoplankton bloom and a Chls concentration of more than 1 mg/m3 in mid-November in this area and the Subantarctic waters.  相似文献   

14.
We measured the ammonium excretion, phosphate excretion and respiration rates of the scyphomedusa Aurelia aurita from Ondo Strait, in the central part of the Inland Sea of Japan, at 28 and 20°C. The rates measured at 28°C were converted to those at 20°C using the Q10 values, i.e. 1.56, 1.57 and 2.80, for ammonium excretion, phosphate excretion and respiration rates, respectively. The composite relationships between metabolic rates and wet weight of a medusa (WW, g, range 11–1330 g) at 20°C were expressed by the following allometric equations. For ammonium excretion rate (N, μmoles N medusa−1d−1): N = 0.497WW 1.09, phosphate excretion rate (P, μmoles P medusa−1d−1): P = 0.453WW 0.84, and respiration rate (R, μmoles O2 medusa−1d−1): R = 96.9WW 1.06. Mean O:N ratios (i.e. atomic ratios of 16.9 and 11.0 at 28 and 20°C, respectively) indicated that the metabolism of A. aurita medusae was protein-dominated. These metabolic parameters enabled us to estimate the nitrogen and phosphorus regeneration rates of an A. aurita medusa population typical of early summer in the Ondo Strait (means of water temperature, medusa individual weight and population biomass: 20°C, 200 g WW and 50.8 g WW m−3, respectively). Regenerated nitrogen and phosphorus were equivalent to 10.0 and 21.6% of phytoplankton uptake rates, respectively, nearly twice that estimated for mesozooplankton, demonstrating that A. aurita medusae are key components of the plankton community, influencing the trophic and nutrient dynamics in the Ondo Strait during early summer.  相似文献   

15.
We collected surface water along the 142nd E meridian from Tasmania to Antarctica in December 1999. We measured temperature, salinity and total chlorophyll a; additionally, we collected suspended particle size fractions and used fluorometric analysis to determine the quantity of chlorophyll a in each of four cell size classes: picoplankton (<3 μm), two nanoplankton fractions (3–10 μm and 10–20 μm) and microplankton (> 20 μm). Changes in temperature and salinity show that we crossed 6 water masses separated by 5 fronts. We found low abundance (<0.2 mg m−3) of chlorophyll in all size classes, with the exception of higher values near the continent (0.2 to 0.4 mg m−3). Lowest chlorophyll values (<0.1 mg m−3) were found in the Polar Frontal Zone (51° to 54°S). Microplankton made up the largest portion of total chlorophyll throughout most of the region. We conclude that biomass of all phytoplankton fractions, especially pico-and nanoplankton, was constrained by limiting factors, most probably iron, throughout the region and that ecosystem dynamics within a zone are not circumpolar but are regionalized within sectors.  相似文献   

16.
The atmosphere-ocean exchange of climatically important gases is determined by the transfer velocity (k) and concentration gradient across the interface. Based on observations in the northwestern subarctic Pacific and Sagami Bay, we report here the results of the first ever application of the natural abundance of triple isotopes of dissolved oxygen (16O, 17O and 18O) for direct estimation of k and propose a new relationship with wind speed. The k values estimated from nighttime variations in oxygen isotopes are found to be higher than the direct estimations at low wind speed (<5 m s−1) and lower at high wind speeds (>13 m s−1) and showed significant spatial variability. The method presented here can be used to derive seasonal and spatial variations in k and the influence of surface conditions on the value, leading to improved estimates of biogenic/anthropogenic gas exchange at the air-sea interface.  相似文献   

17.
In order to examine the formation, distribution and transport of North Pacific Intermediate Water (NPIW), repeated hydrographic observations along several lines in the western North Pacific were carried out in the period from 1996 to 2001. NPIW formation can be described as follows: (1) Oyashio water extends south of the Subarctic Boundary and meets Kuroshio water in intermediate layers; (2) active mixing between Oyashio and Kuroshio waters occurs in intermediate layers; (3) the mixing of Oyashio and Kuroshio waters and salinity minimum formation around the potential density of 26.8σθ proceed to the east. It is found that Kuroshio water flows eastward even in the region north of 40°N across the 165°E line, showing that Kuroshio water extends north of the Subarctic Boundary. Volume transports of Oyashio and Kuroshio components (relative to 2000 dbar) integrated in the potential density range of 26.6–27.4σθ along the Kuroshio Extension across 152°E–165°E are estimated to be 7–8 Sv (106 m3s−1) and 9–10 Sv, respectively, which is consistent with recent work. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The light-saturated maximum value (P B max) and initial slope (α) of the photosynthesis-irradiance (P-E) curve were examined in a warm streamer, a cold streamer and a warm core ring off the Sanriku area in the subarctic western North Pacific Ocean during an ADEOS/OCTS Sanriku field campaign in early May 1997. BothP B max and α were within the ranges of temperate populations. A regional difference was apparent inP B max: populations in the warm streamer tended to show higher value ranging between 1.92 and 4.74 mgC (mgChla)−1h−1 than those in the cold streamer and the warm core ring (1.35–2.87 mgC (mgChla)−1h−1). A depth variation was also observed in α in both the warm streamer and the warm core ring: shallow populations tended to have lower α than deep populations. The depth variations in bothP B max and α resulted in a lower light intensity of the light saturation in a deeper population than that of a shallower one. These depth-related variations in the P-E parameters were likely a manifestation of “shade-adaptation” of photosynthesis. Photoinhibition was not observed over in situ surface light intensity varying below ca 1600 μmol photon m−2s−1. Water-column primary productivity was biooptically estimated to be 233 to 949 mgC m−2d−1 using vertical distributions of the P-E parameters, chlorophylla, phytoplankton light absorption and underwater irradiance. Applicability of surface data sets for estimation of water-column productivity is discussed.  相似文献   

19.
The plate culture method using the two formulae for non-nitrogenous media was adopted in this investigation for the purpose of counting and isolating nitrogen-fixing bacteria distributed in the open sea. Sea water samples were collected at eighteen different stations in the region of Lat. 50°N–15°S along Long. 155°W and two other stations in the Pacific Ocean. In order to compare with those samples from the open sea, water samples were also obtained at four stations in Suruga and Sagami Bays. Nitrogen-fixing bacteria appear to be widely but very unevenly distributed at all depths in sea water, in numbers approximately ranging from nil to 104 per 100 ml of sea water, and denser vertical populations have been found in the area of Lat. 40°N and 5°N along Long. 155°W, even at depths from 2,000 to 3,000m. A conparatively denser population of bacteria was found in sea water from Suruga Bay and Sagami Bay. The bacteria associated with plankton were abundantly demonstrated, in numbers ranging from 106 to 108 per 1 ml settling volume of plankton, in many plankton samples collected at four stations in the southern parts of the Pacific Ocean. Almost all the bacteria isolated from the samples of blue green algal colonies,Trichodesmium, sp., were able to grow on nonnitrogeneous media.  相似文献   

20.
In order to estimate the deposition rate of extraterrestrial material onto a manganese crust in a search for supernova debris, we analyzed the contents of 10Be, 230Th, 231Pa, and 239,240Pu in a sample of manganese crust collected from the North Pacific Ocean. On the basis of the depth profile of 10Be, the growth rate of the manganese crust was determined to be 2.3 mm Myr−1. The uptake rates of 10Be, 230Th, and 231Pa onto the manganese crust were estimated to be 0.22–0.44%, 0.11–0.73%, and 1.4–4.5%, respectively, as compared to the deposition rates onto the deep-sea sediments near the sampling station, while that for 239,240Pu was 0.14% as compared to the total inventory of seawater and sediment column. Assuming that sinking particles represent 0.11–4.5% of the uptake rates, the deposition rate of extraterrestrial material onto the manganese crust was estimated to be 2–800 μg cm−2Myr−1 according to the uptake of 10Be onto the manganese crust. Further, our estimate is similar to the value of 9–90 μg cm− 2Myr−1 obtained using the integrated global production rate of 10Be and the deposition rate of 10Be onto the manganese crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号