首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
海水中二甲基硫的光化学氧化研究   总被引:3,自引:0,他引:3  
二甲基硫(DMS)是海洋中最重要的挥发性生源硫化物,其在大气中的氧化产物会对全球气候变化和酸雨的形成产生重要影响。海水中DMS的光化学氧化,作为一个重要的去除途径,是控制海水中DMS浓度的重要因素。这个复杂的动态过程会受到光照、深度、海水中的溶解无机和有机物这些物理、化学因素的影响。根据光化学降解在DMS的全球生物地球化学循环中的重要作用,作者综述了国际海洋科学工作者近20年来在海水中DMS光化学研究方面的最新进展。  相似文献   

2.
海洋硫循环是全球硫循环重要的组成部分,而活跃于上层海洋的二甲基硫(DMS)是主要的生源硫化物,是现今国内外硫循环研究的热点之一。二甲基硫的生物、化学过程较为复杂,其在水体中的分布与浮游植物、浮游动物、细菌等生物因素以及光照、营养盐等环境因素密切相关。本文综述了与DMS循环有关的生物、化学循环过程及其参数化方案,包括细菌消耗、光化学氧化和海-气交换等。根据国内外研究进展,讨论了需要解决的问题,建立了东中国海DMS循环的概念模型。期望通过发展一个中国东部陆架海域物理-生物地球化学耦合三维生态动力学模式,获取DMS海气交换通量的时空分布,并定量评估中国东部陆架海域对全球大气温室效应的贡献。  相似文献   

3.
二甲基巯基丙酸内盐(DMSP)是地球上最丰富的有机硫分子之一,在全球硫循环和气候调节中具有重要的作用。DMSP是“冷室气体”二甲基硫(DMS)最主要的前体物质;在海洋中,DMSP可被多种途径降解,微生物降解是其最重要的途径之一。珊瑚礁是海洋DMS重要的来源之一,珊瑚共附生DMSP降解菌在DMS生产过程中发挥着重要的作用。本研究从多孔鹿角珊瑚(Acropora millepora)、美丽鹿角珊瑚(Acropora formosa)、多棘鹿角珊瑚(Acropora echinata)、指状鹿角珊瑚(Acropora digitifera)、鹿角杯形珊瑚(Pocillopora damicornis)和丛生盔形珊瑚(Galaxea fascicularis) 6种造礁石珊瑚中分离获得珊瑚共附生DMSP降解菌39株,基于16S rRNA基因序列对DMSP降解菌进行系统发育分析,39株DMSP降解菌株分别隶属于4个门、6个纲、19个属,优势属为芽孢杆菌属(Bacillus);通过火焰光度检测器?气相色谱(GC-FPD)联用技术检测DMSP降解产物,分析DMSP降解菌的DMS生产能力,结果显示,9株菌具有高产DMS能力,高产DMS菌株对于珊瑚应对气候变暖的益生作用有待后续深入研究。  相似文献   

4.
海洋中DMSP的研究进展   总被引:6,自引:2,他引:6  
DMSP(dimethylsulfoniopropionate,β-二甲基巯基丙酸内盐)作为DMS(dimethylsulfide,二甲基硫)的前体,是1种重要的生源硫化物。根据其在海洋生态系统和生物地球化学循环中所起着的重要作用,作者综述了国内外海洋科学工作者十几年来在EMSP研究方面的进展。  相似文献   

5.
海水中痕量DMS和DMSP分析方法的研究   总被引:6,自引:1,他引:6       下载免费PDF全文
二甲基硫(DMS)是海洋排放的占优势地位的生源硫气体,其在大气中的氧化产物能够影响到环境酸化和世界的气候变化.因此, 测定海水中的DMS对于准确地评价其在全球硫循环所起的重要作用具有重要意义.本文中作者研究了海水中DMS的痕量分析技术.海水中的DMS首先采用气提-冷阱捕集技术进行预浓缩, 然后用带有火焰光度检测器的气相色谱(GC-FPD)进行分析.该方法的精确度在5%以内, 平均回收率为85.6% (82.8%-90.5%), 最小检出限为0.15 ng S.β-二甲基巯基丙酸内盐(DMSP)的分析是通过将其在碱性溶液中分解成DMS来进行.作者采用此方法实测了黄海中DMS和DMSP的含量, 获得了理想的结果.  相似文献   

6.
海洋中二甲基硫的生物生产与消费过程   总被引:4,自引:0,他引:4  
DMS是海洋中最主要的挥发性有机硫化物,对全球气候变化和环境酸化产生重要影响。DMS的生物生产与消耗主要发生在海洋真光层。生物的生产与消耗被认为是海洋中DMS的主要来源和去除途径。海洋中DMS的生物生产和消耗是密切相关的,两者的速率基本保持平衡。目前,有关DMS生物生产与消费速率的测定方法有放射性同位素示踪和加抑制剂2种,后者颇受青睐,不过有关抑制机理还需进一步的研究。  相似文献   

7.
影响海水中二甲基硫分布的生物因素   总被引:4,自引:0,他引:4  
二甲基硫(DMS)是海水中有机硫化物的重要组成部分,也是参与硫的生物地球化学循环的重要物质,其海空通量约为0.6×1012~1.6×1012mol/a,占海洋中硫释放量的55%~80%。对DMS在海水中的浓度及分布进行分析,是评价其在全球硫循环中所起作用的重要基础。为此,国际上已有不少学者对DMS的来源、分布、海空通量进行了较系统的研究工作。由于充分认识到DMS在全球海洋痕量气体的排放中占有举足轻重的地位,并对全球气候变化和酸雨的形成产生重大影响,有关DMS的浓度与分布、通量与循环的研究已成为当今国际…  相似文献   

8.
β-二甲基巯基丙酸内盐(DMSP)是一种在海洋中普遍存在的重要生源有机硫化物,其降解产物二甲基硫(DMS)挥发到大气中会形成云凝结核,进而对大气温度产生负反馈效应。DMSP主要由浮游植物和部分细菌生物合成,在浮游食物链和微食物环中进行传递和转化,并进一步通过食物网进入更高营养级。浮游生物是驱动全球碳、硫循环的关键环节,在DMSP生物地球化学循环中的作用越来越受到人们的重视。本文针对DMSP的来源、归宿及在浮游食物链中的传递和转移等方面进行综述,介绍了浮游食物链和微食物环在DMSP传递、转化中的作用。DMSP在海洋食物链中仍有不少传递和降解途径为研究空白,今后应针对目前的研究不足深入开展DMSP的产生、传递和转化机制研究,进一步完善DMSP的生物地球化学循环机制。  相似文献   

9.
二甲基亚砜(DMSO)是海水中的主要溶解态甲基硫化物,DMSO在二甲基硫(DMS)的生物地球化学循环中起着重要的作用。它能通过DMS的光化学氧化和细菌氧化生成,可作为DMS的1个汇,也可以通过生物直接合成或其它途径产生。DMSO同时又可以被酶、细菌、植物等还原为DMS,因此,DMSO又可充当DMS的1个源。DMSO除了能被还原为DMS外,还可能会被细菌氧化为SO42-,在氯过氧化物酶作用下被H2O2氧化为DMSO2等。海洋中DMSO的测定通常采用还原剂NaBH4将其还原为DMS后,再利用气相色谱进行测定。海水中DMSO的分布不均匀,高浓度区是那些温度较高,光照充足、浮游植物较多、生物活性较高的表层水或近岸水。  相似文献   

10.
渤海、黄海是高产二甲基硫(Dimethyl Sulfide,DMS)的大陆架海区.该海区DMS的现场调查研究有助于准确评估海洋DMS释放量及其对全球气候变化的负反馈作用.目前,无论是基于模型还是直接测量法的通量估算均以表层海水或低层大气DMS浓度为基础,因此,先进的检测技术对其通量估算的准确度具有决定性作用.气相色谱法...  相似文献   

11.
The production of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) by marine microalgae was investigated to elucidate more on the role of marine phytoplankton in ocean-atmosphere interactions in the global biogeochemical sulfur cycle.Axenic laboratory cultures of four marine microalgae–Isochrysis galbana 8701,Pavlova viridis,Platymonas sp.and Chlorella were tested for DMSP production and conversion into DMS.Among these four microalgae,Isochrysis galbana 8701 and Pavlova viridis are two species of Haptophyta,while Chlorella and Platymonas sp.belong to Chlorophyta.The results demonstrate that the four algae can produce various amounts of DMS(P),and their DMS(P) production was species specific.With similar cell size,more DMS was released by Haptophyta than that by Chlorophyta.DMS and dissolved DMSP (DMSPd) concentrations in algal cultures varied significantly during their life cycles.The highest release of DMS appeared in the senescent period for all the four algae.Variations in DMSP concentrations were in strong compliance with variations in algal cell densities during the growing period.A highly significant correlation was observed between the DMS and DMSPd concentrations in algal cultures,and there was a time lag for the variation trend of the DMS concentrations as compared with that of the DMSPd.The consistency of variation patterns of DMS and DMSPd implies that the DMSPd produced by phytoplankton cells has a marked effect on the production of DMS.In the present study,the authors’ results specify the significant contribution of the marine phytoplankton to DMS(P) production and the importance of biological control of DMS concentrations in oceanic water.  相似文献   

12.
Dimethylsulfide (DMS) was determined in surface seawater and vertical hydrographic profiles in the Atlantic Ocean during two cruises from Hamburg to Montevideo (Uruguay), and from Miami (Florida) into the Sargasso Sea. These data cover most of the ecological zones of the Atlantic. DMS concentrations are related to the levels of marine primary production, in agreement with its release by marine phytoplankton in laboratory cultures. The vertical distribution of DMS in the euphotic zone follows that of primary production, with a maximum at or near the ocean surface and a decrease with depth. Below the level of 1% light penetration, DMS levels decline gradually, but DMS remains detectable even in the bottom waters. The mean DMS concentration in surface water is 84.4, and in deep water 3.2 ng S (DMS) 1?1. No steep gradients of DMS exist near the sea surface on scales of centimeters to tenths of millimeters. At a drift station, DMS was observed to be diurnally variable, with an increase in concentration in the euphotic zone throughout the day. DMS is actively turned over in the surface ocean with a residence time of a few days, but it is apparently very stable in the deep sea. DMS is the major volatile sulfur compound in the ocean, and its transfer across the air-sea interface contributes significantly to the atmospheric sulfur budget.  相似文献   

13.
DMS emitted into the atmosphere over the global oceans has a range of effects upon atmospheric composition (mediated through various oxidation products) that may be significant with regard to issues as important as climate regulation, and the trace gas oxidation capacity of the marine atmospheric boundary layer. The roles played by DMS oxidation products within these contexts are diverse and complex, and in many instances are not well understood. Here we summarize what is known, and suspected, about the couplings between the marine atmospheric sulfur cycle, other atmospheric chemical cycles, and the dynamics and microphysics of the marine atmospheric boundary layer. This overview focuses heavily on measurements carried out in clean Southern Ocean air masses in association with the Australian Baseline Air Pollution Station located at Cape Grim (40° 40′ 56″S, 144° 41′ 18″ E), Tasmania. The data confirm that in the remote marine atmosphere, DMS is a central player in a variety of important atmospheric processes, reinforcing the need to understand quantitatively the factors that regulate DMS emissions from the ocean to the atmosphere.  相似文献   

14.
Theconcentrationanddistributionofdimethylsulfideinthemarineatmosphericboundarylayerneartheequator¥LiXingsheng;LiZhe;F.Parungo...  相似文献   

15.
New and important roles for DMSP in marine microbial communities   总被引:4,自引:0,他引:4  
The algal osmolyte dimethylsulfoniopropionate (DMSP) is recognised as the major precursor of marine dimethylsulfide (DMS), a volatile sulfur compound that affects atmospheric chemistry and global climate. Recent studies, using 35S-DMSP tracer techniques, suggest that DMSP may play additional very important roles in the microbial ecology and biogeochemistry of the surface ocean. DMSP may serve as an intracellular osmolyte in bacteria that take up phytoplankton-derived DMSP from seawater. In addition, DMSP appears to support from 1 to 13% of the bacterial carbon demand in surface waters, making it one of the most significant single substrates for bacterioplankton so far identified. Furthermore, the sulfur from DMSP is efficiently incorporated into bacterial proteins (mostly into methionine) and DMSP appears to be a major source of sulfur for marine bacterioplankton. Assimilatory metabolism of DMSP is via methanethiol (MeSH) that is produced by a demethylation/demethiolation pathway which dominates DMSP degradation in situ. Based on the linkage between assimilatory metabolism of DMSP and bacterial growth, we offer a hypothesis whereby DMSP availability to bacteria controls the production of DMS by the competing DMSP lyase pathway. Also linked with the assimilatory metabolism of DMSP is the production of excess MeSH which, if not assimilated into protein, reacts to form dissolved non-volatile compounds. These include sulfate and DOM–metal–MeSH complexes, both of which represent major short-term end-products of DMSP degradation. Because production rates of MeSH in seawater are high (3–90 nM d−1), reaction of MeSH with trace metals could affect metal availability and chemistry in seawater. Overall, results of recent studies provide evidence that DMSP plays important roles in the carbon, sulfur and perhaps metal and DOM cycles in marine microbial communities. These findings, coupled with the fact that the small fraction of DMSP converted to DMS may influence atmospheric chemistry and climate dynamics, draws attention to DMSP as a molecule of central importance to marine biogeochemical and ecological processes.  相似文献   

16.
Dimethylsulfide (DMS) is a volatile sulfur compound produced by the marine biota. The flux of DMS to the atmosphere may act on climate via aerosol formation. It is therefore important to improve our understanding of the processes that regulate sea surface DMS concentrations for eventual inclusion into climate models. In order to simulate the dynamics of DMS concentrations in the mixed layer, a model of DMS production was developed and calibrated against a 1 year time-series of DMS and DMSP (dissolved and particulate) data collected in the Sargasso Sea at Hydrostation ‘S’. The model reproduces the observed divergence between the seasonal cycles of particulate DMSP, the DMS precursor produced by algae, and DMS produced through the microbial loop from the cleavage of dissolved DMSP. DMSPp (particulate) reaches its maximum in the spring whereas DMSPd (dissolved) and DMS reach maximum concentrations in summer. Several parameters had to vary seasonally and with depth in order to reproduce the data, pointing out the importance of physiological and structural changes in the plankton food web. These parameters include the intracellular S(DMSp):N ratio, the C:Chl ratio and the sinking rates of phytoplankton and detritus. For the Sargasso Sea, variations in the solar zenithal angle, which co-vary with the seasonal variations in the depth of the mixed layer, proved to be a convenient signal to drive the seasonal variation in the structure and dynamics of the plankton. Variations of the temperature and photosynthetically active radiation also help to reproduce the short-term variability of the annual S cycle. Results from a sensitivity analysis show that variations in DMSPp are dependent mostly on parameters controlling phytoplankton biomass, whereas DMS is dependent mostly on variables controlling phytoplankton productivity.  相似文献   

17.
海洋中生源活性气体的来源与迁移转化   总被引:1,自引:1,他引:0  
杨桂朋  张洪海 《海洋学报》2018,40(10):14-21
海洋生源活性气体主要包括二甲基硫(DMS)、甲烷(CH4)、氧化亚氮(N2O)、一氧化碳(CO)、挥发性卤代烃(VHCs)和非甲烷烃(NMHCs)等。它们通过海-气交换进入大气,不仅在全球碳、氮和硫循环中发挥关键作用,而且会直接或间接地对环境和气候变化产生重要影响。海洋释放的活性气体一类属于温室效应气体(CH4、N2O、VHCs和CO等),另一类会在大气中发生化学反应,控制着大气氧化平衡和臭氧浓度(VHCs和NMHCs)。而DMS属于负温室效应气体,其在大气中被快速氧化形成硫酸盐气溶胶,进而对云的形成和辐射强迫产生重要影响。本文综述了国内外海洋生源活性气体的研究现状,着重介绍了DMS、CH4和N2O的来源、迁移转化、海-气通量及其影响机制,并指明了该领域存在的科学问题及今后的研究方向。  相似文献   

18.
《Marine Chemistry》2007,103(1-2):197-208
Biological consumption is a major sink for dimethylsulfide (DMS) in the surface ocean, but the fate of DMS is poorly known. We determined the fate of sulfur from biologically consumed DMS in samples from the upper 60 m of the Sargasso Sea during July 2004. Using tracer levels of 35S-DMS in dark incubations we found that DMS was transformed into three identifiable non-volatile, sulfur-containing product pools: dimethylsulfoxide (DMSO), sulfate, and particle-associated macromolecules. Together, DMSO and sulfate accounted for most (81–93%) of the non-volatile sulfur products. Only a small fraction (∼ 2%) of the consumed DMS-sulfur was recovered in cellular macromolecules, leaving 5–17% of the metabolic products of DMS consumption unidentified. The relative importance of the two major products varied with depth. DMSO was the main sulfur product (∼ 72%) from DMS metabolism in the surface mixed layer, whereas sulfate was the most important product (∼ 74%) below the mixed layer. Changes in temperature and photosynthetically-active radiation (PAR) did not cause shifts in DMS fate in short term incubations (7–12 h), however these or other factors (e.g., exposure to ultraviolet radiation), operating over longer time scales, could potentially influence the observed pattern of DMS fate with depth. Biological DMSO production rates ranged from 0.07 to 0.33 nM day 1, with the highest rate found at 30 m, just below the surface mixed layer. With DMSO concentrations ranging from 4.0 to 8.6 nM, turnover times for DMSO were long (15–61 days) when only the biological production from DMS was considered. Identification of the main sulfur containing products from DMS metabolism improves understanding of this important process in the marine sulfur cycling. Detection and quantification of DMSO production from biological DMS consumption also provides a more complete picture of DMSO biogeochemistry in the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号