首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Survival and growth of early fish stages are maximal in coastal and estuarine habitats where natural shallow areas serve as nurseries for a variety of widely distributed species on the continental shelf. Processes occurring in these nursery grounds during the juvenile stage affect growth and may be important in regulating the year-class strength of fishes and population size. The need, therefore, exists to protect these essential fish habitats hence to develop indicators to estimate their quality.The purpose of the present study was to use the growth of juvenile sole as a means of comparing the quality of coastal and estuarine nursery habitats in the Bay of Biscay (France). These sole nurseries were clearly identified from studies based on trawl surveys carried out during the last two decades. The size of 1-group juveniles at the end of their second summer, as estimated from these surveys, is an indicator of growth in these habitats during the juvenile phase and can be used to compare habitat quality. A model taking into account the role of seawater temperature in spatial and interannual variations of juvenile size was developed to compare growth performance in the different nursery sectors.This study shows that the size of juvenile sole after two summers of life is not density-dependent, probably because the size of the population adapts to habitat capacity after high mortality during early-juvenile stages. Size is on one hand positively related to temperature and on the other hand higher in estuarine than in non-estuarine habitats. This high growth potential of juvenile fish in estuarine areas confirms the very important role played by estuaries as nursery grounds and the essential ecological interest of these limited areas in spite of their low water quality. If a general conclusion on habitat quality is to be reached about studies based on the growth of juvenile fish, it is necessary to use not only an integrative indicator of growth, like size, representative of the intrinsic habitat quality, but also more sensitive and less integrative means, such as otolith increments or caging experiments, which better respond to anthropogenic disturbance. Moreover, it is necessary to take juvenile densities into account.  相似文献   

2.
The common sole (Solea solea) is one of the most important demersal resources in the northern and central Adriatic Sea (GFCM GSA 17). Landings from this basin make up around 23% of the overall Mediterranean and Black Sea production. Despite the economic relevance of sole in the Adriatic Sea, and its inherent property of being shared among three countries (i.e. Italy, Slovenia and Croatia), studies on its spatial distribution are scarce and aged. Therefore, the aim of the present study was to assess the spatial distribution and investigate the dynamics of this species in the GSA 17. Samples of common sole were collected in the framework of yearly rapido trawl surveys (SoleMon), during late autumn, from 2005 to 2010, i.e. the spawning season of common sole in the Adriatic. Results highlighted that juveniles are mostly concentrated in shallow water (0–30 m depth) along the Italian coast and their spatial distribution persisted along the sampled years. By contrast adults were mainly distributed in the central/eastern part of the basin at depths > 30 m. As a result of the different spatial distributions, juveniles are exploited exclusively by Italian vessels, especially by beam trawlers (i.e. rapido trawl), while adults are caught by Croatian and Slovenian fishing fleets in their respective national waters and by the Italian fleet operating in international waters. These results, while shedding light on the common sole spatial ecology in the Adriatic, represent crucial information for the setting of international collaboration for a rational spatial-based management of the resource.  相似文献   

3.
4.
5.
《Journal of Sea Research》2007,57(2-3):198-208
Dover sole (Microstomus pacificus) and rex sole (Glyptocephalus zachirus) are both commercially valuable, long-lived pleuronectids that are distributed widely throughout the North Pacific. While their ecology and life cycle have been described for southern stocks, few investigations have focused on these species at higher latitudes. We synthesized historical research survey data among critical developmental stages to determine the distribution of life cycle stages for both species in the northern Gulf of Alaska (GOA). Bottom trawl survey data from 1953 to 2004 (25 519 trawls) were used to characterize adult distribution during the non-spawning and spawning seasons, ichthyoplankton data from 1972 to 2003 (10 776 tows) were used to determine the spatial and vertical distribution of eggs and larvae, and small-meshed shrimp trawl survey data from 1972 to 2004 (6536 trawls) were used to characterize areas utilized by immature stages. During the non-spawning season, adult Dover sole and rex sole were widely distributed from the inner shelf to outer slope. While both species concentrated on the continental slope to spawn, Dover sole spawning areas were more geographically specific than rex sole. Although spawned in deep water, eggs of both species were found in surface waters near spawning areas. Dover sole larvae did not appear to have an organized migration from offshore spawning grounds toward coastal nursery areas, and our data indicated facultative settling to their juvenile habitat in winter. Rex sole larvae progressively moved cross-shelf toward shore as they grew from April to September, and larvae presumably settled in coastal nursery areas in the autumn. In contrast with studies in the southern end of their range, we found no evidence in the GOA that Dover or rex sole have pelagic larval stages longer than nine months; however, more sampling for large larvae is needed in winter offshore of the continental shelf as well as sampling for newly settled larvae over the shelf to verify an abbreviated pelagic larval stage for both species at the northern end of their range.  相似文献   

6.
During the 1980s and 1990s, scientific research cruises were conducted in both the eastern and western boundary regions of the North Pacific Ocean. The main purpose of these cruises was to examine the abundance and distribution patterns of juvenile salmon in coastal waters. These studies created one of the most extensive databases ever collected on the species composition of coastal Transition Zone epipelagic nekton in the North Pacific Ocean. Catch data from two purse seine and two surface trawl surveys (one each from off northern Japan and eastern Russia and off the West Coast of the U.S.) were examined using multivariate techniques to analyze the community structure of nektonic cephalopods, elasmobranchs, and teleosts in the coastal zone during the summer and autumn months. Juvenile salmonids are generally among the most common species caught, but in terms of overall abundance, other potential competitors with juvenile salmon, such as small squids and clupeoid fishes predominated the catches. Species diversity and dominance varied among areas and gear types. Distinct assemblages were found in each area, but the two regions had closely related species occupying similar ecological positions in each habitat. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
8.
Seismic surveys are frequently a matter of concern regarding their potentially negative impacts on marine mammals. In the Southern Ocean, which provides a critical habitat for several endangered cetacean species, seismic research activities are undertaken at a circumpolar scale. In order to minimize impacts of these surveys, pre-cruise planning requires detailed, spatio-temporally resolved knowledge on the likelihood of encountering these species in the survey area. In this publication we present predictive habitat modelling as a potential tool to support decisions for survey planning. We associated opportunistic sightings (2005–2011) of humpback (Megaptera novaeangliae, N=93) and Antarctic minke whales (Balaenoptera bonaerensis, N=139) with a range of static and dynamic environmental variables. A maximum entropy algorithm (Maxent) was used to develop habitat models and to calculate daily basinwide/circumpolar prediction maps to evaluate how species-specific habitat conditions evolved throughout the spring and summer months. For both species, prediction maps revealed considerable changes in habitat suitability throughout the season. Suitable humpback whale habitat occurred predominantly in ice-free areas, expanding southwards with the retreating sea ice edge, whereas suitable Antarctic minke whale habitat was consistently predicted within sea ice covered areas. Daily, large-scale prediction maps provide a valuable tool to design layout and timing of seismic surveys as they allow the identification and consideration of potential spatio-temporal hotspots to minimize potential impacts of seismic surveys on Antarctic cetacean species.  相似文献   

9.
10.
《Oceanologica Acta》1999,22(6):579-592
Beam trawl, camera sled and submersible data from 2 000–3 300 m off central California produced similar fish faunal composition, but different density estimates. All species caught in trawls were observed in camera-sled and submersible observations. However, some rare species that were observed were not caught in trawls. The fish fauna was dominated by the families Macrouridae, Zoarcidae, Moridae, and Rajidae. Fishes both trawled and observed were the macrourids Coryphaenoides armatus, C. filifer and C. leptolepis; the zoarcids Bothrocara spp., Pachycara lepinium and Lycenchelys spp.; the morid Antimora microlepis; the rajid Bathyraja trachura, the ophidiid Spectrunculus grandis, and the liparidid Careproctus ovigerum. One unidentified liparidid (Paraliparis sp.) and two unidentified Lycenchelys spp. were trawled and may have been seen but also could not be identified to species from photographs. Observed only in photographs were the liparidids Paraliparis rosaceus and Careproctus melanurus, synodontid Bathysaurus mollis, and notocanthid Notacanthus chemnitzii. These three techniques differed in their ability to provide specimens for accurate identification, counts, and later life history (feeding habit, age and growth, and reproduction) studies, and to provide information on dispersion, habitat utilization, behavior and interactions. Accurate density estimates were undoubtedly hampered by trawl and camera sled avoidance, escape, and uncertainties concerning the area trawled. Camera sleds produced higher (and perhaps better) estimates of density. Submersible observations from the DSV Alvin produced a similar species list but little additional, quantitative information. Both visual techniques allowed habitat characterization, but no strong faunal associations with habitat types were observed.  相似文献   

11.
Epibenthic fishes were collected with daytime beam trawl tows (n = 1713) in three shallow (<10 m) habitats of submerged aquatic vegetation (SAV), Zostera marina (eelgrass), Laminaria longicruris (kelp), Phyllophora sp. (algae), and unvegetated sandy/mud areas. We divided the Maine coast into three broad zones based upon geological features and sampled over five consecutive years; during April–November 2000 in the mid coast, in 2001 and 2002 along the south coast and in 2003 and 2004 along the eastern Maine coast. We quantified habitat use by eight economically important fish species (Gadus morhua, Microgadus tomcod, Pollachius virens, Urophycis chuss, Urophycis tenuis, Osmerus mordax, Tautogolabrus adspersus, and Pseudopleuronectes americanus) and 10 other common epibenthic species (n = 18 571). We identified the physical and biological variables most important in discriminating between habitats with and without individual fish species. Logistic regression models based on nearshore habitat characteristics were developed to predict the distribution of these species along the three zones representing broad geological regions of the Maine coast. Logistic regression models correctly classified individual fish species 58.7–97.1% of the time based on the temporal and physical habitat variables (month, temperature, salinity, and depth) and the presence–absence of submerged aquatic vegetation (Zostera, Laminaria, or Phyllophora). Overall fish presence and economically important fish presence were correctly classified 61.1–79.8% and 66.0–73.6% of the time, respectively. The Maine shallow water fish community was composed primarily of young-of-the-year and juvenile fishes with all habitats functioning as facultative nursery areas. Presence of most fish species was positively associated with Zostera, Laminaria, and to a lesser extent, Phyllophora. This study provides direct evidence of shallow waters of the Gulf of Maine as critical facultative nursery habitat for juvenile G. morhua, M. tomcod, P. virens, U. tenuis, U. chuss, T. adspersus, O. mordax and P. americanus, and many ecologically important species.  相似文献   

12.
The extent to which the relationship between juvenile abalone Haliotis midae and sea urchins Parechinus angulosus is induced by their physical habitat along the Namaqualand coast of South Africa was investigated. Correlation analyses between the proportion of abalone utilising sea urchins for refuge and the proportion of habitat defined as exposed were computed from 28 experimental seeding sites in Port Nolloth on the north-west coast of South Africa. A highly significant positive correlation was found (r = 0.72, p < 0.05). It was concluded that, along the Namaqualand coast, under-boulder habitat was the most important factor determining the survival of juvenile abalone (size 12–26mm). Site selection should therefore be based on the suitability of the physical substratum to provide shelter for juvenile abalone along that coast.  相似文献   

13.
Research surveys of Cape horse mackerel Trachurus trachurus capensis abundance on the south coast of South Africa are complicated because changes in the species' vertical and horizontal distribution limit the value of stock assessments based a single survey method. Annual bottom trawl surveys conducted in spring provide estimates of the abundance of fish close to the bottom over trawlable grounds. Between 1991 and 1994, hydroacoustic surveys conducted in spring have been used to estimate the pelagic portion of the stock, as well as the portion over untrawlable grounds. These two research datasets, as well as data from purse-seine, mid water and bottom trawl commercial landings, are reviewed to elucidate distribution patterns of horse mackerel and their migratory and spawning strategies. The problems and advantages of bottom trawl and acoustic surveys are discussed in the context of fluctuations in estimates of the size of the stock between 1991 and 1994 and the prevailing environmental conditions. It is concluded that combined acoustic and bottom trawl surveys are the only effective means of surveying horse mackerel, and that effort should be concentrated east of 22°E to assess the spawner stock. It is suggested that research effort directed at improving understanding of exchanges between West Coast (including Namibia) and South Coast population of horse mackerel, as well as of the role of vertical migrations in modulating these exchanges, would be beneficial.  相似文献   

14.
English sole recruitment has been linked to environmental conditions occurring during their 6–10 week pelagic egg and larval stages, prior to their appearance in nursery estuaries during their first summer. The purpose of this study was to predict the spawning locations of juvenile English sole observed in estuaries to assess the feasibility of passive transport of egg and larval stages. Current meter data were used to back-calculate the transport trajectories of 19 cohorts of English sole observed as juveniles during estuarine trawl surveys. Only six of these cohorts were predicted to be spawned outside the Oregon–Washington shelf system, assuming passive transport of eggs and larvae. Predicted egg and larval trajectories indicate that most of the English sole found in Oregon and Washington estuaries were spawned off the coast of Washington, with some spawning off northern California and central Oregon. Although these results are not consistent with the presumed spawning locations for the Oregon and Washington shelf, they indicate that passive transport assumptions may be adequate to preserve the larvae in the coastal system until settlement.  相似文献   

15.
Estuaries serve as nursery grounds for many marine fish species. However increasing human activities within estuaries and surrounding areas lead to significant habitat loss for the juveniles and decrease the quality of the remaining habitats. This study is based on the data of 470 beam trawls from surveys that were conducted in 13 French estuaries for the purpose of the European Water Framework Directive. It aimed at testing the effects of anthropogenic disturbances on the nursery function of estuaries. With a multispecific approach based on ecological guilds, two fish metrics, abundance and species richness of Marine Juvenile migrant fishes, were used as proxies for the estuarine nursery function. Indices of heavy metal and organic contaminations were used to estimate anthropogenic disturbances impacting these estuaries. Fish metrics were described with statistical models that took into account: (a) sampling protocol, (b) estuarine features and (c) contamination. The results of these models showed that the fish metrics highly depend on the sampling protocol, and especially type of gear, depth and salinity, which highlights the necessity of considering such metrics at the sampling (trawl haul) scale. Densities and species richness of Marine Juvenile fishes appeared to be strongly and negatively correlated to contamination indices. These results are consistent with the hypothesis that human disturbances impact the nursery function of estuaries. Finally, the densities of Marine Juvenile migrant species appeared as a potential robust and useful fish indicator for the assessment of the ecological status of estuaries within the Water Framework Directive.  相似文献   

16.
《Journal of Sea Research》2007,57(2-3):137-150
Flatfish distributions have traditionally been described in terms of depth, temperature, and sediment characteristics, but other environmental variables may be important depending upon spatial scale. Surveys for age-0 northern rock sole (Lepidopsetta polyxystra) were conducted in five near-shore nursery sites at Kodiak Island, Alaska, using a towed camera sled integrated with navigational data. The continuous record of fish density and habitat features made possible a spatially comprehensive analysis of fish-habitat associations at several spatial scales, ranging from tens of kilometres to less than 1 m. A combination of multivariate statistical interpretation and geographic information systems (GIS) revealed that the distribution of juvenile rock sole was associated with environmental variables and spatial scales that are not normally detectable with usual flatfish— and habitat—sampling methods (i.e., trawls and grabs). Generalized additive models (GAM) incorporating habitat variables determined from video provided large improvements over models using only the traditional variables such as depth and sediment type. At the broadest (regional) scale of analysis, combinations of sediment composition, surface bedform, temperature, and density of worm tubes provided the best model for rock sole density. Within-nursery variation in fish density was modelled best with depth, habitat structural complexity created by emergent fauna and macroalgae, and worm tube density. At the microhabitat scale (< 1 m), there was little evidence of direct contact between rock sole and structures such as shell or algae. Rather, they were loosely associated on a scale tens of metres. This study showed that spatially comprehensive surveys can be conducted with towed camera systems and without the need for sediment grab samples. This approach yields detailed habitat information for fishes and the opportunity for landscape analysis of spatial patterns that will be important in conserving critical habitats for flatfishes and other fish species.  相似文献   

17.
The successful management of shark populations requires juvenile recruitment success. Thus, conservation initiatives now strive to include the protection of areas used by pre‐adult sharks in order to promote juvenile survivorship. Many shark species use inshore areas for early life stages; however, species often segregate within sites to reduce competition. Using a fisheries‐independent gillnet survey from the Northern Gulf of Mexico (2000–2010) we describe distribution patterns and preferred habitat features of the juveniles of six shark species. Our results suggest that multiple shark species concurrently use the area for early life stages and although they overlap, they exhibit distinct habitat preferences characterized by physical variables. Habitat suitability models suggest that temperature, depth, and salinity are the important factors driving juvenile shark occurrence. Within each site, across the sampled range of physical characteristics, blacktip shark (Carcharhinus limbatus) preferred higher temperature (>30 °C) and mid‐depth (~5.5 m); bonnethead shark (Sphyrna tiburo) preferred higher temperature (>30 °C) and mid‐salinity (30–35 PSU), finetooth shark (Carcharhinus isodon) preferred low salinity (<20 PSU) with mid‐depth (~4 m), scalloped hammerhead shark (Sphyrna lewini) preferred high temperature (>30 °C) and salinity (>35 PSU), Atlantic sharpnose shark (Rhizoprionodon terraenovae) preferred high temperature (>30 °C) and deep water (>6 m), and spinner shark (Carcharhinus brevipinna) preferred deep water (>8 m) and high temperature (>30 °C). The other investigated factors, including year, month, latitude, longitude, bottom type, inlet distance, coastline and human coast were not influential for any species. Combining habitat preferences with the sampled environmental characteristics, we predicted habitat suitability throughout the four sites for which physical characteristics were sampled. Habitat suitability surfaces highlight the differences in habitat use between and within sites. This work provides important insight into the habitat ecology of juvenile shark populations, which can be used to better manage these species and protect critical habitat.  相似文献   

18.
Mesh selection studies on flatfish in relation to the Otago trawl fishery   总被引:2,自引:2,他引:0  
Cod‐end mesh selection experiments were conducted on three species of flatfish (common or English sole Peltorhamphus novaezeelandiae, lemon sole Pelotretis flavilatus, and sand flounder Rhombosolea plebeia) trawled off the Otago coast. It is suggested that better yields would be obtained from stocks of these fish if the minimum cod‐end mesh size was increased from 10.2 cm (4 in.) to 11.4 cm (4.5 in.).  相似文献   

19.
Cuvier's beaked whale (Ziphius cavirostris, G. Cuvier 1823) is a poorly known species and many international agreements have asked for a better understanding of its biology for conservation purposes. In the present study, systematic cetacean surveys were carried out from ferries along a trans‐regional fixed transect in the Central Tyrrhenian Sea (Civitavecchia, Latium – Golfo Aranci, Sardinia), just outside the southeastern border of the Pelagos Sanctuary. This research provided long‐term, consistent data on Cuvier's beaked whale during two research periods (1990–1992 and 2007–2011). The objective of the research was to compare the presence, distribution and habitat use of Cuvier's beaked whale between the two investigated periods. Summer data (June–September) from the two periods were compared in terms of frequency of sightings, group size and spatial distribution related to the main ecogeographical features. A presence‐absence model (generalized additive modelling) was performed to predict habitat suitability in the two study periods. The results highlight long‐term site fidelity of Cuvier's beaked whale in the Central Tyrrhenian Sea with encounter rates comparable to the ones reported for other key areas. Separate suitability models based on 1990s and 2000s data appeared to work for each individual time period but differences were evident between the two periods, indicating changes in habitat selection over time. Our findings of the study appear to expand the definition of suitable beaked whale habitat and underline how the temporal scale of the analysis can affect the results in habitat studies. Moreover, this research highlights the importance of the Central Tyrrhenian Sea marine region for Cuvier's beaked whale and the ability of continuous monitoring to identify changes in cetacean frequency and distribution, necessary for adaptive conservation management approaches.  相似文献   

20.
Factors influencing suitable habitats of juvenile southern flounder (Paralichthys lethostigma) within the Galveston Bay Complex (GBC), Texas, were assessed using generalized additive models (GAM). Fishery independent data collected with bag seines throughout the GBC from 1999 to 2009 were used to predict the probability of southern flounder occurrence. Binomial GAMs were used to assess presence/absence of southern flounder and models included temporal variables, benthic variables such as distance to habitats generated within a geographic information system, and physicochemical conditions of the water column. Separate models were generated for newly settled southern flounder, young-of-the-year (YOY) southern flounder observed in the summer, and YOY southern flounder observed in fall based on size and collection month. Factors affecting southern flounder occurrence changed seasonally, as did the corresponding shifts in the spatial distribution of suitable habitat. Temporal effects (year and month) were retained in all models. Physicochemical conditions (temperature, turbidity, and measures of environmental variability), and the presence of seagrass beds were influential for newly settled southern flounder. Distance to marine and/or freshwater sources were found to be important for YOY southern flounder in the summer and fall seasons. The abundance of brown shrimp was found to only influence the distribution of YOY southern flounder in the fall, when intermediate abundances of the potential prey item increased the occurrence of southern flounder. After model completion, the availability and spatial distribution of suitable habitat within the GBC was predicted using available environmental and spatial data for 2005. Spatial distributions of predicted suitable habitat stress the relative importance of West Bay during the newly settled stage and in the fall season, and Upper Bay during the summer and fall of the first year of life. These models demonstrate the potential dynamics of suitable habitats for juvenile southern flounder and provide insight into ontogenetic shifts in habitat preference during the first year of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号