首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acoustic data and net samples were collected during late spring and early fall 1997–1999 to assess zooplankton and micronekton abundance and distribution relative to the Inner Front at three sampling grids (Port Moller, Cape Newenham and Nunivak Island) on the inner shelf of the southeast Bering Sea. Epibenthic scattering layers were observed during May–June and August–September in all three years. Acoustic data were scaled to euphausiid biomass using target strength models. Mean euphausiid biomass determined acoustically for each transect line was 0.7–21 g m−2, with most values below 5 g m−2. There was no consistent relationship between the distribution and biomass of euphausiids and the location of the Inner Front. Zero age pollock were observed on the inner shelf in August–September during all years, but were confined primarily to the stratified side of the Inner Front and to the frontal regime. The acoustic data for pollock were scaled to biomass using laboratory measurements of gas bladder dimensions and target strength models. Acoustic determinations of mean transect biomass for euphausiids did not differ from literature values for the inner shelf of the southeast Bering Sea, and pollock biomass on the inner shelf did not differ from that around the Pribilof Islands. Despite recent anomalies in climate and oceanographic conditions on the inner shelf, and high mortality of shorttail shearwaters during 1997, we found no evidence of significant interannual differences in the biomass of euphausiids or zero-age pollock on the inner shelf of the southeast Bering Sea.  相似文献   

2.
In the late 1990s, the southeastern Bering Sea exhibited a number of anomalous conditions, including a major die-off of short-tailed shearwaters (Puffinus tenuirostris), a trans-equatorial migrant that constitutes a major portion of the marine bird biomass in the southeastern Bering Sea. As part of a larger study of the ecological role of the inner or structural front over the southeastern Bering Sea shelf, in 1997–1999, we collected short-tailed shearwaters to determine diet composition. In spring 1997, we found that short-tailed shearwaters were consuming predominately the euphausiid Thysanoessa raschii, a diet expected on the basis of past studies. However, in subsequent years, short-tailed shearwater diets in spring contained increasingly larger proportions of fish, in particular, sandlance (Ammodytes hexapterus), as well as other species of euphausiids (T. inermis in 1999). In summer and fall collections, short-tailed shearwater diets were more varied than in spring, and included both fish (age-0 gadids, 21–35% by weight) and a wider variety of euphausiid species (T. inermis and T. spinifera). In summer and fall, crab zoea (August 1998) and copepods (August 1999) were eaten by shearwaters collected while feeding within the inner front. Diets in 1997–1999 were broader than those found in previous studies of short-tailed shearwaters over the inner shelf and Bristol Bay, which had documented diets composed almost solely of T. raschii. Our data are consistent with the hypothesis that euphausiids were less available to short-tailed shearwaters foraging over the middle and coastal domains of the southeastern Bering Sea in 1997–1999 than has previously been true. Our results are also consistent with hypothesis that the inner front can affect the availability of prey to shearwaters.  相似文献   

3.
In 1999, synoptic and hydrological conditions in the western Bering Sea were characterized by negative SST and air temperature anomalies, extensive ice coverage and late melting. Biological processes were also delayed. In 1999, the average zooplankton biomass was 1.76 g/m3, approximately half the average 3.07 g/m3 in 1998. Pacific salmon migrated to the northeastern Kamchatka streams two weeks later. This contrasts with 1997 (spring and summer) and 1998 (summer) when positive SST anomalies were widely distributed throughout the northwestern Bering Sea shelf. Since the second half of the 1990s, seasonal atmospheric processes developed over the western Bering Sea that were similar to those of the cold decades of the 1960–1970s. A meridional atmospheric circulation pattern began to replace zonal transport. Colder Arctic air masses have shifted over the Bering Sea region and shelf water temperatures have cooled considerably with the weakening of zonal atmospheric circulation. Temperature decreased in the cold intermediate layer during its renewal in winter. Besides, oceanic water inflow intensified into the Bering Sea in intermediate layers. Water temperature warmed to 4°C and a double temperature maximum existed in the warm intermediate layer in late summer in both 1997 and 1998. Opposing trends of cold water temperature and a warm intermediate layer led to an increase of vertical gradients in the main thermocline and progressing frontogenesis. It accelerates frontal transport and can be regarded as a chief cause of increased water exchange with the Pacific Ocean.  相似文献   

4.
We propose a new hypothesis, the Oscillating Control Hypothesis (OCH), which predicts that pelagic ecosystem function in the southeastern Bering Sea will alternate between primarily bottom-up control in cold regimes and primarily top-down control in warm regimes. The timing of spring primary production is determined predominately by the timing of ice retreat. Late ice retreat (late March or later) leads to an early, ice-associated bloom in cold water (e.g., 1995, 1997, 1999), whereas no ice, or early ice retreat before mid-March, leads to an open-water bloom in May or June in warm water (e.g., 1996, 1998, 2000). Zooplankton populations are not closely coupled to the spring bloom, but are sensitive to water temperature. In years when the spring bloom occurs in cold water, low temperatures limit the production of zooplankton, the survival of larval/juvenile fish, and their recruitment into the populations of species of large piscivorous fish, such as walleye pollock (Theragra chalcogramma), Pacific cod (Gadus macrocephalus) and arrowtooth flounder (Atheresthes stomias). When continued over decadal scales, this will lead to bottom-up limitation and a decreased biomass of piscivorous fish. Alternatively, in periods when the bloom occurs in warm water, zooplankton populations should grow rapidly, providing plentiful prey for larval and juvenile fish. Abundant zooplankton will support strong recruitment of fish and will lead to abundant predatory fish that control forage fish, including, in the case of pollock, their own juveniles. Piscivorous marine birds and pinnipeds may achieve higher production of young and survival in cold regimes, when there is less competition from large piscivorous fish for cold-water forage fish such as capelin (Mallotus villosus). Piscivorous seabirds and pinnipeds also may be expected to have high productivity in periods of transition from cold regimes to warm regimes, when young of large predatory species of fish are numerous enough to provide forage. The OCH predicts that the ability of large predatory fish populations to sustain fishing pressure will vary between warm and cold regimes.The OCH points to the importance of the timing of ice retreat and water temperatures during the spring bloom for the productivity of zooplankton, and the degree and direction of coupling between zooplankton and forage fish. Forage fish (e.g., juvenile pollock, capelin, Pacific herring [Clupea pallasii]) are key prey for adult pollock and other apex predators. In the southeastern Bering Sea, important changes in the biota since the mid-1970s include a marked increase in the biomass of large piscivorous fish and a concurrent decline in the biomass of forage fish, including age-1 walleye pollock, particularly over the southern portion of the shelf. Populations of northern fur seals (Callorhinus ursinus) and seabirds such as kittiwakes (Rissa spp.) at the Pribilof Islands have declined, most probably in response to a diminished prey base. The available evidence suggests that these changes are unlikely the result of a decrease in total annual new primary production, though the possibility of reduced post-bloom production during summer remains. An ecosystem approach to management of the Bering Sea and its fisheries is of great importance if all of the ecosystem components valued by society are to thrive. Cognizance of how climate regimes may alter relationships within this ecosystem will facilitate reaching that goal.  相似文献   

5.
6.
Two Bering Sea marine research programs collaborated during the final years of the 1990s to forge advances in understanding the southeastern Bering Sea pelagic ecosystem. Southeast Bering Sea Carrying Capacity, sponsored by NOAA Coastal Ocean Program, investigated processes on the middle and outer shelf and the continental slope. The Inner Front Program, sponsored by NSF, investigated processes of the inner domain and the front between the inner and middle domains. The purposes of these programs were to (1) increase understanding of the southeastern Bering Sea ecosystem, including the roles of juvenile walleye pollock, (2) investigate the hypothesis that elevated primary production at the inner front provides a summer-long energy source for the food web, and (3) develop and test annual indices of pre-recruit pollock abundance. The observations occurred during a period of unusually large variability in the marine climate, including a possible regime shift. Sea-ice cover ranged from near zero to one of the heaviest ice years in recent decades. Sea-surface temperatures reached record highs during summer 1997, whereas 1999 was noted for its low Bering Sea temperatures. Moreover, the first recorded observations of coccolithophore blooms on the shelf were realized in 1997, and these blooms now appear to be persistent. The programs’ results include an archive of physical and biological time series that emphasize large year-to-year regional variability, and an Oscillating Control Hypothesis that relates marine productivity to climate forcing. Further investigations are needed of the confluences of interannual and even intra-seasonal variability with low-frequency climate variability as potential producers of major, abrupt changes in the southeastern Bering Sea ecosystem.  相似文献   

7.
Stable carbon and nitrogen isotopic composition of zooplankton, suspended particulate organic matter (SPOM), and sinking particles collected using sediment traps were measured for samples obtained from the southeastern Bering Sea middle and outer shelf during 1997–1999. The quantity of material collected by the middle shelf sediment trap was greater in both spring and late summer and fall than in early and mid-summer. The δ15N of SPOM, sinking material and zooplankton showed greater inter-annual variability at the middle shelf site (M2) than at the outer shelf site (M3). Zooplankton and sinking organic matter collected by M2 sediment traps became more depleted in 15N from 1997 through 1999, associated with a change from unusually warm to unusually cold conditions. Suspended and sinking organic matter and zooplankton collected from M3 decreased only slightly in δ15N from 1998 to 1999. SPOM, zooplankton, and sediment trap samples collected at M2 were usually enriched in δ15N and δ13C over those from M3. However, in 1999 sediment trap samples from the middle shelf were enriched in 13C over M3 material, but the δ15N of samples from the two sites was similar. The geographic pattern could be explained greater productivity over the middle shelf, associated with either isotopically heavy nitrogen being regenerated from sediments, or with utilization of a greater fraction of the available inorganic nitrogen pool during most years.  相似文献   

8.
In the late 1950s, Soviet researchers collected benthic infaunal samples from the southeastern Bering Sea shelf. Approximately 17 years later, researchers at University of Alaska Fairbanks also sampled the region to assess infaunal biomass and abundance. Here, the two data sets were examined to document patterns and reveal any consistent differences in infaunal biomass among major feeding groups between the two time periods. No significant differences in the geometric mean biomass of all taxa pooled were indicated between the two study periods (1958–1959=49.1 g m−2; 1975–1976=60.8 g m−2; P=0.14); however, significant differences were observed for specific functional groups, namely carnivores, omnivores and surface detritivores. Of the 64 families identified from both data sets from all functional groups, 21 showed statistically significant (P0.05) differences in mean biomass. Of the 21 families showing significant differences, 19 (91%) of the families had higher mean biomass in the 1975–1976 data set. The above differences suggest a trend toward higher overall infaunal biomass for specific functional groups during mid 1970s compared with the late 1950s. Temperature measurements and literature data indicate that the mid-1970s was an unusually cold period relative to the period before and after, suggesting a mechanistic link between temperature changes and infaunal biomass. Food-web relationships and ecosystem dynamics in the southeastern Bering Sea indicate that during cold periods, infaunal biomass will be elevated relative to warm periods due to elevated carbon flux to the benthos and exclusion of benthic predators on infaunal invertebrates by the cold bottom water on the shelf. As long-term observations of temperature and sea-ice cover indicate a secular warming trend on the Bering Sea shelf, the potential changes in food-web relationships could markedly alter trophic structure and energy flow to apex consumers, potentially impacting the commercial, tourist and subsistence economies.  相似文献   

9.
Several years of continuous physical and biological anomalies have been affecting the Bering Sea shelf ecosystem starting from 1997. Such anomalies reached their peak in a striking visual phenomenon: the first appearance in the area of bright waters caused by massive blooms of the coccolithophore Emiliania huxleyi (E. huxleyi). This study is intended to provide an insight into the mechanisms of phytoplankton succession in the south-eastern part of the shelf during such years and addresses the causes of E. huxleyi success by means of a 2-layer ecosystem model, field data and satellite-derived information. A number of potential hypotheses are delineated based on observations conducted in the area and on previous knowledge of E. huxleyi general ecology. Some of these hypotheses are then considered as causative factors and explored with the model. The unusual climatic conditions of 1997 resulted most notably in a particularly shallow mixed layer depth and high sea surface temperature (about 4 °C above climatological mean). Despite the fact that the model could not reproduce for E. huxleyi a clear non-bloom to bloom transition (pre- vs. post-1997), several tests suggest that this species was favoured by the shallow mixed layer depth in conjunction with a lack of photoinhibition. A top-down control by microzooplankton selectively grazing phytoplankton other than E. huxleyi appears to be responsible for the long persistence of the blooms. Interestingly, observations reveal that the high N:P ratio hypothesis, regarded as crucial in the formation of blooms of this species in previous studies, does not hold on the Bering Sea shelf.  相似文献   

10.
Using geographic information systems (GIS) software and geostatistical techniques, we utilized three decades of water-column chlorophyll a data to examine the relative importance of autochthonous versus allochthonous sources of reduced carbon to benthic communities that occur from the northern Bering to the eastern Beaufort Sea shelf. Spatial trend analyses revealed areas of high benthic biomass (>300 g m−2) and chlorophyll (>150 mg m−2) on both the southern and northern Chukchi shelf; both areas are known as depositional centers for reduced organic matter that originates on the Bering Sea shelf and is advected northward in Anadyr and Bering shelf water masses. We found a significant correlation between biomass and chlorophyll a in the Chukchi Sea, reflective of the strong benthic–pelagic coupling in a system that is utilized heavily by benthic-feeding marine mammals. In contrast, there was no significant correlation between biomass and chlorophyll in the Beaufort Sea, which by comparison, is considerably less productive (biomass and chlorophyll, <75 g m−2 and <50 mg m−2, respectively). One notable exception is an area of relatively high biomass (50–100 g m−2) and chlorophyll (80 mg m−2) near Barter Island in the eastern Beaufort Sea. Compared to other adjacent areas in the Beaufort Sea, the chlorophyll values in the vicinity of Barter Island were considerably higher and likely reflect a long-hypothesized upwelling in that area and close coupling between the benthos and autochthonous production. In the Bering Sea, a drop in benthic biomass in 1994 compared with previous measurements (1974–1993) may support earlier observations that document a decline in biomass that began between the 1980s and 1990s in the Chirikov Basin and south of St. Lawrence Island. The results of this study indicate that the benthos is an excellent long-term indicator of both local and physical advective processes. In addition, this work provides further evidence that secondary production on arctic shelves can be significantly augmented by reduced carbon advected from highly productive adjacent shelves.  相似文献   

11.
A quasi-two dimensional model of the carbon and nitrogen cycling above the 70m isobath of the southeastern Bering Sea at 57°N replicates the observed seasonal cycles of nitrate, ammonium, ΣCO2, pCO2, light penetration, chlorophyll, phytoplankton growth rate, and primary production, as constrained by changes in wind, incident radiation, temperature, ice cover, vertical and lateral mixing, grazing stress, benthic processing of phytodetritus and zooplankton fecal pellets, and the pelagic microbial loop of DOC, bacteria, and their predators. About half of the seasonal resupply of nitrate stocks to their initial winter conditions is derived from in situ nitrification, with the rest obtained from deep-sea influxes. Under the present conditions of atmospheric forcing, shelf-break exchange, and food web structure, this shelf ecosystem serves as a sink for atmospheric CO2, with storage in the forms of exported DOC, DIC, and unutilized POC (phytoplankton, bacteria, and fecal pellets).As a consequence of just the rising levels of atmospheric pCO2 since the the Industrial Revolution, however, the biophysical CO2 status of the Southeastern Bering Sea shelf may have switched over the last 250 years, from a prior source to the present sink, since this relatively pristine ecosystem has unergone little eutrophication. Such fluctuations of CO2 status may thus be reversed by the physical processes of : (1) reduction of atmospheric pCO2, (2) increased on welling of deep-sea ΣCO2, and (3) warming of shelf waters. Based on our application of this model to the Chukchi Sea and the Gulf of Mexico, about 1.0–1.2 gigatons C y-1 of atmospheric CO2 may now be sequestered by temperate and polar shelf ecosystems. When tropical systems are included, however, a positive net sink of only 0.6–0.8. × 1015g C y−1 may prevail over all shelves.  相似文献   

12.
On the recent warming of the southeastern Bering Sea shelf   总被引:1,自引:0,他引:1  
During the last decade, the southeastern Bering Sea shelf has undergone a warming of 3 °C that is closely associated with a marked decrease of sea ice over the area. This shift in the physical environment of the shelf can be attributed to a combination of mechanisms, including the presence over the eastern Bering Sea shelf of a relatively mild air mass during the winter, especially from 2000 to 2005; a shorter ice season caused by a later fall transition and/or an earlier spring transition; increased flow through Unimak Pass during winter, which introduces warm Gulf of Alaska water onto the southeastern shelf; and the feedback mechanism whereby warmer ocean temperatures during the summer delay the southward advection of sea ice during winter. While the relative importance of these four mechanisms is difficult to quantify, it is evident that for sea ice to form, cold arctic winds must cool the water column. Sea ice is then formed in the polynyas during periods of cold north winds, and this ice is advected southward over the eastern shelf. The other three mechanisms can modify ice formation and melt, and hence its extent. In combination, these four mechanisms have served to temporally and spatially limit ice during the 5-year period (2001–2005). Warming of the eastern Bering Sea shelf could have profound influences on the ecosystem of the Bering Sea—from modification of the timing of the spring phytoplankton bloom to the northward advance of subarctic species and the northward retreat of arctic species.  相似文献   

13.
We report results of ecosystem studies in Monterey Bay, California, during the summer upwelling periods, 1996–99, including impacts of El Niño 1997–98 and La Niña 1999. Random-systematic line-transect surveys of marine mammals were conducted monthly from August to November 1996, and from May to November 1997–99. CTDs and zooplankton net tows were conducted opportunistically, and at 10 predetermined locations. Hydroacoustic backscatter was measured continuously while underway to estimate prevalence of zooplankton, with emphasis on euphausiids, a key trophic link between primary production and higher trophic level consumers.The occurrences of several of the California Current’s most common cetaceans varied among years. The assemblage of odontocetes became more diverse during the El Niño with a temporary influx of warm-water species. Densities of cold-temperate Dall’s porpoise, Phocoenoides dalli, were greatest before the onset of El Niño, whereas warm-temperate common dolphins, Delphinus spp., were present only during the warm-water period associated with El Niño. Rorqual densities decreased in August 1997 as euphausiid backscatter was reduced. In 1998, as euphausiid backscatter slowly increased, rorqual densities increased sharply to the greatest observed values. Euphausiid backscatter further increased in 1999, whereas rorqual densities were similar to those observed during 1998. We hypothesize that a dramatic reduction in zooplankton biomass offshore during El Niño 1997–98 led to the concentration of rorquals in the remaining productive coastal upwelling areas, including Monterey Bay. These patterns exemplify short-term responses of cetaceans to large-scale changes in oceanic conditions.  相似文献   

14.
Dissolved copper concentrations in surface waters of the Bering Sea ranged from 106 to 882 ngl–1. Higher concentrations were found in continental shelf waters. In the northwestern North Pacific dissolved copper ranged from 54 to 140 ngl–1. Particulate copper concentrations varied regionally and seasonally from 6 to 79 ngl–1. Regionally averaged particulate copper concentrations decreased from 175 to 33g g–1 against an increase in suspended materials because of the dilution effects of biological fractions. Apparent sporadic increases in copper concentrations were found in the mixing area of the Kuroshio and the Oyashio waters. The feature is attributed to the lateral distribution of different water types rather than to the upwelling of deeper waters by eddies. In the same area west of 160E, waters with high concentrations of dissolved copper (96±9 ngl–1) were found. Their origin appears to be the continental shelf of the Bering Sea. In spite of intensive biological activity, a considerable fraction of copper added to shelf waters was transported to the area off Japan via the circulation in the Bering Sea and the Oyashio current.  相似文献   

15.
The IMECOCAL Program began in 1997, with the objective of sampling plankton systematically in the Mexican region of the California Current. We present results of chlorophyll a concentrations and zooplankton displacement volumes for the eight cruises from September 1997 to October 1999. The abundance of 22 zooplankton groups was also analyzed for the first four cruises. The response of plankton to the 1997–1998 El Niño was atypical. From September 1997 to January 1998, chlorophyll a and zooplankton volume were at typical values (median integrated chlorophyll was 27 mg/m2 and zooplankton 100 ml/1000 m3 in 9801/02). After the peak of El Niño, the system shifted to cooler conditions. Integrated chlorophyll gradually increased to a median of 77 mg/m2 in April 1999. In contrast, zooplankton volumes decreased from October 1998 onward, despite favorable phytoplankton availability in 1999. Zooplankton structure was dominated by copepods and chaetognaths through the ENSO cycle, but interannual changes were evident. In the fall of 1997 there was a higher proportion of copepods, chaetognaths, and other minor groups, while the fall of 1998 zooplankton was richer in salps and ostracods. Historical data from previous Baja California CalCOFI cruises indicated that zooplankton volumes measured during the IMECOCAL cruises were above the long-term mean for the period 1951–1984. This suggests a differential response of plankton to the El Niño of 1997–1998 compared to the El Niño of 1957–1959. Regional differences in zooplankton volumes were also found, with central Baja California having 41% higher biomass than northern Baja California. Volumes from both regions were larger than those recorded by CalCOFI off southern California during 1997–1998, but the situation was reversed in 1999. The higher biomasses in the 1997–1998 El Niño can be attributed to high abundance of salps, which showed an affinity with warm, saline water.  相似文献   

16.
Hydrographic and plankton surveys were conducted over the basin and slope of the southeastern Bering Sea during April, June/July and September of 1994 and in June/July 1995, and seasonal and spatial variations of zooplankton community were investigated in relation to the oceanographic conditions. In July 1994, sea surface temperature (SST) ranged 5.3–8.7 °C, and the thermocline was between 30 and 50 m. In July 1995, however, SST was warmer (7.3–12.4 °C), and the thermocline was shallower (20–30 m). The thermal front at the shelf was also stronger in July 1995 than in July 1994. Surface salinity was higher in 1994 than 1995. A total of 17 taxonomic groups of zooplankton were identified from the plankton samples. In 1994, the highest density was observed in September. Copepods were the major taxon during all surveys. While some taxa such as euphausiids, ostracods, and Neocalanus spp. were most abundant in spring, others such as Calanus spp., Metridia pacifica, chaetognaths, and pteropods were most abundant in September. Adults and late-stage copepodites of Eucalanus bungii were abundant in spring, and were replaced by 1st–3rd stages of copepodites in summer. Zooplankton density was ca. 4 times higher in 1995 than in 1994, in part because of warm water temperature.  相似文献   

17.
Copepod species of the genus Neocalanus dominate the zooplankton biomass of the oceanic subarctic Pacific Ocean. Neocalanus spp. populations in the subarctic Pacific environment are successful: they feed, accumulate lipid, and persist from year to year. Prior experimental observations derived from a variety of methods indicated that, although their functional morphology is such that they clear the small phytoplankton cells characteristic of the oceanic subarctic Pacific environment efficiently, Neocalanus spp. do not consume sufficient phytoplankton to meet even basic metabolic requirements in that environment. Hence, their success in the subarctic Pacific must depend on their ability to obtain nutrition from other sources. As part of the SUPER (SUbarctic Pacific Ecosystem Research) program, experiments were performed to test the hypothesis that N. plumchrus and N. cristatus obtain a significant portion of their nutrition from planktonic Protozoa. The experiments demonstrate that Protozoa alone do not provide sufficient nutrition for N. cristatus to meet its basic metabolic needs. Protozoa constitute the major dietary component of N. plumchrus however, in agreement with the predictions of Frost's (1987) model of the subarctic Pacific ecosystem. At a minimum this diet permits N. plumchrus to meet basic metabolic requirements. Copepod grazing activities appear to be sufficient to control protozoan stocks in the oceanic subarctic Pacific during late spring and early summer when Neocalanus spp. inhabit the upper water column.  相似文献   

18.
Fish scales were used to investigate the interannual variability in chum salmon growth rates at specific ages in relation to climatic/environmental changes during the 1980s–1990s. Scales were obtained from adult salmon returning to the east coast of Korea between 1984 and 1998. Assuming proportionality between scale size increments and fish length, distances between scale annuli were regarded as the growth conditions in different habitat areas with respect to the life stages of chum salmon. In estuarine and coastal areas, growth rates of fingerling salmon were higher in the 1990s than in the 1980s. Zooplankton abundance off the east coast of Korea increased after the late 1980s, which may have provided favorable growth conditions for young salmon in the 1990s. Growth of juvenile chum salmon during the first summer (Okhotsk Sea) was relatively stable, and neither SST nor zooplankton biomass fluctuated significantly during the study period. However, in the Bering Sea, salmon growth rates between age-2 and age-4 (i.e. ocean-phase immature salmon) were higher in the 1980s than in the 1990s. Variability in salmon growth in the Bering Sea was correlated to zooplankton biomass. These results suggest that the climate regime shift of 1988/1989 in the subarctic North Pacific affected salmon growth mediated by changes of zooplankton biomass, revealing a bottom-up process.  相似文献   

19.
The flatfish yellowfin sole (Limanda aspera), northern rock sole (Lepidopsetta polyxystra), and Alaska plaice (Pleuronectes quadrituberculatus) in the southeastern Bering Sea prey mainly on infauna. Spatial correspondence between their stomach contents and infauna assemblages across habitat types was examined to identify indices of prey availability for flatfish habitat characterization and quality assessment. Benthic samples and flatfish stomachs were collected in 2009 near the Alaska Peninsula in the southeastern Bering Sea. Polychaetes and bivalves were the most dominant infauna groups, each comprising 35–60% by weight in each infauna sample. These two were also the only prey groups that frequently averaged > 50% of stomach content by weight. Bivalves dominated the infauna biomass on the relatively sandy inner shelf (0–50 m depth). The muddier middle shelf (50–100 m) had the highest infauna biomass, which was dominated by polychaetes. Diet compositions of the flatfish varied spatially in correspondence with the infauna assemblage. Polychaetes were prevalent in all flatfish diets on the middle shelf, even yellowfin sole whose typical primary prey are amphipods and bivalves. Polychaete-rich habitats are potentially prime for flatfish as polychaetes are readily utilized where available and generally have high nutritional value. Flatfish did not select for specific polychaete taxa, so an index of habitat quality could be based on the biomass of aggregate polychaetes or on dominant polychaete families of the region. Under normal environmental conditions, the three flatfish have slightly-offset spatial distributions, enabling each to utilize different infauna assemblages across the shelf. However, during cold phases in the Bering Sea ecosystem, as when this study was conducted, a cold pool of < 2 °C bottom water from the spring ice melt extends over the middle shelf in summer. This physiological barrier displaces all three flatfish to the inner shelf, intensifying competition for prey resources.  相似文献   

20.
A comparative analysis was conducted on climate variability in four sub-arctic seas: the Sea of Okhotsk, the Bering Sea shelf, the Labrador Sea, and the Barents Sea. Based on data from the NCEP/NCAR reanalysis, the focus was on air–sea interactions, which influence ice cover, ocean currents, mixing, and stratification on sub-seasonal to decadal time scales. The seasonal cycles of the area-weighted averages of sea-level pressure (SLP), surface air temperature (SAT) and heat fluxes show remarkable similarity among the four sub-arctic seas. With respect to variation in climate, all four seas experience changes of comparable magnitude on interannual to interdecadal time scales, but with different timing. Since 2000 warm SAT anomalies were found during most of the year in three of the four sub-arctic seas, with the exception of the Sea of Okhotsk. A seesaw (out of phase) pattern in winter SAT anomalies between the Labrador and the Barents Sea in the Atlantic sector is observed during the past 50 years before 2000; a similar type of co-variability between the Sea of Okhotsk and the Bering Sea shelf in the Pacific is only evident since 1970s. Recent positive anomalies of net heat flux are more prominent in winter and spring in the Pacific sectors, and in summer in the Atlantic sectors. There is a reduced magnitude in wind mixing in the Sea of Okhotsk since 1980, in the Barents Sea since 2000, and in early spring/late winter in the Bering Sea shelf since 1995. Reduced sea-ice areas are seen over three out of four (except the Sea of Okhotsk) sub-arctic seas in recent decades, particularly after 2000 based on combined in situ and satellite observations (HadISST). This analysis provides context for the pan-regional synthesis of the linkages between climate and marine ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号