首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 95 毫秒
1.
An analysis of published and original data on the meiobenthos abundance in the depth interval from 100 to 9807 m (in total, 665 records, 445 of them obtained for depths exceeding 1000 m) revealed general regularities in its distribution. The influence of the sampling and data processing methods on the quantitative estimates of the meiobenthos abundance is considered to demonstrate changes in the proportions of the main meiobenthic taxa at different depths and to characterize latitudinal changes in the meiobenthos abundance. The dependence of the abundance of free-living nematodes, the most abundant group of metazoan meiobenthos, on trophic conditions is analyzed. No significant differences in the meiobenthos abundance in the samples obtained by box-and multicorers are established. It is shown that the share of nematodes in metazoan meiobenthos communities increases with the depth. In temperate latitudes, a distinct maximum in the population density confined to depths exceeding 1 km is observed. The quantitative distribution of the meiobenthos at the depths gradient is controlled by the bottom macrotopography and trophic conditions.  相似文献   

2.
Deep-sea hydrothermal vents occur along the mid-ocean ridges and back-arc basins around the globe. There are very few community analyses of vent meiobenthos. The central objectives of this study were to identify and quantify for the first time the entire metazoan meiobenthic community associated with mussel aggregations of Bathymodiolus thermophilus Kenk and Wilson, 1985 from the EPR, 11°N and of Bathymodiolus puteoserpentis Cosel et al., 1994 from the Mid-Atlantic Ridge (MAR), 23°N. Using a quantitative sampling method, abundance, biomass, sex ratio, species richness, diversity, evenness, and trophic structure were studied based on three samples from each site. Meiobenthic abundance in each sample was unexpectedly low, but similar between sites. The community was composed of nematodes, copepods, ostracods, and mites, with a total of 24 species at EPR vents, and 15 species at MAR vents. While most copepod species were vent endemics within the family Dirivultidae, nematodes and harpacticoid copepods belonged to generalist genera, which occur at a variety of habitats and are not restricted to hydrothermal vents or the deep sea. The meiobenthos of hydrothermal-vent mussel beds constitutes a unique community unlike those of other sulfidic habitats, including the thiobios of shallow-water sediments and the meiobenthos of deep-sea, cold-seep sediments. The trophic structure was dominated by primary consumers, mainly deposit feeders, followed by parasites. Predatory meiofaunal species were absent.  相似文献   

3.
Material is collected on a meridional profile from Yenisei Bay to adjacent parts of the Kara Sea shelf. The length of the profile is 550 km; 13 to 62 m depths. A multiple corer and Niemistö corer are used as sampling tools. The meiobenthos is represented by 13 taxa. Nematodes are the most abundant taxon, and harpacticoid copepods (Harpacticoida) are subdominant. The abundance and taxonomic diversity of meiobenthos and nematodes increases from the freshwater part of Yenisei Bay towards the Kara Sea shelf. Three types of taxocene are distinguished: freshwater, brackish-water, and marine. The taxocene of the estuary is not distinguished by any specific set of species and consists of species characteristic of the nematode community both in the freshwater and marine zones. The trophic structure of the taxocene of nematodes in Yenisei Bay is dominated by nematodes with well-defined stoma and are differently armed. The estuary and shelf are dominated by selective and nonselective deposit feeders.  相似文献   

4.
End-to-end models that represent ecosystem components from primary producers to top predators, linked through trophic interactions and affected by the abiotic environment, are expected to provide valuable tools for assessing the effects of climate change and fishing on ecosystem dynamics. Here, we review the main process-based approaches used for marine ecosystem modelling, focusing on the extent of the food web modelled, the forcing factors considered, the trophic processes represented, as well as the potential use and further development of the models. We consider models of a subset of the food web, models which represent the first attempts to couple low and high trophic levels, integrated models of the whole ecosystem, and size spectrum models. Comparisons within and among these groups of models highlight the preferential use of functional groups at low trophic levels and species at higher trophic levels and the different ways in which the models account for abiotic processes. The model comparisons also highlight the importance of choosing an appropriate spatial dimension for representing organism dynamics. Many of the reviewed models could be extended by adding components and by ensuring that the full life cycles of species components are represented, but end-to-end models should provide full coverage of ecosystem components, the integration of physical and biological processes at different scales and two-way interactions between ecosystem components. We suggest that this is best achieved by coupling models, but there are very few existing cases where the coupling supports true two-way interaction. The advantages of coupling models are that the extent of discretization and representation can be targeted to the part of the food web being considered, making their development time- and cost-effective. Processes such as predation can be coupled to allow the propagation of forcing factors effects up and down the food web. However, there needs to be a stronger focus on enabling two-way interaction, carefully selecting the key functional groups and species, reconciling different time and space scales and the methods of converting between energy, nutrients and mass.  相似文献   

5.
The Huizache–Caimanero coastal lagoon complex on the Pacific coast of Mexico supports an important shrimp fishery and is one of the most productive systems in catch per unit area of this resource. Four other less important fish groups are also exploited. In this study, we integrated the available information of the system into a mass-balance trophic model to describe the ecosystem structure and flows of energy using the E approach. The model includes 26 functional groups consisting of 15 fish groups, seven invertebrate groups, macrophytes, phytoplankton, and a detritus group. The resulting model was consistent as indicated by the output parameters. According to the overall pedigree index (0.75), which measures the quality of the input data on a scale from 0 to 1, it is a high quality model. Results indicate that zooplankton, microcrustaceans, and polychaetes are the principal link between trophic level (TL) one (primary producers and detritus) and consumers of higher TLs. Most production from macrophytes flows to detritus, and phytoplankton production is incorporated into the food web by zooplankton. Half of the flow from TL one to the next level come from detritus, which is an important energy source not only for several groups in the ecosystem but also for fisheries, as shown by mixed trophic impacts. The Huizache–Caimanero complex has the typical structure of tropical coastal lagoons and estuaries. The TL of consumers ranges from 2.0 to 3.6 because most groups are composed of juveniles, which use the lagoons as a nursery or protection area. Most energy flows were found in the lower part of the trophic web.  相似文献   

6.
Rocas, the only atoll in the South Atlantic, is located 266 km off the northeast Brazilian coast. Spatial patterns in community structure of meiofauna, particularly nematodes, and macrofauna were examined along a transect through the sediment path from windward to leeward of the Rocas Atoll sand flat. Differences in benthic community structure between four zones of the sand flat were found to be significant and related to the major local processes of carbonate-grain transport and sedimentation. Both meiobenthic and macrobenthic assemblages were significantly more diverse and abundant within the sediment inflow zone (the initial part of the detrital path of Rocas sand flat) than in the other zones, where a clear impoverishment of benthic invertebrates occurred. This first study of the benthos of an intertidal sand flat over a reef island in the Atlantic showed that the meiofauna is numerically dominated by the nematodes Metoncholainussp. 1 (Oncholaimidae) and Epsilonema sp. 1 (Epsilonematidade), whilst the macrofauna is largely dominated by oligochaetes and large Oncholaimidae nematodes. Analysis of the species composition, trophic structure and abundance of both the meiobenthos and the macrobenthos revealed an impoverished community subjected to an intense water-movement disturbance.  相似文献   

7.
2009年4月14~16日在台湾海峡中北部海域进行了小型底栖生物调查研究.结果表明,研究海域的小型底栖生物平均丰度为21.11±16.29 ind/cm^2;平均生物量为20.97±4.96μg/cm^2(以干重记).研究海域共鉴定出13个小型底栖生物类群,按丰度,最优势类群为自由生活海洋线虫其丰度为19.23±15.49 ind/cm^2,占小型底栖生物总丰度的91.10%,其他优势类群依次为底栖桡足类和多毛类,分别占小型底栖生物总丰度的2.77%和2.64%;分布在0~5 cm的表层沉积物内的小型底栖生物约为83.18%,线虫和底栖桡足类分布在0~2 cm的比例分别为57.66%和62.96%.小型底栖生物的生物量低于大型底栖生物,但由于其繁殖快,生命周期短,因此,其生物量约为大型底栖生物的445倍,年平均生产量约为大型底栖生物的1.39倍.  相似文献   

8.
9.
Many marine ecosystems exhibit a characteristic “wasp-waist” structure, where a single species, or at most several species, of small planktivorous fishes entirely dominate their trophic level. These species have complex life histories that result in radical variability that may propagate to both higher and lower trophic levels of the ecosystem. In addition, these populations have two key attributes: (1) they represent the lowest trophic level that is mobile, so they are capable of relocating their area of operation according to their own internal dynamics; (2) they may prey upon the early life stages of their predators, forming an unstable feedback loop in the trophic system that may, for example, precipitate abrupt regime shifts. Experience with the typical “boom-bust” dynamics of this type of population, and with populations that interact trophically with them, suggests a “predator pit” type of dynamics. This features a refuge from predation when abundance is very low, very destructive predation between an abundance level sufficient to attract interest from predators and an abundance level sufficient to satiate available predators, and, as abundance increases beyond this satiation point, decreasing specific predation mortality and population breakout. A simple formalism is developed to describe these dynamics. Examples of its application include (a) a hypothetical mechanism for progressive geographical habitat expansion at high biomass, (b) an explanation for the out-of-phase alternations of abundances of anchovies and sardines in many regional systems that appear to occur without substantial adverse interactions between the two species groups, and (c) an account of an interaction of environmental processes and fishery exploitation that caused a regime shift. The last is the example of the Baltic Sea, where the cod resource collapsed in concert with establishment of dominance of that ecosystem by the cod’s ‘wasp-waist” prey, herring and sprat.  相似文献   

10.
Coral reef fish are an important source of food security and income for human coastal populations. They also underpin ecosystem processes vital for the future ability of coral reefs to generate ecological goods and services. Identifying socio-economic drivers behind the exploitation of fish that uphold these key ecosystem processes and the scales at which they operate is therefore critical for successful management. This study addresses this issue by examining the reef-associated fish value chain in Zanzibar, and how it links to functional groups of fish and maturity stage of fish within these groups. Semi-structured interviews with 188 respondents (fishers, traders and hotel staff) involved in the fisheries and trade with reef-associated fish in Zanzibar and participatory observations were used. The trade with reef fish in Zanzibar is a complex structure involving many different agents and this study shows that these different agents exhibit differential “preferences” regarding fish functional groups and/or maturity stages within these groups. Consequently, both high and low trophic species, as well as small and large fishes are fished and sold, which leaves no refuge for the fish assemblage to escape fishing. When other market agents than fishers have so much influence and there are few alternative income generating activities, it is not possible to put all burden on fishers. Management measures that extend down the value chain to include all market agents as well as their links to ecosystem processes are thus likely to be needed to reach the target of sustainable fisheries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号